1
|
Meevassana J, Vongsuly CW, Nakbua T, Kamolratanakul S, Thitiwanichpiwong P, Bin-Alee F, Keelawat S, Kitkumthorn N. Selected Alu methylation levels in the gastric carcinogenesis cascade. PeerJ 2025; 13:e19485. [PMID: 40416611 PMCID: PMC12101442 DOI: 10.7717/peerj.19485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/27/2025] [Indexed: 05/27/2025] Open
Abstract
Background Genome-wide hypomethylation, a common epigenetic change that occurs during cancer development, primarily affects repetitive elements, such as Alu repeats. Consequently, Alu repeats can be used as a surrogate marker of genomic hypomethylation. Methods In this study, we aimed to investigate the correlation between Alu methylation levels and the multistage course of gastric carcinogenesis. