1
|
Crombet Ramos T, Santos Morales O, Dy GK, León Monzón K, Lage Dávila A. The Position of EGF Deprivation in the Management of Advanced Non-Small Cell Lung Cancer. Front Oncol 2021; 11:639745. [PMID: 34211836 PMCID: PMC8240591 DOI: 10.3389/fonc.2021.639745] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/17/2021] [Indexed: 12/22/2022] Open
Abstract
Advanced non-small cell lung cancer (NSCLC) has faced a therapeutic revolution with the advent of tyrosine kinase inhibitors (TKIs) and immune checkpoints inhibitors (ICIs) approved for first and subsequent therapies. CIMAvax-EGF is a chemical conjugate between human-recombinant EGF and P64, a recombinant protein from Neisseria meningitides, which induces neutralizing antibodies against EGF. In the last 15 years, it has been extensively evaluated in advanced NSCLC patients. CIMAvax-EGF is safe, even after extended use, and able to keep EGF serum concentration below detectable levels. In a randomized phase III study, CIMAvax-EGF increased median overall survival of advanced NSCLC patients with at least stable disease after front-line chemotherapy. Patients bearing squamous-cell or adenocarcinomas and serum EGF concentration above 870 pg/ml had better survival compared to control patients treated with best supportive care as maintenance, confirming tumors' sensitivity to the EGF depletion. This manuscript reviews the state-of-the-art NSCLC therapy and proposes the most promising scenarios for evaluating CIMAvax-EGF, particularly in combination with TKIs or ICIs. We hypothesize that the optimal combination of CIMAvax-EGF with established therapies can further contribute to transform advanced cancer into a manageable chronic disease, compatible with years of good quality of life.
Collapse
Affiliation(s)
| | | | - Grace K. Dy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | | | | |
Collapse
|
2
|
Andreu I, Lence E, González-Bello C, Mayorga C, Cuquerella MC, Vayá I, Miranda MA. Protein Binding of Lapatinib and Its N- and O-Dealkylated Metabolites Interrogated by Fluorescence, Ultrafast Spectroscopy and Molecular Dynamics Simulations. Front Pharmacol 2020; 11:576495. [PMID: 33192518 PMCID: PMC7662899 DOI: 10.3389/fphar.2020.576495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/25/2020] [Indexed: 01/02/2023] Open
Abstract
Lapatinib (LAP) is an anticancer drug generally used to treat breast and lung cancer. It exhibits hypersensitivity reactions in addition to dermatological adverse effects and photosensitivity. Moreover, LAP binds to serum proteins and is readily biotransformed in humans, giving rise to several metabolites, such as N- and O-dealkylated products (N-LAP and O-LAP, respectively). In this context, the aim of the present work is to obtain key information on drug@protein complexation, the first step involved in a number of hypersensitivity reactions, by a combination of fluorescence, femtosecond transient absorption spectroscopy and molecular dynamics (MD) simulations. Following this approach, the behavior of LAP and its metabolites has been investigated in the presence of serum proteins, such as albumins and α1-acid glycoproteins (SAs and AGs, respectively) from human and bovine origin. Fluorescence results pointed to a higher affinity of LAP and its metabolites to human proteins; the highest one was found for LAP@HSA. This is associated to the coplanar orientation adopted by the furan and quinazoline rings of LAP, which favors emission from long-lived (up to the ns time-scale) locally-excited (LE) states, disfavoring population of intramolecular charge transfer (ICT) states. Moreover, the highly constrained environment provided by subdomain IB of HSA resulted in a frozen conformation of the ligand, contributing to fluorescence enhancement. Computational studies were clearly in line with the experimental observations, providing valuable insight into the nature of the binding sites and the conformational arrangement of the ligands inside the protein cavities. Besides, a good correlation was found between the calculated binding energies for each ligand@protein complex and the relative affinities observed in competition experiments.
Collapse
Affiliation(s)
- Inmaculada Andreu
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, València, Spain.,Unidad Mixta de Investigación UPV-Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Cristobalina Mayorga
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga and Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - M Consuelo Cuquerella
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, València, Spain.,Unidad Mixta de Investigación UPV-Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Ignacio Vayá
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, València, Spain.,Unidad Mixta de Investigación UPV-Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Miguel A Miranda
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, València, Spain.,Unidad Mixta de Investigación UPV-Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| |
Collapse
|
3
|
Vayá I, Andreu I, Lence E, González-Bello C, Consuelo Cuquerella M, Navarrete-Miguel M, Roca-Sanjuán D, Miranda MA. Characterization of Locally Excited and Charge-Transfer States of the Anticancer Drug Lapatinib by Ultrafast Spectroscopy and Computational Studies. Chemistry 2020; 26:15922-15930. [PMID: 32585059 DOI: 10.1002/chem.202001336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 12/24/2022]
Abstract
Lapatinib (LAP) is an anticancer drug, which is metabolized to the N- and O-dealkylated products (N-LAP and O-LAP, respectively). In view of the photosensitizing potential of related drugs, a complete experimental and theoretical study has been performed on LAP, N-LAP and O-LAP, both in solution and upon complexation with human serum albumin (HSA). In organic solvents, coplanar locally excited (LE) emissive states are generated; they rapidly evolve towards twisted intramolecular charge-transfer (ICT) states. By contrast, within HSA only LE states are detected. Accordingly, femtosecond transient absorption reveals a very fast switching (ca. 2 ps) from LE (λmax =550 nm) to ICT states (λmax =480 nm) in solution, whereas within HSA the LE species become stabilized and live much longer (up to the ns scale). Interestingly, molecular dynamics simulation studies confirm that the coplanar orientation is preferred for LAP (or to a lesser extent N-LAP) within HSA, explaining the experimental results.
Collapse
Affiliation(s)
- Ignacio Vayá
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022, València, Spain.,Unidad Mixta de Investigación UPV-Instituto de Investigación Sanitaria (IIS), La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Inmaculada Andreu
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022, València, Spain.,Unidad Mixta de Investigación UPV-Instituto de Investigación Sanitaria (IIS), La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782, Santiago, de Compostela, Spain
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782, Santiago, de Compostela, Spain
| | - M Consuelo Cuquerella
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022, València, Spain.,Unidad Mixta de Investigación UPV-Instituto de Investigación Sanitaria (IIS), La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Miriam Navarrete-Miguel
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071, València, Spain
| | - Daniel Roca-Sanjuán
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, 46071, València, Spain
| | - Miguel A Miranda
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022, València, Spain.,Unidad Mixta de Investigación UPV-Instituto de Investigación Sanitaria (IIS), La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026, Valencia, Spain
| |
Collapse
|
4
|
Proteoglycans in the Pathogenesis of Hormone-Dependent Cancers: Mediators and Effectors. Cancers (Basel) 2020; 12:cancers12092401. [PMID: 32847060 PMCID: PMC7563227 DOI: 10.3390/cancers12092401] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
Hormone-dependent cancers exhibit high morbidity and mortality. In spite of advances in therapy, the treatment of hormone-dependent cancers remains an unmet health need. The tumor microenvironment (TME) exhibits unique characteristics that differ among various tumor types. It is composed of cancerous, non-cancerous, stromal, and immune cells that are surrounded and supported by components of the extracellular matrix (ECM). Therefore, the interactions among cancer cells, stromal cells, and components of the ECM determine cancer progression and response to therapy. Proteoglycans (PGs), hybrid molecules consisting of a protein core to which sulfated glycosaminoglycan chains are bound, are significant components of the ECM that are implicated in all phases of tumorigenesis. These molecules, secreted by both the stroma and cancer cells, are crucial signaling mediators that modulate the vital cellular pathways implicated in gene expression, phenotypic versatility, and response to therapy in specific tumor types. A plethora of deregulated signaling pathways contributes to the growth, dissemination, and angiogenesis of hormone-dependent cancers. Specific inputs from the endocrine and immune systems are some of the characteristics of hormone-dependent cancer pathogenesis. Importantly, the mechanisms involved in various aspects of cancer progression are executed in the ECM niche of the TME, and the PG components crucially mediate these processes. Here, we comprehensively discuss the mechanisms through which PGs affect the multifaceted aspects of hormone-dependent cancer development and progression, including cancer metastasis, angiogenesis, immunobiology, autophagy, and response to therapy.
