1
|
Servi R, Akkoç RF, Aksu F, Servi S. Therapeutic potential of enzymes, neurosteroids, and synthetic steroids in neurodegenerative disorders: A critical review. J Steroid Biochem Mol Biol 2025; 251:106766. [PMID: 40288591 DOI: 10.1016/j.jsbmb.2025.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Neurodegenerative disorders present a significant challenge to healthcare systems, mainly due to the limited availability of effective treatment options to halt or reverse disease progression. Endogenous steroids synthesized in the central nervous system, such as pregnenolone (PREG), dehydroepiandrosterone (DHEA), progesterone (PROG), and allopregnanolone (ALLO), have been identified as potential therapeutic agents for neurodegenerative diseases. Neurosteroids such as ALLO, DHEA, and PROG, as well as their synthetic analogs like Ganaxolene, Fluasterone, and Olexoxime, offer promising effects for conditions such as Alzheimer's disease (AD) and depression. Moreover, Brexanolone and Ganaxolone are synthetic steroids approved for the treatment of postpartum depression and epilepsy, respectively. Neurosteroids such as ALLO are crucial in modulating GABAergic neurotransmission and reducing neuroinflammation. These compounds enhance the activity of GABA-A receptors, leading to increased inhibitory signaling in the brain, which can help regulate mood, cognition, and neuroprotection. Small clinical trials and observational studies indicate that ALLO may have cognitive benefits, but no large-scale, definitive meta-analysis confirms a 20 % improvement in AD patients. Mitochondrial dysfunction plays a vital role in the pathogenesis of numerous neurological diseases due to the high-energy demand and sensitivity of neurons to oxidative stress. Reduced mitochondrial function leads to amyloid-beta plaques and tau tangles accumulation in AD. In Parkinson's disease (PD), mitochondrial dysfunction resulting from the PINK1 or Parkin genes leads to energy deficiencies and the accumulation of toxic byproducts. Mutations in genes such as SOD1, C9orf72, and TDP-43 have been associated with mitochondrial dysfunction in amyotrophic lateral sclerosis (ALS). Moreover, studies on these neurodegenerative diseases suggest that inflammation is not merely a consequence of neurodegeneration but is also an essential factor in this process. Many neurological disorders involve multifaceted interactions between genetics, the environment, and immune responses, making it difficult to pinpoint their exact causes. Future research aims to overcome these hurdles through genetic advances, regenerative medicine, and personalized therapies. Cutting-edge technologies such as artificial intelligence and high-throughput screening are expected to accelerate drug discovery and improve diagnostic accuracy. Increasing collaboration between interdisciplinary fields such as bioinformatics, neuroscience, and immunology will lead to innovative treatment strategies. This comprehensive review discusses the therapeutic effects of enzymes, neurosteroids, and synthetic steroids in different neurodegenerative diseases, particularly AD, PD, ALS, and MS. Potential challenges in the therapeutic use of neurosteroids, such as the limited bioavailability and off-target effects of synthetic steroids, are also discussed, and an up-to-date and comprehensive review of the impact of these steroids on neurodegenerative disorders is presented.
Collapse
Affiliation(s)
- Refik Servi
- Fırat University, Faculty of Medicine, Department of Anatomy, Elazığ, Turkey.
| | - Ramazan Fazıl Akkoç
- Fırat University, Faculty of Medicine, Department of Anatomy, Elazığ, Turkey.
| | - Feyza Aksu
- Fırat University, Faculty of Medicine, Department of Anatomy, Elazığ, Turkey.
| | - Süleyman Servi
- Fırat University, Faculty of Science, Department of Chemistry, Elazığ, Turkey.
| |
Collapse
|
2
|
Risen SJ, Boland SW, Sharma S, Weisman GM, Shirley PM, Latham AS, Hay AJD, Gilberto VS, Hines AD, Brindley S, Brown JM, McGrath S, Chatterjee A, Nagpal P, Moreno JA. Targeting Neuroinflammation by Pharmacologic Downregulation of Inflammatory Pathways Is Neuroprotective in Protein Misfolding Disorders. ACS Chem Neurosci 2024; 15:1533-1547. [PMID: 38507813 DOI: 10.1021/acschemneuro.3c00846] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Neuroinflammation plays a crucial role in the development of neurodegenerative protein misfolding disorders. This category of progressive diseases includes, but is not limited to, Alzheimer's disease, Parkinson's disease, and prion diseases. Shared pathogenesis involves the accumulation of misfolded proteins, chronic neuroinflammation, and synaptic dysfunction, ultimately leading to irreversible neuronal loss, measurable cognitive deficits, and death. Presently, there are few to no effective treatments to halt the advancement of neurodegenerative diseases. We hypothesized that directly targeting neuroinflammation by downregulating the transcription factor, NF-κB, and the inflammasome protein, NLRP3, would be neuroprotective. To achieve this, we used a cocktail of RNA targeting therapeutics (SB_NI_112) shown to be brain-penetrant, nontoxic, and effective inhibitors of both NF-κB and NLRP3. We utilized a mouse-adapted prion strain as a model for neurodegenerative diseases to assess the aggregation of misfolded proteins, glial inflammation, neuronal loss, cognitive deficits, and lifespan. Prion-diseased mice were treated either intraperitoneally or intranasally with SB_NI_112. Behavioral and cognitive deficits were significantly protected by this combination of NF-κB and NLRP3 downregulators. Treatment reduced glial inflammation, protected against neuronal loss, prevented spongiotic change, rescued cognitive deficits, and significantly lengthened the lifespan of prion-diseased mice. We have identified a nontoxic, systemic pharmacologic that downregulates NF-κB and NLRP3, prevents neuronal death, and slows the progression of neurodegenerative diseases. Though mouse models do not always predict human patient success and the study was limited due to sample size and number of dosing methods utilized, these findings serve as a proof of principle for continued translation of the therapeutic SB_NI_112 for prion disease and other neurodegenerative diseases. Based on the success in a murine prion model, we will continue testing SB_NI_112 in a variety of neurodegenerative disease models, including Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Sydney J Risen
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
- Brain Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Sean W Boland
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
- Brain Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Sadhana Sharma
- Sachi Bioworks Inc., Colorado Technology Center, 685 South Arthur Avenue, Louisville, Colorado 80027, United States
| | - Grace M Weisman
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Payton M Shirley
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Amanda S Latham
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Arielle J D Hay
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Vincenzo S Gilberto
- Sachi Bioworks Inc., Colorado Technology Center, 685 South Arthur Avenue, Louisville, Colorado 80027, United States
| | - Amelia D Hines
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Stephen Brindley
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Jared M Brown
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Stephanie McGrath
- Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Anushree Chatterjee
- Sachi Bioworks Inc., Colorado Technology Center, 685 South Arthur Avenue, Louisville, Colorado 80027, United States
| | - Prashant Nagpal
- Sachi Bioworks Inc., Colorado Technology Center, 685 South Arthur Avenue, Louisville, Colorado 80027, United States
| | - Julie A Moreno
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
- Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
- Brain Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
3
|
Luchetti S, Liere P, Pianos A, Verwer RWH, Sluiter A, Huitinga I, Schumacher M, Swaab DF, Mason MRJ. Disease stage-dependent changes in brain levels and neuroprotective effects of neuroactive steroids in Parkinson's disease. Neurobiol Dis 2023:106169. [PMID: 37257664 DOI: 10.1016/j.nbd.2023.106169] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
Neuroactive steroids are known neuroprotective agents and neurotransmitter regulators. We previously found that expression of the enzymes synthesizing 5α-dihydroprogesterone (5α-DHP), allopregnanolone (ALLO), and dehydroepiandrosterone sulfate (DHEAS) were reduced in the substantia nigra (SN) of Parkinson's Disease (PD) brain. Here, concentrations of a comprehensive panel of steroids were measured in human post-mortem brains of PD patients and controls. Gas chromatography-mass spectrometry (GC/MS) was used to measure steroid levels in SN (involved in early symptoms) and prefrontal cortex (PFC) (involved later in the disease) of five control (CTR) and nine PD donors, divided into two groups: PD4 (PD-Braak stages 1-4) and PD6 (PD-Braak stages 5-6). In SN, ALLO was increased in PD4 compared to CTR and 5α-DHP and ALLO levels were diminished in PD6 compared to PD4. The ALLO metabolite 3α5α20α-hexahydroprogesterone (3α5α20α-HHP) was higher in PD4 compared to CTR. In PFC, 3α5α20α-HHP was higher in PD4 compared to both CTR and PD6. The effects of 5α-DHP, ALLO and DHEAS were tested on human post-mortem brain slices of patients and controls in culture. RNA expression of genes involved in neuroprotection, neuroinflammation and neurotransmission was analysed after 5 days of incubation with each steroid. In PD6 slices, both 5α-DHP and ALLO induced an increase of the glutamate reuptake effector GLAST1, while 5α-DHP also increased gene expression of the neuroprotective TGFB. In CTR slices, ALLO caused reduced expression of IGF1 and GLS, while DHEAS reduced the expression of p75 and the anti-apoptotic molecule APAF1. Together these data suggest that a potentially protective upregulation of ALLO occurs at early stages of PD, followed by a downregulation of progesterone metabolites at later stages that may exacerbate the pathological changes, especially in SN. Neuroprotective effects of neurosteroids are thus dependent on the neuropathological stage of the disease.