Collapse
|
5
|
Filipić B, Stojić-Vukanić Z. Active immunotherapy of cancer: An overview of therapeutic vaccines. ARHIV ZA FARMACIJU 2019. [DOI: 10.5937/arhfarm1906490f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
6
|
Therapeutic cancer vaccine: phase I clinical tolerance study of Hu-rhEGF-rP64k/Mont in patients with newly diagnosed advanced non-small cell lung cancer. BMC Immunol 2018; 19:14. [PMID: 29661145 PMCID: PMC5902871 DOI: 10.1186/s12865-018-0249-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/14/2018] [Indexed: 02/07/2023] Open
Abstract
Background Hu-rhEGF-rP64k/Mont is a biotechnology product for the treatment of advanced non-small cell lung cancer (NSCLC). The vaccine induces a neutralizing antibody-mediated immune response, against the normal circulating self-protein antigen epidermal growth factor (EGF), which prevents its binding to and activation of the EGF receptor, inhibiting the transduction of the signals that drive cancer cell proliferation, survival and spread. This phase I study aimed to evaluate the safety and the immunological response of Hu-rhEGF-rP64k vaccine in NSCLC patients. Results The Hu-rhEGF-rP64k/Mont vaccine showed to be safe and well tolerated, with dizziness, injection-site reactions and tremors being the most commonly reported adverse event. No severe adverse events or death were related to the vaccination. Immune monitoring demonstrated the generation of anti-EGF antibody titers and as a consequence the patients exhibited a decrease in the EGF concentration. In 80% of the vaccinated patients stable disease was achieved. Conclusion Hu-rhEGF-rP64k/Mont elicited a valuable immune response, with good safety profile assuring further clinical development of the vaccine in this population to further confirm the potential benefits on survival. Trial registration Chinese Clinical Trial Registry, ChiCTR-OID-17014048, date 2017/12/20 (retrospectively registered); Chinese Food and Drug Administration, CFDA 2009 L02105, date 2009/04/03; China Drug Trial, CTR20131039.
Collapse
|
7
|
Castells Martínez EM, Del Valle R, González EC, Melchor A, Pérez PL, González I, Carr A, León K. An enzyme immunoassay for determining epidermal growth factor (EGF) in human serum samples using an ultramicroanalytical system. J Immunoassay Immunochem 2016; 38:190-201. [PMID: 27636538 DOI: 10.1080/15321819.2016.1236729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Human epidermal growth factor is a small peptide consisting of 53 amino acid residues, which stimulates cell proliferation and is associated with several human carcinomas. A simple sandwich-type ultramicroELISA assay (UMELISA), based on the advantages of high affinity reaction between streptavidin and biotin has been developed for the measurement of EGF in human serum samples. Strips coated with a high affinity monoclonal antibody directed against EGF are used as solid phase, to ensure the specificity of the assay. The EGF assay was completed in 18 hr, with a measuring range of 39-2500 pg/mL. The intra- and inter-assay coefficients of variation were 4.4-7.3% and 0-5.1%, respectively, depending on the EGF concentrations evaluated. Percentage recovery ranged from 96-104%. Regression analysis showed a good correlation with the commercially available Human EGF Immunoassay Quantikine® ELISA kit (n = 130, r = 0.92, P < 0.01). The analytical performance characteristics of our UMELISA EGF endorse its use for the quantification of EGF in human serum samples.
Collapse
Affiliation(s)
| | - Ruben Del Valle
- b Prenatal Screening Laboratory , Immunoassay Center , Havana , Cuba
| | | | - Antonio Melchor
- c Department of Protein Purification , Immunoassay Center , Havana , Cuba
| | - Pedro Lucio Pérez
- a Neonatal Screening Laboratory , Immunoassay Center , Havana , Cuba
| | - Idania González
- d Department of Biomarkers , Center of Molecular Immunology , Havana , Cuba
| | - Adriana Carr
- d Department of Biomarkers , Center of Molecular Immunology , Havana , Cuba
| | - Kalet León
- d Department of Biomarkers , Center of Molecular Immunology , Havana , Cuba
| |
Collapse
|
8
|
Zhang YN, Duan XG, Zhang WH, Wu AL, Yang HH, Wu DM, Wei YQ, Chen XC. Antitumor activity of pluripotent cell-engineered vaccines and their potential to treat lung cancer in relation to different levels of irradiation. Onco Targets Ther 2016; 9:1425-36. [PMID: 27042111 PMCID: PMC4795574 DOI: 10.2147/ott.s97587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cancer stem cells (CSCs) are critical for tumor initiation/maintenance and recurrence or metastasis, so they may serve as a potential therapeutic target. However, CSC-established multitherapy resistance and immune tolerance render tumors resistant to current tumor-targeted strategies. To address this, renewable multiepitope-integrated spheroids based on placenta-derived mesenchymal stem cells (pMSCs) were X-ray-modified, at four different irradiation levels, including 80, 160, 240, and 320 Gy, as pluripotent biologics, to inoculate hosts bearing Lewis lung carcinoma (LL2) and compared with X-ray-modified common LL2 cells as control. We show that the vaccines at the 160/240 Gy irradiation levels could rapidly trigger tumor cells into the apoptosis loop and evidently prolong the tumor-bearing host's survival cycle, in contrast to vaccines irradiated at other levels (P<0.05), with tumor-sustaining stromal cell-derived factor-1/CXCR4 pathway being selectively blockaded. Meanwhile, almost no or minimal toxicity was detected in the vaccinated hosts. Importantly, 160/240 Gy-irradiated vaccines could provoke significantly higher killing of CSCs and non-CSCs, which may provide an access to developing a novel biotherapy against lung carcinoma.
Collapse
Affiliation(s)
- Yan-Na Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Xiao-Gang Duan
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Wen-Hui Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Ai-Ling Wu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Huan-Huan Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Dong-Ming Wu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Yu-Quan Wei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Xian-Cheng Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| |
Collapse
|
9
|
Rodriguez PC, Popa X, Martínez O, Mendoza S, Santiesteban E, Crespo T, Amador RM, Fleytas R, Acosta SC, Otero Y, Romero GN, de la Torre A, Cala M, Arzuaga L, Vello L, Reyes D, Futiel N, Sabates T, Catala M, Flores YI, Garcia B, Viada C, Lorenzo-Luaces P, Marrero MA, Alonso L, Parra J, Aguilera N, Pomares Y, Sierra P, Rodríguez G, Mazorra Z, Lage A, Crombet T, Neninger E. A Phase III Clinical Trial of the Epidermal Growth Factor Vaccine CIMAvax-EGF as Switch Maintenance Therapy in Advanced Non-Small Cell Lung Cancer Patients. Clin Cancer Res 2016; 22:3782-90. [PMID: 26927662 DOI: 10.1158/1078-0432.ccr-15-0855] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 02/09/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE EGFR is a well-validated target for patients with non-small cell lung cancer (NSCLC). CIMAvax-EGF is a therapeutic cancer vaccine composed of human recombinant EGF conjugated to a carrier protein and Montanide ISA51 as adjuvant. The vaccine is intended to induce antibodies against self EGFs that block EGF-EGFR interaction. EXPERIMENTAL DESIGN To evaluate overall survival, safety, immunogenicity, and EGF concentration in serum after CIMAvax-EGF, a randomized phase III trial was done in patients with advanced NSCLC. Four to 6 weeks after first-line chemotherapy, 405 patients with stage IIIB/IV NSCLC were randomly assigned to a vaccine group, which received CIMAvax-EGF or a control group, treated with best supportive care. RESULTS Long-term vaccination was very safe. Most frequent adverse reactions were grade 1 or 2 injection-site pain, fever, vomiting, and headache. Vaccination induced anti-EGF antibodies and decreased serum EGF concentration. In the safety population, median survival time (MST) was 10.83 months in the vaccine arm versus 8.86 months in the control arm. These differences were not significant according the standard log rank (HR, 0.82; P = 0.100), but according a weighted log rank (P = 0.04) that was applied once the nonproportionality of the HR was verified. Survival benefit was significant (HR, 0.77; P = 0.036) in the per-protocol setting (patients receiving at least four vaccine doses): MST was 12.43 months for the vaccine arm versus 9.43 months for the control arm. MST was higher (14.66 months) for vaccinated patients with high EGF concentration at baseline. CONCLUSIONS Switch maintenance with CIMAvax-EGF was well tolerated and significantly increased MST of patients that completed induction vaccination. Baseline EGF concentration predicted survival benefit. Clin Cancer Res; 22(15); 3782-90. ©2016 AACR.