Collapse
Affiliation(s)
- Sabina Luchetti
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105, BA, Amsterdam, the Netherlands; Neuroimmunology Research Group, NIN, Amsterdam, the Netherlands
| | - Philippe Liere
- U1195 INSERM and University Paris Saclay, Le Kremlin Bicetre, 94276 Paris, France
| | - Antoine Pianos
- U1195 INSERM and University Paris Saclay, Le Kremlin Bicetre, 94276 Paris, France
| | - Ronald W H Verwer
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105, BA, Amsterdam, the Netherlands
| | - Arja Sluiter
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105, BA, Amsterdam, the Netherlands
| | - Inge Huitinga
- Neuroimmunology Research Group, NIN, Amsterdam, the Netherlands
| | - Michael Schumacher
- U1195 INSERM and University Paris Saclay, Le Kremlin Bicetre, 94276 Paris, France
| | - Dick F Swaab
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105, BA, Amsterdam, the Netherlands
| | | |
Collapse
|
4
|
Sharma S, Borski C, Hanson J, Garcia MA, Link CD, Hoeffer C, Chatterjee A, Nagpal P. Identifying an Optimal Neuroinflammation Treatment Using a Nanoligomer Discovery Engine. ACS Chem Neurosci 2022; 13:3247-3256. [PMID: 36410860 DOI: 10.1021/acschemneuro.2c00365] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Acute activation of innate immune response in the brain, or neuroinflammation, protects this vital organ from a range of external pathogens and promotes healing after traumatic brain injury. However, chronic neuroinflammation leading to the activation of immune cells like microglia and astrocytes causes damage to the nervous tissue, and it is causally linked to a range of neurodegenerative diseases such as Alzheimer's diseases (AD), Multiple Sclerosis (MS), Parkinson's disease (PD), and many others. While neuroinflammation is a key target for a range of neuropathological diseases, there is a lack of effective countermeasures to tackle it, and existing experimental therapies require fairly invasive intracerebral and intrathecal delivery due to difficulty associated with the therapeutic crossover between the blood-brain barrier, making such treatments impractical to treat neuroinflammation long-term. Here, we present the development of an optimal neurotherapeutic using our Nanoligomer Discovery Engine, by screening downregulation of several proinflammatory cytokines (e.g., Interleukin-1β or IL-1β, tumor necrosis factor-alpha or TNF-α, TNF receptor 1 or TNFR1, Interleukin 6 or IL-6), inflammasomes (e.g., NLRP1), key transcription factors (e.g., nuclear factor kappa-B or NF-κβ) and their combinations, as upstream regulators and canonical pathway targets, to identify and validate the best-in-class treatment. Using our high-throughput drug discovery, target validation, and lead molecule identification via a bioinformatics and artificial intelligence-based ranking method to design sequence-specific peptide molecules to up- or downregulate gene expression of the targeted gene at will, we used our discovery engine to perturb and identify most effective upstream regulators and canonical pathways for therapeutic intervention to reverse neuroinflammation. The lead neurotherapeutic was a combination of Nanoligomers targeted to NF-κβ (SB.201.17D.8_NF-κβ1) and TNFR1 (SB.201.18D.6_TNFR1), which were identified using in vitro cell-based screening in donor-derived human astrocytes and further validated in vivo using a mouse model of lipopolysaccharide (LPS)-induced neuroinflammation. The combination treatment SB_NI_111 was delivered without any special formulation using a simple intraperitoneal injection of low dose (5 mg/kg) and was found to significantly suppress the expression of LPS-induced neuroinflammation in mouse hippocampus. These results point to the broader applicability of this approach towards the development of therapies for chronic neuroinflammation-linked neurodegenerative diseases, sleep countermeasures, and others, and the potential for further investigation of the lead neurotherapeutic molecule as reversible gene therapy.
Collapse
Affiliation(s)
- Sadhana Sharma
- Sachi Bioworks, Colorado Technology Center, 685 S Arthur AvenueLouisville, Colorado 80027, United States
| | - Curtis Borski
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Jessica Hanson
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Micklaus A Garcia
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Christopher D Link
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Charles Hoeffer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Anushree Chatterjee
- Sachi Bioworks, Colorado Technology Center, 685 S Arthur AvenueLouisville, Colorado 80027, United States
| | - Prashant Nagpal
- Sachi Bioworks, Colorado Technology Center, 685 S Arthur AvenueLouisville, Colorado 80027, United States
| |
Collapse
|
5
|
Sex Steroid Receptors in Polycystic Ovary Syndrome and Endometriosis: Insights from Laboratory Studies to Clinical Trials. Biomedicines 2022; 10:biomedicines10071705. [PMID: 35885010 PMCID: PMC9312843 DOI: 10.3390/biomedicines10071705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) and endometriosis are reproductive disorders that may cause infertility. The pathology of both diseases has been suggested to be associated with sex steroid hormone receptors, including oestrogen receptors (ER), progesterone receptors (PRs) and androgen receptors (ARs). Therefore, with this review, we aim to provide an update on the available knowledge of these receptors and how their interactions contribute to the pathogenesis of PCOS and endometriosis. One of the main PCOS-related medical conditions is abnormal folliculogenesis, which is associated with the downregulation of ER and AR expression in the ovaries. In addition, metabolic disorders in PCOS are caused by dysregulation of sex steroid hormone receptor expression. Furthermore, endometriosis is related to the upregulation of ER and the downregulation of PR expression. These receptors may serve as therapeutic targets for the treatment of PCOS-related disorders and endometriosis, considering their pathophysiological roles. Receptor agonists may be applied to increase the expression of a specific receptor and treat endometriosis or metabolic disorders. In contrast, receptor antagonist functions to reduce receptor expression and can be used to treat endometriosis and induce ovulation. Understanding PCOS and the pathological roles of endometriosis sex steroid receptors is crucial for developing potential therapeutic strategies to treat infertility in both conditions. Therefore, research should be continued to fill the knowledge gap regarding the subject.
Collapse
|
6
|
Lu Z, Xu X, Li D, Sun N, Lin S. Sea Cucumber Peptides Attenuated the Scopolamine-Induced Memory Impairment in Mice and Rats and the Underlying Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:157-170. [PMID: 34932331 DOI: 10.1021/acs.jafc.1c06475] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Social stress and unhealthy diets lead to memory impairment, triggering health problems. This study aimed to determine the mitigating effect and regulation mechanism of sea cucumber peptides (SCP) against memory impairment. Here, scopolamine-induced memory impairment in mouse and rat models was used based on behavioral tests, a histological staining technique, Fourier transform infrared microscopy, and gas-chromatographic analysis as well as a Western blotting method. SCP improved the behavioral performance and regulated the disorder of the cholinergic system in mouse models in a dose-dependent manner. Therefore, the underlying mechanism was explored in high-dose SCP using mouse and rat models. SCP repaired damaged neuronal cells, enhanced the Nissl body number, increased the unsaturated lipid level, and activated the long-term potentiation (LTP) pathway (p-CaMKII, p-CREB, and BDNF), both in the mouse and rat hippocampus. The results indicated that SCP upregulated the LTP pathway and unsaturated lipid level to combat scopolamine-induced memory impairment, suggesting that SCP was a potential candidate for neurological recovery.
Collapse
Affiliation(s)
- Zhiqiang Lu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China
| | - Xiaomeng Xu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China
| | - Dongmei Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China
| |
Collapse
|
7
|
Azeez JM, Susmi TR, Remadevi V, Ravindran V, Sasikumar Sujatha A, Ayswarya RNS, Sreeja S. New insights into the functions of progesterone receptor (PR) isoforms and progesterone signaling. Am J Cancer Res 2021; 11:5214-5232. [PMID: 34873457 PMCID: PMC8640821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023] Open
Abstract
Progesterone, the ovarian steroid hormone, regulates a plentitude of biological processes in tissues ranging from the brain to bones. Recognizing the role of progesterone and its receptors in physiological processes and maladies can prevent and treat various diseases. Apart from its physiological functions, its role in developing diseases, especially breast cancer, is a recent topic of deliberation. There exists conflicting experimental and epidemiological evidence linking progesterone to breast cancer. This review tries to describe the physiological functions of progesterone and its receptors, genomic and non-genomic signaling, splice variants, and a different aspect of progesterone signaling. Furthermore, we seek to address or attempt to discuss the following pertinent questions on steroid hormone signaling; How does progesterone influence breast cancer progression? How does it change the molecular pathways in breast cancer with different receptor statuses, the specific role of each isoform, and how does the ER/and PR ratio affect progesterone signaling?