Collapse
Affiliation(s)
| | | | - Odeth Martínez
- Vladimir I. Lenin University Hospital, Holguín Province, Cuba
| | - Silvia Mendoza
- Manuel Ascunce University Hospital, Camagüey Province, Cuba
| | | | | | - Rosa M Amador
- III Congreso University Hospital, Pinar del Rio Province, Cuba
| | | | - Soraida C Acosta
- Saturnino Lora University Hospital, Santiago de Cuba Province, Cuba
| | - Yanine Otero
- Camilo Cienfuegos University Hospital, Sancti Spiritus Province, Cuba
| | - Gala N Romero
- Carlos M. de Céspedes University Hospital, Granma Province, Cuba
| | - Ana de la Torre
- Celestino Hernández University Hospital, Villa Clara Province, Cuba
| | - Mireysi Cala
- Dr. Juan B. Zayas University Hospital, Santiago de Cuba Province, Cuba
| | - Lina Arzuaga
- Maria Curie University Hospital, Camagüey Province, Cuba
| | - Loisel Vello
- Antonio Luaces University Hospital, Ciego de Ávila Province, Cuba
| | | | - Niurka Futiel
- Celia Sánchez University Hospital, Granma Province, Cuba
| | - Teresa Sabates
- Dr. Gustavo Aldegueria University Hospital, Cienfuegos Province, Cuba
| | | | - Yoanna I Flores
- National Institute for Oncology & Radiobiology, Havana, Cuba
| | | | | | | | - Maria A Marrero
- National Center for Clinical Trials Coordination, Havana, Cuba
| | - Liuba Alonso
- National Center for Clinical Trials Coordination, Havana, Cuba
| | - Jenelin Parra
- National Center for Clinical Trials Coordination, Havana, Cuba
| | - Nadia Aguilera
- National Center for Clinical Trials Coordination, Havana, Cuba
| | | | | | | | | | | | | | - Elia Neninger
- Hermanos Ameijeiras University Hospital, Havana, Cuba
| |
Collapse
|
10
|
Crombet Ramos T, Rodríguez PC, Neninger Vinageras E, Garcia Verdecia B, Lage Davila A. CIMAvax EGF (EGF-P64K) vaccine for the treatment of non-small-cell lung cancer. Expert Rev Vaccines 2015; 14:1303-11. [PMID: 26295963 DOI: 10.1586/14760584.2015.1079488] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epidermal growth factor receptor (EGFR) is overexpressed in many epithelial tumors and its role in the development of non-small-cell lung cancer (NSCLC) is widely documented. CIMAvax-EGF is a therapeutic cancer vaccine composed by recombinant EGF conjugated to a carrier protein and emulsified in Montanide ISA51. Vaccination induces antibodies against self-EGF that block EGF-EGFR interaction and inhibit EGFR phosphorylation. Five clinical trials were conducted to optimize vaccine formulation and schedule. Then, two randomized studies were completed in advanced NSCLC, where CIMAvax-EGF was administered after chemotherapy, as 'switch maintenance'. The vaccine was very well tolerated and the most frequent adverse events consisted of grade 1/2 injection site reactions, fever, headache, vomiting and chills. CIMAvax was immunogenic and EGF concentration was reduced after vaccination. Subjects receiving a minimum of 4 vaccine doses had a significant survival advantage. NSCLC patients with high EGF concentration at baseline had the largest benefit, comparable with best maintenance therapies.
Collapse
|
11
|
Herrera ZM, Ramos TC. Pilot study of a novel combination of two therapeutic vaccines in advanced non-small-cell lung cancer patients. Cancer Immunol Immunother 2014; 63:737-47. [PMID: 24777612 PMCID: PMC11028931 DOI: 10.1007/s00262-014-1552-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 04/11/2014] [Indexed: 01/15/2023]
Abstract
Cancer vaccines contain tumor antigens in a pro-inflammatory context with the purpose to generate potent antitumor immune responses. However, tumor cells develop different immunosuppressive mechanisms that limit the effectiveness of an anticancer immune response. Therefore, therapeutic vaccine treatment alone is usually not sufficient to generate tumor regression or survival improvement, especially in the advanced disease scenario in which most clinical studies have been conducted. Combining cancer vaccines with different anticancer therapies such as chemotherapy, radiotherapy and other immunotherapeutic agents has had different levels of success. However, the combination of cancer vaccines with different mechanisms of action has not been explored in clinical trials. To address this issue, the current review summarizes the main clinical and immunological results obtained with two different therapeutic vaccines used in advanced non-small-cell lung cancer patients, inducing an immune response against epidermal growth factor (CIMAvax-EGF) and NGcGM3 ganglioside (racotumomab). We also discuss preliminary findings obtained in a trial of combination of these two vaccines and future challenges with these therapies.
Collapse
Affiliation(s)
- Zaima Mazorra Herrera
- Clinical Immunology Department at Clinical Direction, Center of Molecular Immunology, Street 216 Corner 15, PO box 16040, Havana, Cuba,
| | | |
Collapse
|
12
|
Detection of antibodies against customized epitope: use of a coating antigen employing VEGF as fusion partner. Appl Microbiol Biotechnol 2014; 98:6659-66. [PMID: 24595426 DOI: 10.1007/s00253-014-5618-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
Abstract
Diagnosis of many infectious, autoimmune diseases and cancers depends on the detection of specific antibodies against peptide epitope by enzyme-linked immunosorbent assay (ELISA). However, small peptides are difficult to be coated on the plate surfaces. In this study, we selected GnRH as a model hapten to evaluate whether VEGF121 would be suitable as an irrelevant hapten-carrier to develop a universal platform for specific antibodies detection. Firstly, GnRH was fused to the C terminus of VEGF121 and the resultant fusion protein VEGF-GnRH expressed effectively as inclusion bodies in Escherichia coli. Thereafter, VEGF-GnRH was easily purified to near homogeneity with a yield of about 235 mg from 2.1 L induced culture. At last, VEGF-GnRH was used to perform ELISA and western blot, and our results suggested that VEGF-GnRH was capable of detecting anti-GnRH antibodies in sera both qualitatively and quantitatively. Indeed, previous studies of our laboratory had demonstrated that other fusion proteins such as VEGF-Aβ10, VEGF-GRP, VEGF-CETPC, and VEGF-βhCGCTP37 were able to detect their corresponding antibodies specifically. Therefore, VEGF121 may be a suitable irrelevant fusion partner of important diagnostic peptide markers. Our works would shed some light on the development of a universal platform for detection of specific antibodies.
Collapse
|
13
|
Diaz Y, Tundidor Y, Lopez A, Leon K. Concomitant combination of active immunotherapy and carboplatin- or paclitaxel-based chemotherapy improves anti-tumor response. Cancer Immunol Immunother 2013; 62:455-69. [PMID: 22941039 PMCID: PMC11028977 DOI: 10.1007/s00262-012-1345-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 08/16/2012] [Indexed: 12/22/2022]
Abstract
Recent preclinical evidence substantially supports the successful combination of chemotherapies and active immunotherapy for cancer treatment. These data sustain the effect of sequential combination schemes (vaccine plus chemotherapy or vice versa), which could be difficult to implement in clinical practice. Since chemotherapy is the standard treatment for most cancers, ethical issues forbid its delay and make difficult the evaluation of other treatments such as using an immunotherapeutic agent. Besides, vaccines must be applied as soon as possible to advanced cancer patients, in order to give them time to develop an effective immune response. Thus, a clinically attractive scenario is the concomitant application of treatments. However, little is known about the specific effect of different chemotherapeutic agents when combined with a cancer vaccine in such concomitant treatment. In this work, we analyze the influence of high-dose carboplatin or paclitaxel in the generation of a specific immune response when administered concomitantly with an OVA vaccine. Interestingly, neither carboplatin nor paclitaxel affects the humoral and CTL in vivo response generated by the vaccine. Moreover, an enhancement of the overall anti-tumor effect was observed in animals treated with OVA/CF vaccine combined with cytotoxic drugs. Moreover, the effect of the concomitant treatment was tested using a tumor-related antigen, the epidermal growth factor (EGF). Animals administered with EGF-P64k/Montanide and cytotoxic agents showed an antibody response similar to that from control animals. Therefore, our study suggests that carboplatin and paclitaxel can be concomitantly combined with active immunotherapies in the clinical practice of advanced cancer patients.
Collapse
Affiliation(s)
- Y Diaz
- Systems Biology Department, Center of Molecular Immunology, P.O. Box 16040, 11600, Havana, Cuba.
| | | | | | | |
Collapse
|
14
|
Gonzalez G, Diaz-Miqueli A, Crombet T, Raez LE, Lage A. Current Algorithm for Treatment of Advanced NSCLC Patients: How to Include Active Immunotherapy? ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jct.2013.48a010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
EFFECTS OF A GONADOTROPIN-RELEASING HORMONE VACCINE ON OVARIAN CYCLICITY AND UTERINE MORPHOLOGY OF AN ASIAN ELEPHANT (ELEPHAS MAXIMUS). J Zoo Wildl Med 2012; 43:603-14. [DOI: 10.1638/2011-0270.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Cheng JY, Kananathan R. CIMAvax EGF vaccine for stage IIIb/IV non-small cell lung carcinoma. Hum Vaccin Immunother 2012; 8:1799-801. [PMID: 22906936 DOI: 10.4161/hv.21744] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This case report documents the use of the CIMAvax Epidermal Growth Factor vaccine regimen in a 54 y old female with stage IIIb non-small cell lung carcinoma. Even after 48 mo since diagnosis her ECOG performance remains at zero. Further, this report documents a reaction to the vaccine of grade 3 severity not previously documented.