Collapse
Affiliation(s)
- Juberiya M Azeez
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram, India
| | | | - Viji Remadevi
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram, India
| | - Vini Ravindran
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram, India
| | | | | | - Sreeharshan Sreeja
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram, India
| |
Collapse
|
8
|
Promising leads and pitfalls: a review of dietary supplements and hormone treatments to prevent postpartum blues and postpartum depression. Arch Womens Ment Health 2021; 24:381-389. [PMID: 33205315 DOI: 10.1007/s00737-020-01091-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022]
Abstract
Prevention of postpartum depression (PPD) is important because it typically has a 13% prevalence rate, impactful immediate symptoms with greater risk of suicide, and higher long-term risk of psychiatric symptoms in both the mother and family. There are no universal approaches across all childbearing women that have proven to be preventative for PPD, so it is hoped that dietary and/or hormonal interventions will be developed. There are some effective preventative approaches for PPD, such as psychotherapy and medical management, for the highest risk cases, like when there is a past history of a major depressive episode. The purpose is to review studies that assess dietary and hormonal interventions for prevention of PPD and/or postpartum blues, a high-risk state for PPD. Studies that assess dietary and hormonal interventions for prevention of PPD which included a comparison group were reviewed, including omega-3 fatty acids, mineral and vitamin supplements, amino acid combinations, allopregnanolone, progesterone, and thyroxine. Presently, development of dietary supplements and hormonal products for prevention of PPD is at an early stage with most trials showing results that are either preliminary, not definitive, trend level or variable across studies. Even so, a few directions are not recommended for further investigation such as progesterone and thyroxine. On the other hand, studies of allopregnanolone for prophylaxis of PPD are needed. Also, given the number of trend level findings and the multifactorial etiology of PPD, it may be prudent to investigate combined interventions rather than monotherapies. There is still a major need to develop a dietary supplement that creates resiliency against the biological changes in early postpartum associated with risk for mood disorders and/or PPD.
Collapse
|
9
|
Khodadadi H, Jahromi GP, Zaeinalifard G, Fasihi-Ramandi M, Esmaeili M, Shahriary A. Neuroprotective and Antiapoptotic Effects of Allopregnanolone and Curcumin on Arsenic-Induced Toxicity in SH-SY5Y Dopaminergic Human Neuroblastoma Cells. NEUROPHYSIOLOGY+ 2020. [DOI: 10.1007/s11062-020-09861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Liang J, Wu Y, Yuan H, Yang Y, Xiong Q, Liang C, Li Z, Li C, Zhang G, Lai X, Hu Y, Hou S. Dendrobium officinale polysaccharides attenuate learning and memory disabilities via anti-oxidant and anti-inflammatory actions. Int J Biol Macromol 2018; 126:414-426. [PMID: 30593810 DOI: 10.1016/j.ijbiomac.2018.12.230] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/14/2018] [Accepted: 12/22/2018] [Indexed: 12/29/2022]
Abstract
The aim of this study was to explore the therapeutic effect and underling mechanism of Dendrobium officinale polysaccharides (DOPS) on two well-established animal models of learning and memory disabilities. Model of estrogen deficiency caused learning and memory disability can be induced by ovariectomy in mice, and mice were injected subcutaneously with d-galactose, which can also cause cognitive decline. H&E staining and Nissl staining were employed to confirm the protective effect of DOPS on hippocampal neuron. Morris water maze test, biochemical analysis, immunohistochemistry and immunofluorescence assay were used to study the effect and underlying mechanism of DOPS on two different learning and memory impairment models. Administration of DOPS significantly improved learning and memory disability in both models. Further studies showed that DOPS could attenuate oxidative stress and reduce neuro-inflammation via up-regulating expressions of Nrf2/HO-1 pathway and inhibiting activation of astrocytes and microglia in ovariectomy- and d-galactose-induced cognitive decline. These findings suggest that DOPS have an appreciable therapeutic effect on learning and memory disabilities and its mechanism may be related to activate Nrf2/HO-1 pathway to reduce oxidative stress and neuro-inflammation.
Collapse
Affiliation(s)
- Jian Liang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, and Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Yanfang Wu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, and Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Han Yuan
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, and Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Yiqi Yang
- The second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Qingping Xiong
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, and Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Chuyan Liang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510080, Guangdong, China
| | - Zhimeng Li
- The Fifth People's Hospital of Tangshan, Tangshan 063004, Hebei, PR China
| | - Cantao Li
- School of pharmaceutical sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Guifang Zhang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, and Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Xiaoping Lai
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, and Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China.
| | - Youdong Hu
- Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223002, Jiangsu, PR China.
| | - Shaozhen Hou
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, and Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; School of pharmaceutical sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
11
|
Neurosteroid allopregnanolone attenuates motor disability and prevents the changes of neurexin 1 and postsynaptic density protein 95 expression in the striatum of 6-OHDA-induced rats’ model of Parkinson’s disease. Biomed Pharmacother 2017. [DOI: 10.1016/j.biopha.2017.01.159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
12
|
Taraborrelli S. Physiology, production and action of progesterone. Acta Obstet Gynecol Scand 2016; 94 Suppl 161:8-16. [PMID: 26358238 DOI: 10.1111/aogs.12771] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/03/2015] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The aim of this article is to review the physiology of progesterone and focus on its physiological actions on tissues such as endometrium, uterus, mammary gland, cardiovascular system, central nervous system and bones. In the last decades, the interest of researchers has focused on the role of progesterone in genomic and non-genomic receptor mechanisms. MATERIALS AND METHODS We searched PubMed up to December 2014 for publications on progesterone/steroidogenesis. RESULTS AND CONCLUSIONS A better understanding of the biological genomic and non-genomic receptor mechanisms could enable us in the near future to obtain a more comprehensive knowledge of the safety and efficacy of this agent during hormone replacement therapy (natural progesterone), in vitro fertilization (water-soluble subcutaneous progesterone), in traumatic brain injury, Alzheimer's disease and diabetic neuropathy, even though further clinical studies are needed to prove its usefulness.
Collapse
|
13
|
Wang JM. Allopregnanolone and neurogenesis in the nigrostriatal tract. Front Cell Neurosci 2014; 8:224. [PMID: 25161608 PMCID: PMC4130099 DOI: 10.3389/fncel.2014.00224] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 07/21/2014] [Indexed: 12/31/2022] Open
Abstract
Reinstalling the neurobiological circuits to effectively change the debilitating course of neurodegenerative diseases is of utmost importance. This reinstallation requires generation of new cells which are able to differentiate into specific types of neurons and modification of the local environment suitable for integration of these new neurons into the neuronal circuits. Allopregnanolone (APα) seems to be involved in both of these processes, and therefore, is a potential neurotrophic agent. Loss of dopamine neurons in the substantia nigra (SN) is one of the main pathological features of Parkinson’s and also in, at least, a subset of Alzheimer’s patients. Therefore, reinstallation of the dopamine neurons in nigrostriatal tract is of unique importance for these neurodegenerative diseases. However, for the neurogenic status and the roles of allopregnanolone in the nigrostriatal tract, the evidence is accumulating and debating. This review summarizes recent studies regarding the neurogenic status in the nigrostriatal tract. Furthermore, special attention is placed on evidence suggesting that reductions in allopregnenalone levels are one of the major pathological features in PD and AD. This evidence has also been confirmed in brains of mice that were lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or those bearing neurodegenerative mutations. Lastly, we highlight studies showing that allopregnanalone can augment the number of total cells and dopaminergic neurons via peripheral exogenous administration.
Collapse
Affiliation(s)
- Jun Ming Wang
- Departments of Pathology, Psychiatry and Human Behavior, and Pharmacology and Toxicology, Memory Impairment and Neurodegenerative Dementia Center, University Mississippi Medical Center Jackson, MS, USA
| |
Collapse
|
14
|
Irwin RW, Solinsky CM, Brinton RD. Frontiers in therapeutic development of allopregnanolone for Alzheimer's disease and other neurological disorders. Front Cell Neurosci 2014; 8:203. [PMID: 25126056 PMCID: PMC4115668 DOI: 10.3389/fncel.2014.00203] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/04/2014] [Indexed: 01/08/2023] Open
Abstract
Allopregnanolone (Allo), a neurosteroid, has emerged as a promising promoter of endogenous regeneration in brain. In a mouse model of Alzheimer’s disease, Allo induced neurogenesis, oligodendrogenesis, white matter generation and cholesterol homeostasis while simultaneously reducing β-amyloid and neuroinflammatory burden. Allo activates signaling pathways and gene expression required for regeneration of neural stem cells and their differentiation into neurons. In parallel, Allo activates systems to sustain cholesterol homeostasis and reduce β-amyloid generation. To advance Allo into studies for chronic human neurological conditions, we examined translational and clinical parameters: dose, regimen, route, formulation, outcome measures, and safety regulations. A treatment regimen of once per week at sub-sedative doses of Allo was optimal for regeneration and reduction in Alzheimer’s pathology. This regimen had a high safety profile following chronic exposure in aged normal and Alzheimer’s mice. Formulation of Allo for multiple routes of administration has been developed for both preclinical and clinical testing. Preclinical evidence for therapeutic efficacy of Allo spans multiple neurological diseases including Alzheimer’s, Parkinson’s, multiple sclerosis, Niemann-Pick, diabetic neuropathy, status epilepticus, and traumatic brain injury. To successfully translate Allo as a therapeutic for multiple neurological disorders, it will be necessary to tailor dose and regimen to the targeted therapeutic mechanisms and disease etiology. Treatment paradigms conducted in accelerated disease models in young animals have a low probability of successful translation to chronic diseases in adult and aged humans. Gender, genetic risks, stage and burden of disease are critical determinants of efficacy. This review focuses on recent advances in development of Allo for Alzheimer’s disease (AD) that have the potential to accelerate therapeutic translation for multiple unmet neurological needs.