Collapse
Affiliation(s)
- Jian Y Cheng
- Monash University Central Medical School, Clayton, VIC, Australia.
| | | |
Collapse
|
17
|
Mancebo A, Casacó A, González B, Ledón N, Sorlozabal J, León A, Gómez D, González Y, Bada A, González C, Arteaga M, Ramírez H, Fuentes D. Repeated dose intramuscular injection of the CIMAvax-EGF vaccine in Sprague Dawley rats induces local and systemic toxicity. Vaccine 2012; 30:3329-38. [DOI: 10.1016/j.vaccine.2012.01.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 01/06/2012] [Accepted: 01/07/2012] [Indexed: 10/28/2022]
|
18
|
Chitosan-based particles as biocompatible delivery vehicles for peptide and protein-based vaccines. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.provac.2012.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Chua BY, Al Kobaisi M, Zeng W, Mainwaring D, Jackson DC. Chitosan Microparticles and Nanoparticles as Biocompatible Delivery Vehicles for Peptide and Protein-Based Immunocontraceptive Vaccines. Mol Pharm 2011; 9:81-90. [DOI: 10.1021/mp200264m] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Brendon Y. Chua
- Department of Microbiology and
Immunology, The University of Melbourne, Royal Parade, Parkville, Australia 3010
| | - Mohammad Al Kobaisi
- School of Applied Sciences, Royal Melbourne Institute of Technology, Melbourne,
Australia 3010
| | - Weiguang Zeng
- Department of Microbiology and
Immunology, The University of Melbourne, Royal Parade, Parkville, Australia 3010
| | - David Mainwaring
- School of Applied Sciences, Royal Melbourne Institute of Technology, Melbourne,
Australia 3010
| | - David C. Jackson
- Department of Microbiology and
Immunology, The University of Melbourne, Royal Parade, Parkville, Australia 3010
| |
Collapse
|
20
|
Wang XJ, Gu K, Xu JS, Li MH, Cao RY, Wu J, Li TM, Liu JJ. Immunization with a recombinant GnRH vaccine fused to heat shock protein 65 inhibits mammary tumor growth in vivo. Cancer Immunol Immunother 2010; 59:1859-66. [PMID: 20803011 PMCID: PMC11031030 DOI: 10.1007/s00262-010-0911-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 08/16/2010] [Indexed: 10/19/2022]
Abstract
Gonadotrophin-releasing hormone (GnRH) is the prime decapeptide hormone in the regulation of mammalian reproduction. Active immunization against GnRH has been a good treatment option to fight against hormone-dependent disease such as breast cancer. We designed and purified a novel protein vaccine Hsp65-GnRH(6) containing heat shock protein 65 (Hsp65) and six copies of GnRH in linear alignment. Immunization with Hsp65-GnRH(6) evoked strong humoral response in female mice. The generation of specific anti-GnRH antibodies was detected by ELISA and verified by western blot. In addition, anti-GnRH antibodies effectively neutralized endogenous GnRH activity in vivo, as demonstrated by the degeneration of the ovaries and uteri in the vaccinated mice. Moreover, the growth of EMT-6 mammary tumor allografts was inhibited by anti-GnRH antibodies. Histological examinations have shown that there was increased focal necrosis in tumors. Taken together, our results showed that immunization with Hsp65-GnRH(6) elicited high titer of specific anti-GnRH antibodies and further led to atrophy of reproductive organs. The specific antibodies could inhibit the growth of EMT-6 murine mammary tumor probably via an indirect mechanism that includes the depletion of estrogen. In view of these results, the protein vaccine Hsp65-GnRH(6) appears to be a promising candidate vaccine for hormone-dependent cancer therapy.