Collapse
Affiliation(s)
- Ronald W Irwin
- Department of Pharmacology and Pharmaceutical Sciences, Pharmaceutical Sciences Center, School of Pharmacy, University of Southern California Los Angeles, CA, USA
| | - Christine M Solinsky
- Clinical and Experimental Therapeutics Program, School of Pharmacy, University of Southern California Los Angeles, CA, USA
| | - Roberta Diaz Brinton
- Department of Pharmacology and Pharmaceutical Sciences, Pharmaceutical Sciences Center, School of Pharmacy, University of Southern California Los Angeles, CA, USA ; Department of Neurology, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
15
|
Whissell PD, Eng D, Lecker I, Martin LJ, Wang DS, Orser BA. Acutely increasing δGABA(A) receptor activity impairs memory and inhibits synaptic plasticity in the hippocampus. Front Neural Circuits 2013; 7:146. [PMID: 24062648 PMCID: PMC3775149 DOI: 10.3389/fncir.2013.00146] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/29/2013] [Indexed: 12/03/2022] Open
Abstract
Extrasynaptic γ-aminobutyric acid type A (GABAA) receptors that contain the δ subunit (δGABAA receptors) are expressed in several brain regions including the dentate gyrus (DG) and CA1 subfields of the hippocampus. Drugs that increase δGABAA receptor activity have been proposed as treatments for a variety of disorders including insomnia, epilepsy and chronic pain. Also, long-term pretreatment with the δGABAA receptor–preferring agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) enhances discrimination memory and increases neurogenesis in the DG. Despite the potential therapeutic benefits of such treatments, the effects of acutely increasing δGABAA receptor activity on memory behaviors remain unknown. Here, we studied the effects of THIP (4 mg/kg, i.p.) on memory performance in wild-type (WT) and δGABAA receptor null mutant (Gabrd−/−) mice. Additionally, the effects of THIP on long-term potentiation (LTP), a molecular correlate of memory, were studied within the DG and CA1 subfields of the hippocampus using electrophysiological recordings of field potentials in hippocampal slices. The results showed that THIP impaired performance in the Morris water maze, contextual fear conditioning and object recognition tasks in WT mice but not Gabrd−/− mice. Furthermore, THIP inhibited LTP in hippocampal slices from WT but not Gabrd−/− mice, an effect that was blocked by GABAA receptor antagonist bicuculline. Thus, acutely increasing δGABAA receptor activity impairs memory behaviors and inhibits synaptic plasticity. These results have important implications for the development of therapies aimed at increasing δGABAA receptor activity.
Collapse
Affiliation(s)
- Paul D Whissell
- Institute of Medical Science, University of Toronto Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Whissell PD, Rosenzweig S, Lecker I, Wang DS, Wojtowicz JM, Orser BA. γ-aminobutyric acid type A receptors that contain the δ subunit promote memory and neurogenesis in the dentate gyrus. Ann Neurol 2013; 74:611-21. [PMID: 23686887 DOI: 10.1002/ana.23941] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/08/2013] [Accepted: 05/10/2013] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Extrasynaptic γ-aminobutyric acid type A receptors that contain the δ subunit (δGABAA receptors) are highly expressed in the dentate gyrus (DG) subfield of the hippocampus, where they generate a tonic conductance that regulates neuronal activity. GABAA receptor-dependent signaling regulates memory and also facilitates postnatal neurogenesis in the adult DG; however, the role of the δGABAA receptors in these processes is unclear. Accordingly, we sought to determine whether δGABAA receptors regulate memory behaviors, as well as neurogenesis in the DG. METHODS Memory and neurogenesis were studied in wild-type (WT) mice and transgenic mice that lacked δGABAA receptors (Gabrd(-/-)). To pharmacologically increase δGABAA receptor activity, mice were treated with the δGABAA receptor-preferring agonist 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol (THIP). Behavioral assays including recognition memory, contextual discrimination, and fear extinction were used. Neurogenesis was studied by measuring the proliferation, survival, migration, maturation, and dendritic complexity of adult-born neurons in the DG. RESULTS Gabrd(-/-) mice exhibited impaired recognition memory and contextual discrimination relative to WT mice. Fear extinction was also impaired in Gabrd(-/-) mice, although the acquisition of fear memory was enhanced. Neurogenesis was disrupted in Gabrd(-/-) mice as the migration, maturation, and dendritic development of adult-born neurons were impaired. Long-term treatment with THIP facilitated learning and neurogenesis in WT but not Gabrd(-/-) mice. INTERPRETATION δGABAA receptors promote the performance of certain DG-dependent memory behaviors and facilitate neurogenesis. Furthermore, δGABAA receptors can be pharmacologically targeted to enhance these processes.
Collapse
Affiliation(s)
- Paul D Whissell
- Institute of Medical Science, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Kim JJ, Oh SJ, Shin JH, Hwang SY, Hyun SY, Yang HJ, Lee G. Testosterone related good neurologic outcome on the patients with return of spontaneous circulation after cardiac arrest: A prospective cohort study. Resuscitation 2013; 84:645-50. [DOI: 10.1016/j.resuscitation.2012.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 10/24/2012] [Accepted: 10/29/2012] [Indexed: 12/01/2022]
|
18
|
di Michele F, Luchetti S, Bernardi G, Romeo E, Longone P. Neurosteroid and neurotransmitter alterations in Parkinson's disease. Front Neuroendocrinol 2013; 34:132-42. [PMID: 23563222 DOI: 10.1016/j.yfrne.2013.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/17/2013] [Accepted: 03/25/2013] [Indexed: 01/13/2023]
Abstract
Parkinson's disease (PD) is associated with a massive loss of dopaminergic cells in the substantia nigra leading to dopamine hypofunction and alteration of the basal ganglia circuitry. These neurons, are under the control, among others, of the excitatory glutamatergic and inhibitory γ-aminobutyric acid (GABA) systems. An imbalance between these systems may contribute to excitotoxicity and dopaminergic cell death. Neurosteroids, a group of steroid hormones synthesized in the brain, modulate the function of several neurotransmitter systems. The substantia nigra of the human brain expresses high concentrations of allopregnanolone (3α, 5αtetrahydroprogesterone), a neurosteroid that positively modulates the action of GABA at GABAA receptors and of 5α-dihydroprogesterone, a neurosteroid acting at the genomic level. This article reviews the roles of NS acting as neuroprotectants and as GABAA receptor agonists in the physiology and pathophysiology of the basal ganglia, their impact on dopaminergic cell activity and survival, and potential therapeutic application in PD.
Collapse
|
19
|
Changes in the Neurogenesis and Axonal Sprouting in the Organotypic Hippocampal Slice Culture by Aβ 25-35Treatment. Appl Microsc 2012. [DOI: 10.9729/am.2012.42.4.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
20
|
Adeosun SO, Hou X, Jiao Y, Zheng B, Henry S, Hill R, He Z, Pani A, Kyle P, Ou X, Mosley T, Farley JM, Stockmeier C, Paul I, Bigler S, Brinton RD, Smeyne R, Wang JM. Allopregnanolone reinstates tyrosine hydroxylase immunoreactive neurons and motor performance in an MPTP-lesioned mouse model of Parkinson's disease. PLoS One 2012; 7:e50040. [PMID: 23209637 PMCID: PMC3510204 DOI: 10.1371/journal.pone.0050040] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 10/15/2012] [Indexed: 12/16/2022] Open
Abstract
Restorative/protective therapies to restore dopamine neurons in the substantia nigra pars compacta (SNpc) are greatly needed to effectively change the debilitating course of Parkinson's disease. In this study, we tested the therapeutic potential of a neurogenic neurosteroid, allopregnanolone, in the restoration of the components of the nigrostriatal pathway in MPTP-lesioned mice by measuring striatal dopamine levels, total and tyrosine hydroxylase immunoreactive neuron numbers and BrdU-positive cells in the SNpc. An acute treatment (once/week for two weeks) with allopregnanolone restored the number of tyrosine hydroxylase-positive and total cell numbers in the SNpc of MPTP-lesioned mice, even though this did not increase striatal dopamine. It was also noted that MPTP treated mice to which allopregnanolone was administered had an increase in BrdU-positive cells in the SNpc. The effects of allopregnanolone in MPTP-lesioned mice were more apparent in mice that underwent behavioral tests. Interestingly, mice treated with allopregnanolone after MPTP lesion were able to perform at levels similar to that of non-lesioned control mice in a rotarod test. These data demonstrate that allopregnanolone promotes the restoration of tyrosine hydroxylase immunoreactive neurons and total cells in the nigrostriatal tract, improves the motor performance in MPTP-treated mice, and may serve as a therapeutic strategy for Parkinson's disease.
Collapse
Affiliation(s)
- Samuel O. Adeosun
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Xu Hou
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Yun Jiao
- Department of Developmental Neurobiology, St. Jude Children's Hospital, Memphis, Tennessee, United States of America
| | - Baoying Zheng
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Sherry Henry
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Rosanne Hill
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Zhi He
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Amar Pani
- Department of Developmental Neurobiology, St. Jude Children's Hospital, Memphis, Tennessee, United States of America
| | - Patrick Kyle
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Xiaoming Ou
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Thomas Mosley
- The Memory Impairment Neurodegenerative Dementia Research Center, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Jerry M. Farley
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Craig Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Ian Paul
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Steven Bigler
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Roberta Diaz Brinton
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Richard Smeyne
- Department of Developmental Neurobiology, St. Jude Children's Hospital, Memphis, Tennessee, United States of America
| | - Jun Ming Wang
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- The Memory Impairment Neurodegenerative Dementia Research Center, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- * E-mail:
| |
Collapse
|
21
|
Fiocchetti M, Ascenzi P, Marino M. Neuroprotective effects of 17β-estradiol rely on estrogen receptor membrane initiated signals. Front Physiol 2012; 3:73. [PMID: 22493583 PMCID: PMC3319910 DOI: 10.3389/fphys.2012.00073] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 03/13/2012] [Indexed: 12/15/2022] Open
Abstract
Besides its crucial role in many physiological events, 17β-estradiol (E2) exerts protective effects in the central nervous system. The E2 effects are not restricted to the brain areas related with the control of reproductive function, but rather are widespread throughout the developing and the adult brain. E2 actions are mediated through estrogen receptors (i.e., ERα and ERβ) belonging to the nuclear receptor super-family. As members of the ligand-regulated transcription factor family, classically, the actions of ERs in the brain were thought to mediate only the E2 long-term transcriptional effects. However, a growing body of evidence highlighted rapid, membrane initiated E2 effects in the brain that are independent of ER transcriptional activities and are involved in E2-induced neuroprotection. The aim of this review is to focus on the rapid effects of E2 in the brain highlighting the specific role of the signaling pathway(s) of the ERβ subtype in the neuroprotective actions of E2.
Collapse
|
22
|
Kaore SN, Langade DK, Yadav VK, Sharma P, Thawani VR, Sharma R. Novel actions of progesterone: what we know today and what will be the scenario in the future? J Pharm Pharmacol 2012; 64:1040-62. [DOI: 10.1111/j.2042-7158.2012.01464.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abstract
Objectives
This article is aimed to review the novel actions of progesterone, which otherwise is considered as a female reproductive hormone. The article focuses on its important physiological actions in males too and gives an overview of its novel perspectives in disorders of central and peripheral nervous system.
Key findings
Progesterone may have a potential benefit in treatment of traumatic brain injury, various neurological disorders and male related diseases like benign prostatic hypertrophy (BPH), prostate cancer and osteoporosis. Norethisterone (NETA), a progesterone derivative, decreases bone mineral loss in male castrated mice suggesting its role in osteoporosis. In the future, progesterone may find use as a male contraceptive too, but still needs confirmatory trials for safety, tolerability and acceptability. Megestrol acetate, a progesterone derivative is preferred in prostatic cancer. Further, it may find utility in nicotine addiction, traumatic brain injury (recently entered Phase III trial) and Alzheimer's disease, diabetic neuropathy and crush injuries. Studies also suggest role of progesterone in stroke, for which further clinical trials are needed. The non genomic actions of progesterone may be in part responsible for these novel actions.
Summary
Although progesterone has shown promising role in various non-hormonal benefits, further clinical studies are needed to prove its usefulness in conditions like stroke, traumatic brain injury, neuropathy and crush injury. In male related illnesses like BPH and prostatic Ca, it may prove a boon in near future. New era of hormonal male contraception may be initiated by use of progesterone along with testosterone.
Collapse
Affiliation(s)
- Shilpa N Kaore
- Department of Pharmacology, Peoples College of Medical Sciences & Research Center, Bhopal, Madhya Pradesh, India
| | - Deepak Kumar Langade
- Department of Pharmacology, Peoples College of Medical Sciences & RC, Bhopal, Madhya Pradesh, India
| | - Vijay Kumar Yadav
- Department of Pharmacology, Peoples College of Medical Sciences & RC, Bhopal, Madhya Pradesh, India
| | - Parag Sharma
- Department of Pharmacology, Peoples College of Medical Sciences & RC, Bhopal, Madhya Pradesh, India
| | - Vijay R Thawani
- Department of Pharmacology, VCSG GMSRI, Srinagar and Pauri Garhwal, Uttarakhand, India
| | - Raj Sharma
- Department of Pharmacology, Govt medical College, Jagdalpur, Chhatisgarh, India
| |
Collapse
|
23
|
Abstract
Oestradiol exerts a profound influence upon multiple brain circuits. For the most part, these effects are mediated by oestrogen receptor (ER)α. We review here the roles of ERβ, the other ER isoform, in mediating rodent oestradiol-regulated anxiety, aggressive and sexual behaviours, the control of gonadotrophin secretion, and adult neurogenesis. Evidence exists for: (i) ERβ located in the paraventricular nucleus underpinning the suppressive influence of oestradiol on the stress axis and anxiety-like behaviour; (ii) ERβ expressed in gonadotrophin-releasing hormone neurones contributing to oestrogen negative-feedback control of gonadotrophin secretion; (iii) ERβ controlling the offset of lordosis behaviour; (iv) ERβ suppressing aggressive behaviour in males; (v) ERβ modulating responses to social stimuli; and (vi) ERβ in controlling adult neurogenesis. This review highlights two major themes; first, ERβ and ERα are usually tightly inter-related in the oestradiol-dependent control of a particular brain function. For example, even though oestradiol feedback to control reproduction occurs principally through ERα-dependent mechanisms, modulatory roles for ERβ also exist. Second, the roles of ERα and ERβ within a particular neural network may be synergistic or antagonistic. Examples of the latter include the role of ERα to enhance, and ERβ to suppress, anxiety-like and aggressive behaviours. Splice variants such as ERβ2, acting as dominant negative receptors, are of further particular interest because their expression levels may reflect preceeding oestradiol exposure of relevance to oestradiol replacement therapy. Together, this review highlights the predominant modulatory, but nonetheless important, roles of ERβ in mediating the many effects of oestradiol upon adult brain function.
Collapse
Affiliation(s)
- R. J. Handa
- Department of Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - S. Ogawa
- Laboratory of Behavioral Neuroendocrinology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - J. M. Wang
- Department of Pathology, Pharmacology and Toxicology, Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - A. E. Herbison
- Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
24
|
Papadopoulos V, Lecanu L. Caprospinol: discovery of a steroid drug candidate to treat Alzheimer's disease based on 22R-hydroxycholesterol structure and properties. J Neuroendocrinol 2012; 24:93-101. [PMID: 21623958 DOI: 10.1111/j.1365-2826.2011.02167.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The overall ability of the brain to synthesise neuroactive steroids led us to the identification of compounds that would reproduce aspects of neurosteroid pharmacology. The rate-determining step in neurosteroid biosynthesis is the import of the substrate cholesterol into the mitochondria, where it is metabolised into pregnenolone via the intermediate 22R-hydroxycholesterol. The levels of translocator protein 18-kDa, mediating the import of cholesterol into mitochondria, correlated with increased pregnenolone formation and reduced levels of 22R-hydroxycholesterol in biopsies from Alzheimer's disease (AD), but not age-matched control, brains. 22R-hydroxycholesterol was shown to protect against β-amyloid (Aβ(42) )-induced neurotoxicity. In search of 22R-hydroxycholesterol stable analogues, we identified the naturally occurring heterospirostenol, (22R,25R)-20α-spirost-5-en-3β-yl hexanoate (caprospinol) and derivatives that protect neuronal cells against Aβ(1-42) neurotoxicity. The neuroprotective effect of caprospinol is the result of a combination of overlapping properties, including: (i) the ability to bind to Aβ(42) and reduce plaque formation in the brain in vivo; (ii) interaction with components of the mitochondria respiratory chain resulting in an anti-uncoupling effect; (iii) the capacity to scavenge Aβ(42) monomers present in mitochondria; and (iv) the property of being a sigma-1 receptor ligand. In vivo, caprospinol crosses the blood-brain barrier, accumulates in the brain, and restores cognitive impairment in a pharmacological rat model of AD. Caprospinol is stable, does not bind to known steroid receptors, is devoid of mutagenic and genotoxic properties, and is devoid of acute toxicity in rodents. The pharmacokinetics and pharmacodynamics of caprospinol were studied, and long-term toxicity studies are under investigation, aiming to develop this compound as a disease-modifying drug for the treatment of AD.
Collapse
Affiliation(s)
- V Papadopoulos
- The Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Canada.
| | | |
Collapse
|
25
|
Neurosteroid biosynthetic pathways changes in prefrontal cortex in Alzheimer's disease. Neurobiol Aging 2011; 32:1964-76. [DOI: 10.1016/j.neurobiolaging.2009.12.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 12/10/2009] [Accepted: 12/17/2009] [Indexed: 12/21/2022]
|
26
|
Abstract
Steroid hormones may alter mnemonic processes. The majority of investigations have focused on the effects of 17β-estradiol (E(2)) to mediate learning. However, progesterone (P(4)), which varies across endogenous hormonal milieu with E(2), may also have effects on cognitive processes. P(4) may have effects in the hippocampus, prefrontal cortex (PFC) and/or striatum to enhance cognitive performance. Cognitive performance/learning has been assessed using tasks that are mediated by the hippocampus (water maze), PFC (object recognition) and striatum (conditioning). Our findings suggest that progestogens can have pervasive effects to enhance cognitive performance and learning in tasks mediated by the hippocampus, PFC and striatum and that these effects may be in part independent of actions at intracellular progestin receptors. Progestogens may therefore influence cognitive processes.