Collapse
Affiliation(s)
- Xue Jun Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Hanzhong Road 140, Nanjing, 210029 China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Hanzhong Road 140, Nanjing, 210029 China
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Tongjia Xiang 24, Nanjing, 210009 China
| | - Kai Gu
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Tongjia Xiang 24, Nanjing, 210009 China
| | - Jin Shu Xu
- School of Pharmacy, Nanjing Medical University, Hanzhong Road 140, Nanjing, 210029 China
| | - Ming Hui Li
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Tongjia Xiang 24, Nanjing, 210009 China
| | - Rong Yue Cao
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Tongjia Xiang 24, Nanjing, 210009 China
| | - Jie Wu
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Tongjia Xiang 24, Nanjing, 210009 China
| | - Tai Ming Li
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Tongjia Xiang 24, Nanjing, 210009 China
| | - Jing Jing Liu
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Tongjia Xiang 24, Nanjing, 210009 China
| |
Collapse
|
21
|
Preparation of a peptide vaccine against GnRH by a bioprocess system based on asparaginase. Vaccine 2010; 28:4984-8. [DOI: 10.1016/j.vaccine.2010.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/06/2010] [Accepted: 05/10/2010] [Indexed: 01/18/2023]
|
22
|
Vaccination with a potent DNA vaccine targeting B-cell epitopes of hGRP induces prophylactic and therapeutic antitumor activity in vivo. Gene Ther 2010; 17:459-68. [DOI: 10.1038/gt.2009.165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Lu Y, Ouyang K, Fang J, Zhang H, Wu G, Ma Y, Zhang Y, Hu X, Jin L, Cao R, Fan H, Li T, Liu J. Improved efficacy of DNA vaccination against prostate carcinoma by boosting with recombinant protein vaccine and by introduction of a novel adjuvant epitope. Vaccine 2009; 27:5411-8. [PMID: 19616501 DOI: 10.1016/j.vaccine.2009.06.089] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 06/01/2009] [Accepted: 06/09/2009] [Indexed: 11/24/2022]
Abstract
DNA vaccine represents an attractive approach for cancer treatment by inducing active immune-deprivation of gastrin-releasing peptide (GRP) from tumor cells, the growth of which is dependent on the stimulation of GRP. In this study, we developed a DNA vaccine using a plasmid vector to deliver the immunogen of six copies of the B cell epitope GRP(18-27) (GRP6). In order to increase the potency of this DNA vaccine, multiple strategies have been applied including DNA-prime protein-boost immunization and introduction of a foreign T-helper epitope into DNA vaccine. Mice vaccinated DNA vaccine boosting with HSP65-GRP6 protein induced high titer and relatively high avidity of anti-GRP antibodies as well as inhibition effect on the growth of murine prostate carcinoma, superior to the treatment using DNA alone or BCG priming HSP65-GRP6 protein boosting. Furthermore, the introduction of a novel foreign T-helper epitope into the GRP DNA vaccine showed a markedly stronger humoral immune response against GRP and tumor rejection even than the DNA-prime protein-boost strategy. No further stronger immunogenicity of this foreign T-helper epitope modified DNA vaccine was observed even using the strategy of modified DNA vaccine-priming and HSP65-GRP6 boosting method. The data presented demonstrate that improvement of potency of anti-GRP DNA vaccine with the above two feasible approaches should offer useful methods in the development of new DNA vaccine against growth factors for cancer immunotherapy.
Collapse
Affiliation(s)
- Yong Lu
- Minigene Pharmacy Laboratory, Biopharmaceutical College, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Montero E, Valdes M, Avellanet J, Lopez A, Perez R, Lage A. Chemotherapy induced transient B-cell depletion boosts antibody-forming cells expansion driven by an epidermal growth factor-based cancer vaccine. Vaccine 2009; 27:2230-9. [PMID: 19428837 DOI: 10.1016/j.vaccine.2009.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 01/31/2009] [Accepted: 02/05/2009] [Indexed: 10/21/2022]
Abstract
Cancer vaccines efficacy may improve inducing a rapid and persistent immune response, early at diagnosis along with standard therapies. EGF chemically conjugated to the carrier protein P64k from Neisseria meningitidis in montanide ISA 51 adjuvant is under evaluation, aiming to stimulate a B-cell response. High-dose cyclophosphamide and doxorubicin after priming enhanced the long-term frequency of EGF-specific antibody-forming cells (AFC) of IgM and IgG isotypes, but not the P64k response. Resulting combination, limitedly operational in Btk deficient xid mice, suggests that preferential B-cell lymphocyte space promoted by cyclophosphamide facilitates remaining EGF-specific AFC undergo homeostatic proliferation driven by boosting, amplifying the response.
Collapse
Affiliation(s)
- Enrique Montero
- Experimental Immunotherapy Department, Center of Molecular Immunology, 216 Street & 15, Playa, Havana 11600, Cuba.
| | | | | | | | | | | |
Collapse
|
25
|
Priming and boosting determinants on the antibody response to an Epidermal Growth Factor-based cancer vaccine. Vaccine 2008; 26:4647-54. [DOI: 10.1016/j.vaccine.2008.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 06/23/2008] [Accepted: 07/01/2008] [Indexed: 11/19/2022]
|