Collapse
|
27
|
Wolkowitz OM, Reus VI, Mellon SH. Of sound mind and body: depression, disease, and accelerated aging. DIALOGUES IN CLINICAL NEUROSCIENCE 2011. [PMID: 21485744 PMCID: PMC3181963 DOI: 10.31887/dcns.2011.13.1/owolkowitz] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Major depressive disorder (MDD) is associated with a high rate of developing serious medical comorbidities such as cardiovascular disease, stroke, dementia, osteoporosis, diabetes, and the metabolic syndrome. These are conditions that typically occur late in life, and it has been suggested that MDD may be associated with “accelerated aging.” We review several moderators and mediators that may accompany MDD and that may give rise to these comorbid medical conditions. We first review the moderating effects of psychological styles of coping, genetic predisposition, and epigenetic modifications (eg, secondary to childhood adversity). We then focus on several interlinked mediators occurring in MDD (or at least in subtypes of MDD) that may contribute to the medical comorbidity burden and to accelerated aging: limbic-hypothalamic-pituitary-adrenal axis alterations, diminution in glucocorticoid receptor function, altered glucose tolerance and insulin sensitivity, excitotoxicity, increases in intracellular calcium, oxidative stress, a proinflammatory milieu, lowered levels of “counter-regulatory” neurosteroids (such as allopregnanolone and dehydroepiandrosterone), diminished neurotrophic activity, and accelerated cell aging, manifest as alterations in telomerase activity and as shortening of telomeres, which can lead to apoptosis and cell death. In this model, MDD is characterized by a surfeit of potentially destructive mediators and an insufficiency of protective or restorative ones. These factors interact in increasing the likelihood of physical disease and of accelerated aging at the cellular level. We conclude with suggestions for novel mechanism-based therapeutics based on these mediators.
Collapse
Affiliation(s)
- Owen M Wolkowitz
- Department of Psychiatry, School of Medicine, University of California, San Francisco, California, USA.
| | | | | |
Collapse
|
28
|
Luchetti S, Huitinga I, Swaab DF. Neurosteroid and GABA-A receptor alterations in Alzheimer's disease, Parkinson's disease and multiple sclerosis. Neuroscience 2011; 191:6-21. [PMID: 21514366 DOI: 10.1016/j.neuroscience.2011.04.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 04/03/2011] [Accepted: 04/05/2011] [Indexed: 01/17/2023]
Abstract
Steroid hormones (e.g. estrogens, androgens, progestagens) which are synthesized de novo or metabolized within the CNS are called neurosteroids. There is substantial evidence from animal studies suggesting that these steroids can affect brain function by modulating neurotransmission, and influence neuronal survival, neuronal and glial differentiation and myelination in the CNS by regulating gene expression of neurotrophic factors and anti-inflammatory molecules. Indeed, evidence is emerging that expression of the enzymes responsible for the synthesis of neurosteroids changes in neurodegenerative diseases. Some of these changes may contribute to the pathology, while others, conversely, may represent an attempted rescue program in the diseased brain. Here we review the data on changes in neurosteroid levels and neurosteroid synthesis pathways in the human brain in three neurodegenerative conditions, Alzheimers's (AD) and Parkinson's (PD) diseases and Multiple Sclerosis (MS) and the extent to which these findings may implicate protective or pathological roles for neurosteroids in the course of these diseases.Some neurosteroids can modulate neurotransmitter activity, for example, the pregnane steroids allopregnanolone and 3α5α-tetrahydro-deoxycorticosterone which are potent positive allosteric modulators of ionotropic GABA-A receptors. Therefore, neurosteroid-modulated GABA-A receptor subunit alterations found in AD and PD will also be discussed. These data imply an involvement of neurosteroid changes in the neurodegenerative and neuroinflammatory processes and suggest that they may deserve further investigation as potential therapeutic agents in AD, PD and MS. Finally, suggestions for therapeutic strategies will be included. This article is part of a Special Issue entitled: Neuroactive Steroids: Focus on Human Brain.
Collapse
Affiliation(s)
- S Luchetti
- Netherlands Institute for Neuroscience (NIN), an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
29
|
MacMillan KS, Naidoo J, Liang J, Melito L, Williams NS, Morlock L, Huntington PJ, Estill SJ, Longgood J, Becker GL, McKnight SL, Pieper AA, De Brabander JK, Ready JM. Development of proneurogenic, neuroprotective small molecules. J Am Chem Soc 2011; 133:1428-37. [PMID: 21210688 PMCID: PMC3033481 DOI: 10.1021/ja108211m] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Degeneration of the hippocampus is associated with Alzheimer's disease and occurs very early in the progression of the disease. Current options for treating the cognitive symptoms associated with Alzheimer's are inadequate, giving urgency to the search for novel therapeutic strategies. Pharmacologic agents that safely enhance hippocampal neurogenesis may provide new therapeutic approaches. We discovered the first synthetic molecule, named P7C3, which protects newborn neurons from apoptotic cell death, and thus promotes neurogenesis in mice and rats in the subgranular zone of the hippocampal dentate gyrus, the site of normal neurogenesis in adult mammals. We describe the results of a medicinal chemistry campaign to optimize the potency, toxicity profile, and stability of P7C3. Systematic variation of nearly every position of the lead compound revealed elements conducive toward increases in activity and regions subject to modification. We have discovered compounds that are orally available, nontoxic, stable in mice, rats, and cell culture, and capable of penetrating the blood-brain barrier. The most potent compounds are active at nanomolar concentrations. Finally, we have identified derivatives that may facilitate mode-of-action studies through affinity chromatography or photo-cross-linking.
Collapse
|
30
|
Wolkowitz OM, Reus VI, Mellon SH. Of sound mind and body: depression, disease, and accelerated aging. DIALOGUES IN CLINICAL NEUROSCIENCE 2011; 13:25-39. [PMID: 21485744 PMCID: PMC3181963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Major depressive disorder (MDD) is associated with a high rate of developing serious medical comorbidities such as cardiovascular disease, stroke, dementia, osteoporosis, diabetes, and the metabolic syndrome. These are conditions that typically occur late in life, and it has been suggested that MDD may be associated with "accelerated aging." We review several moderators and mediators that may accompany MDD and that may give rise to these comorbid medical conditions. We first review the moderating effects of psychological styles of coping, genetic predisposition, and epigenetic modifications (eg, secondary to childhood adversity). We then focus on several interlinked mediators occurring in MDD (or at least in subtypes of MDD) that may contribute to the medical comorbidity burden and to accelerated aging: limbic-hypothalamic-pituitary-adrenal axis alterations, diminution in glucocorticoid receptor function, altered glucose tolerance and insulin sensitivity, excitotoxicity, increases in intracellular calcium, oxidative stress, a proinflammatory milieu, lowered levels of "counter-regulatory" neurosteroids (such as allopregnanolone and dehydroepiandrosterone), diminished neurotrophic activity, and accelerated cell aging, manifest as alterations in telomerase activity and as shortening of telomeres, which can lead to apoptosis and cell death. In this model, MDD is characterized by a surfeit of potentially destructive mediators and an insufficiency of protective or restorative ones. These factors interact in increasing the likelihood of physical disease and of accelerated aging at the cellular level. We conclude with suggestions for novel mechanism-based therapeutics based on these mediators.
Collapse
Affiliation(s)
- Owen M Wolkowitz
- Department of Psychiatry, School of Medicine, University of California, San Francisco, California, USA.
| | | | | |
Collapse
|
31
|
Paris JJ, Frye CA. Juvenile offspring of rats exposed to restraint stress in late gestation have impaired cognitive performance and dysregulated progestogen formation. Stress 2011; 14:23-32. [PMID: 21034292 PMCID: PMC3103059 DOI: 10.3109/10253890.2010.512375] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Gestational stress may have lasting effects on the physical and neurocognitive development of offspring. The mechanisms that may underlie these effects are of interest. Progesterone and its 5α-reduced metabolites, dihydroprogesterone and 5α-pregnan-3α-ol-20-one (3α,5α-THP), maintain pregnancy, have neurotrophic effects, and can enhance cognitive performance. We hypothesized that some of the deleterious effects of gestational stress on the cognitive performance of offspring may be related to progestogen formation. Pregnant rat dams were exposed to restraint under a bright light (thrice daily for 45 min) on gestational days 17-21 or were minimally handled controls. Dams that were exposed to restraint had lower circulating levels of 3α,5α-THP and significantly greater concentrations of corticosterone at the time of birth than did control dams. Male and female offspring, that were gestationally stressed or not, were cross-fostered to non-manipulated dams. Between postnatal days 28-30, offspring were assessed for object recognition, a prefrontal cortex (PFC)-dependent cognitive task. Restraint-exposed offspring performed more poorly in the object recognition task than did control offspring, irrespective of sex. As well, progesterone turnover to its 5α-reduced metabolites in the medial PFC (but not the diencephalon) was significantly reduced among restraint-exposed, compared to control, offspring. Progesterone turnover, and levels of 3α,5α-THP, positively correlated with performance in the object recognition task. Thus, restraint stress in late pregnancy impaired cognitive development and dysregulated progestogen formation in brain.
Collapse
Affiliation(s)
- Jason J Paris
- Department of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA
| | | |
Collapse
|
32
|
Wang JM, Sun C. Calcium and neurogenesis in Alzheimer's disease. Front Neurosci 2010; 4:194. [PMID: 21151820 PMCID: PMC2999846 DOI: 10.3389/fnins.2010.00194] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 11/09/2010] [Indexed: 01/19/2023] Open
Abstract
It was evidenced that impairment of calcium homeostasis is a potential mechanism in the development of Alzheimer's disease (AD). It remains, however, unclear how the calcium signaling are associated with in AD progression. Here we review recent studies to discuss the relationship among the signaling of intracellular calcium concentration, neurogenic activity, and AD progression. Analyzing these findings may provide new ideas to improve the neurogenic status in pathological processes in the aging brain.
Collapse
Affiliation(s)
- Jun Ming Wang
- Department of Pathology, University of Mississippi Medical Center Jackson, MS, USA
| | | |
Collapse
|
33
|
Tehranipour M, Moghimi A. Neuroprotective effects of testosterone on regenerating spinal cord motoneurons in rats. J Mot Behav 2010; 42:151-5. [PMID: 20363715 DOI: 10.1080/00222891003697921] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Degeneration in the CNS and peripheral nervous system consists of degradation and phagocytosis of axons and their myelin sheath distal to the site of injury. Testosterone is a gonadal sex steroid hormone that plays an important role in CNS development. One of the lesser-known testosterone actions is neuroprotection. In the present study, the authors investigated the neuroprotectective effect of intracerebral ventricular injection of testosterone on the number of spinal motoneurons after sciatic nerve crush. In all, 32 male Wistar rats were divided to 4 groups (control, compression, compression + castration, compression + testosterone injections; n = 8). Four weeks after compression the lumber segments of spinal cord were sampled, processed, sectioned serially, and stained with toluidine blue (pH = 4.65) by using steriological quantitative technique (physical dissector), the number of alpha motoneurons in the right ventral horns of spinal cord were counted and compared between groups. Statistical analyses showed that testosterone injections (1 microl icv, 4 times, 1 week interval between injections) significantly (p < .05) reduced neuronal damage. These results indicated that testosterone has an obvious neuroprotective effect on lumbar spinal motoneurons.
Collapse
Affiliation(s)
- Maryam Tehranipour
- Department of Biology, Faculty of Science, Islamic Azad University, Mashhad Branch, Iran
| | | |
Collapse
|
34
|
Wolkowitz OM, Epel ES, Reus VI, Mellon SH. Depression gets old fast: do stress and depression accelerate cell aging? Depress Anxiety 2010; 27:327-38. [PMID: 20376837 DOI: 10.1002/da.20686] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Depression has been likened to a state of "accelerated aging," and depressed individuals have a higher incidence of various diseases of aging, such as cardiovascular and cerebrovascular diseases, metabolic syndrome, and dementia. Chronic exposure to certain interlinked biochemical pathways that mediate stress-related depression may contribute to "accelerated aging," cell damage, and certain comorbid medical illnesses. Biochemical mediators explored in this theoretical review include the hypothalamic-pituitary-adrenal axis (e.g., hyper- or hypoactivation of glucocorticoid receptors), neurosteroids, such as dehydroepiandrosterone and allopregnanolone, brain-derived neurotrophic factor, excitotoxicity, oxidative and inflammatory stress, and disturbances of the telomere/telomerase maintenance system. A better appreciation of the role of these mediators in depressive illness could lead to refined models of depression, to a re-conceptualization of depression as a whole body disease rather than just a "mental illness," and to the rational development of new classes of medications to treat depression and its related medical comorbidities.
Collapse
Affiliation(s)
- Owen M Wolkowitz
- Department of Psychiatry, University of California School of Medicine, San Francisco, California, USA.
| | | | | | | |
Collapse
|
35
|
Luchetti S, Bossers K, Frajese GV, Swaab DF. Neurosteroid biosynthetic pathway changes in substantia nigra and caudate nucleus in Parkinson's disease. Brain Pathol 2010; 20:945-51. [PMID: 20406233 DOI: 10.1111/j.1750-3639.2010.00396.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
There is emerging evidence from animal studies for a neuroprotective role of sex steroids in neurodegenerative diseases, but studies in human brain are lacking. We have carried out an extensive study of the neurosteroid biosynthetic pathways in substantia nigra (SN), caudate nucleus (CN) and putamen (PU) of 7 Parkinson's disease (PD) patients and 7 matched controls. The mRNA levels of 37 genes including neurosteroid biosynthetic enzymes, hormone receptors and the neurosteroid-modulated gamma-amino-butyric acid -A (GABA-A) receptor subunits were analyzed by quantitative PCR (qPCR). In the SN, we found downregulation of 5alpha-reductase type 1 (5alpha-R1), sulfotransferase 2B1 (SULT2B1) and some GABA-A receptor subunits (alpha4, beta1) while in the CN, upregulation of 3alpha-hydroxysteroid dehydrogenase type 3 (3alpha-HSD3) and alpha4 GABA-A receptor subunit (22-fold) was observed. No significant differences were found in the PU. These data imply an involvement of pregnane steroids and changes in GABAergic neurotransmission in the neurodegenerative process and suggest that neurosteroids may deserve further investigation as potential therapeutic agents in PD.
Collapse
Affiliation(s)
- Sabina Luchetti
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
36
|
Allopregnanolone reverses neurogenic and cognitive deficits in mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 2010; 107:6498-503. [PMID: 20231471 DOI: 10.1073/pnas.1001422107] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Our previous analyses showed that allopregnanolone (APalpha) significantly increased proliferation of rodent and human neural progenitor cells in vitro. In this study, we investigated the efficacy of APalpha to promote neurogenesis in the hippocampal subgranular zone (SGZ), to reverse learning and memory deficits in 3-month-old male triple transgenic mouse model of Alzheimer's (3xTgAD) and the correlation between APalpha-induced neural progenitor cell survival and memory function in 3xTgAD mice. Neural progenitor cell proliferation was determined by unbiased stereological analysis of BrdU incorporation and survival determined by FACS for BrdU+ cells. Learning and memory function was assessed using the hippocampal-dependent trace eye-blink conditioning paradigm. At 3 months, basal level of BrdU+ cells in the SGZ of 3xTgAD mice was significantly lower relative to non-Tg mice, despite the lack of evident AD pathology. APalpha significantly increased, in a dose-dependent manner, BrdU+ cells in SGZ in 3xTgAD mice and restored SGZ proliferation to normal magnitude. As with the deficit in proliferation, 3xTgAD mice exhibited deficits in learning and memory. APalpha reversed the cognitive deficits to restore learning and memory performance to the level of normal non-Tg mice. In 3xTgAD mice, APalpha-induced survival of neural progenitors was significantly correlated with APalpha-induced memory performance. These findings suggest that early neurogenic deficits, which were evident before immunodetectable Abeta, may contribute to the cognitive phenotype of AD, and that APalpha could serve as a regenerative therapeutic to prevent or delay neurogenic and cognitive deficits associated with mild cognitive impairment and Alzheimer's disease.
Collapse
|
37
|
Directed neural lineage differentiation of adult hippocampal progenitor cells via modulation of hippocampal cholinergic neurostimulating peptide precursor expression. Brain Res 2010; 1327:107-17. [PMID: 20206149 DOI: 10.1016/j.brainres.2010.02.071] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 02/22/2010] [Accepted: 02/22/2010] [Indexed: 01/02/2023]
Abstract
Hippocampal cholinergic neurostimulating peptide (HCNP), originally purified from young rat hippocampus, has been known to promote the differentiation of septo-hippocampal cholinergic neurons. Recently, the precursor protein of HCNP (HCNP-pp) has also received attention as a multifunctional protein with roles, in addition to serving as the HCNP precursor, such as acting as an ATP-binding protein, a Raf kinase inhibitor protein (RKIP), and phosphatidylethanolamine-binding protein (PEBP). In particular, the function of RKIP has attracted attention over several years for its role in controlling cellular proliferation and metastasis in cancer cells. HCNP-pp is also thought to be important in regulating the proliferation and differentiation of neuronal cells in vitro and in vivo by modification of the MAPK cascade. In the present study, we used cultured adult rat hippocampal progenitor cells (AHPs), which are thought to be important for memory formation, and focused on the role of HCNP-pp in adult neurogenesis, namely, the production of new neurons from neural stem/progenitor cells. We found that HCNP-pp expression in AHPs was closely associated with differentiation into MAP2ab-positive neurons and RIP-positive oligodendrocytes, but not into GFAP-positive astrocytes. By contrast, a down-regulated HCNP-pp expression in AHPs accompanied differentiation into GFAP-positive astrocytes. Direct manipulations of HCNP-pp via viral over-expression or siRNA downregulation further confirmed the HCNP-pp contribution to specific neural lineage commitment of AHPs. Our results show that the expression level of HCNP-pp acts as a key regulator for differentiation of cultured AHPs into specific neural lineages, indicating that the control of neural stem cell fate can be achieved via the HCNP-pp pathway.
Collapse
|
38
|
Origlia N, Arancio O, Domenici L, Yan SS. MAPK, beta-amyloid and synaptic dysfunction: the role of RAGE. Expert Rev Neurother 2010; 9:1635-45. [PMID: 19903023 DOI: 10.1586/ern.09.107] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Genetic and biological studies provide strong support for the hypothesis that accumulation of beta amyloid peptide (Abeta) contributes to the etiology of Alzheimer's disease (AD). Growing evidence indicates that oligomeric soluble Abeta plays an important role in the development of synaptic dysfunction and the impairment of cognitive function in AD. The receptor for advanced glycation end products (RAGE), a multiligand receptor in the immunoglobulin superfamily, acts as a cell surface binding site for Abeta and mediates alternations in the phosphorylation state of mitogen-activated protein kinase (MAPKs). Recent results have shown that MAPKs are involved in neurodegenerative processes. In particular, changes in the phosphorylation state of various MAPKs by Abeta lead to synaptic dysfunction and cognitive decline, as well as development of inflammatory responses in AD. The present review summarizes the evidence justifying a novel therapeutic approach focused on inhibition of RAGE signaling in order to arrest or halt the development of neuronal dysfunction in AD.
Collapse
|
39
|
Frye CA. Neurosteroids' effects and mechanisms for social, cognitive, emotional, and physical functions. Psychoneuroendocrinology 2009; 34 Suppl 1:S143-61. [PMID: 19656632 PMCID: PMC2898141 DOI: 10.1016/j.psyneuen.2009.07.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/03/2009] [Accepted: 07/08/2009] [Indexed: 12/23/2022]
Abstract
Hormones are trophic factors that integrate central and peripheral nervous system functions, and can influence social, cognitive, emotional and physical (SCEP) processes. Greater understanding of behavioral and neurobiological underpinnings of mental, cognitive, and/or physical changes with maturation is becoming increasingly important as the world's population ages. There are individual differences in how people age, but the factors that influence these differences are not well understood. Social supports are one factor that may influence the trajectory of age-related processes. The loss of close relationships, especially among older persons, is one of the greatest risk factors for mental and physical decline. Progesterone, secreted by the ovaries, or produced de novo in the brain, is readily converted centrally to 5alpha-pregnan-3alpha-ol-20-one (3alpha,5alpha-THP), and can influence SCEP, through rapid, non-classical steroid-mediated actions. Our hypothesis is that 3alpha,5alpha-THP is a key trophic factor in SCEP and development. Our research has demonstrated that 3alpha,5alpha-THP facilitates social and sexual behavior of rodents, which evokes further increases in 3alpha,5alpha-THP in midbrain and hippocampus, brain areas involved in SCEP. The role of 3alpha,5alpha-THP to influence social and/or sexual experience, and thereby SCEP, is discussed in this review. Further understanding of these neurobiological and/or behavioral factors may lead to findings that ultimately can promote health and prevent disease.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany-State University of New York, Albany, NY 12222, USA.
| |
Collapse
|
40
|
Henry S, Bigler S, Wang J. High throughput analysis of neural progenitor cell proliferation in adult rodent hippocampus. Biosci Trends 2009; 3:233-238. [PMID: 20103852 PMCID: PMC2830061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Extensive efforts have been made to determine the status on neural progenitor cell proliferation in specific pathological conditions and to evaluate the therapeutic efficacy of drugs for preventing neurogenic deficits in neurodegenerative diseases. However, the most commonly used stereological analysis using 5-bromo-2'-deoxyuridine (BrdU) immuno-positive sections is a time consuming and labor intensive process and is often a bottle neck in neurogenic drug development, particularly when large sample sizes are needed. In addition, BrdU is toxic to new born neurons and also labels DNA damage in old cells. In this study, we established a method that quantitatively measures the number of Ki-67, an endogenous cell proliferation marker, positive cells by flow cytometry which analyzes extracted cell nuclei from rodent hippocampi in suspension. Our results demonstrate that this approach can be applied to a large number of rodent samples, can be accomplished in a short period of time (1-3 days), and can be completed in a more accurately objective manner than by using 3-D cell counting with immunohistochemically processed sections.
Collapse
Affiliation(s)
- Sherry Henry
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Steven Bigler
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Junming Wang
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
- Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
41
|
Tehranipou M, Javaheri R. Neuroprotetive Effect of Curcuma longa Alcoholic Extract on Peripheral
Nerves Degeneration after Sciatic Nerve Compression in Rats. ACTA ACUST UNITED AC 2009. [DOI: 10.3923/jbs.2009.889.893] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Hanna RN, Daly SCJ, Pang Y, Anglade I, Kah O, Thomas P, Zhu Y. Characterization and expression of the nuclear progestin receptor in zebrafish gonads and brain. Biol Reprod 2009; 82:112-22. [PMID: 19741205 DOI: 10.1095/biolreprod.109.078527] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The zebrafish nuclear progestin receptor (nPR; official symbol PGR) was identified and characterized to better understand its role in regulating reproduction in this well-established teleost model. A full-length cDNA was identified that encoded a 617-amino acid residue protein with high homology to PGRs in other vertebrates, and contained five domains characteristic of nuclear steroid receptors. In contrast to the multiplicity of steroid receptors often found in euteleosts and attributed to probable genome duplication, only a single locus encoding the full-length zebrafish pgr was identified. Cytosolic proteins from pgr-transfected cells showed a high affinity (K(d) = 2 nM), saturable, single-binding site specific for a native progestin in euteleosts, 4-pregnen-17,20 beta-diol-3-one (17,20 beta-DHP). Both 17,20 beta-DHP and progesterone were potent inducers of transcriptional activity in cells transiently transfected with pgr in a dual luciferase reporter assay, whereas androgens and estrogens had little potency. The pgr transcript and protein were abundant in the ovaries, testis, and brain and were scarce or undetectable in the intestine, muscle, and gills. Further analyses indicate that Pgr was expressed robustly in the preoptic region of the hypothalamus in the brain; proliferating spermatogonia and early spermatocytes in the testis; and in follicular cells and early-stage oocytes (stages I and II), with very low levels within maturationally competent late-stage oocytes (IV) in the ovary. The localization of Pgr suggests that it mediates progestin regulation of reproductive signaling in the brain, early germ cell proliferation in testis, and ovarian follicular functions, but not final oocyte or sperm maturation.
Collapse
Affiliation(s)
- Richard N Hanna
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Wang JM, Brinton RD. Allopregnanolone-induced rise in intracellular calcium in embryonic hippocampal neurons parallels their proliferative potential. BMC Neurosci 2008; 9 Suppl 2:S11. [PMID: 19090984 PMCID: PMC2604895 DOI: 10.1186/1471-2202-9-s2-s11] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Factors that regulate intracellular calcium concentration are known to play a critical role in brain function and neural development, including neural plasticity and neurogenesis. We previously demonstrated that the neurosteroid allopregnanolone (APα; 5α-pregnan-3α-ol-20-one) promotes neural progenitor proliferation in vitro in cultures of rodent hippocampal and human cortical neural progenitors, and in vivo in triple transgenic Alzheimer's disease mice dentate gyrus. We also found that APα-induced proliferation of neural progenitors is abolished by a calcium channel blocker, nifedipine, indicating a calcium dependent mechanism for the proliferation. Methods In the present study, we investigated the effect of APα on the regulation of intracellular calcium concentration in E18 rat hippocampal neurons using ratiometric Fura2-AM imaging. Results Results indicate that APα rapidly increased intracellular calcium concentration in a dose-dependent and developmentally regulated manner, with an EC50 of 110 ± 15 nM and a maximal response occurring at three days in vitro. The stereoisomers 3β-hydroxy-5α-hydroxy-pregnan-20-one, and 3β-hydroxy-5β-hydroxy-pregnan-20-one, as well as progesterone, were without significant effect. APα-induced intracellular calcium concentration increase was not observed in calcium depleted medium and was blocked in the presence of the broad spectrum calcium channel blocker La3+, or the L-type calcium channel blocker nifedipine. Furthermore, the GABAA receptor blockers bicuculline and picrotoxin abolished APα-induced intracellular calcium concentration rise. Conclusion Collectively, these data indicate that APα promotes a rapid, dose-dependent, stereo-specific, and developmentally regulated increase of intracellular calcium concentration in rat embryonic hippocampal neurons via a mechanism that requires both the GABAA receptor and L-type calcium channel. These data suggest that APα-induced intracellular calcium concentration increase serves as the initiation mechanism whereby APα promotes neurogenesis.
Collapse
Affiliation(s)
- Jun Ming Wang
- Department of Pharmacology and Pharmaceutical Sciences and Program in Neuroscience, University of Southern California, Los Angeles, CA 90089, USA.
| | | |
Collapse
|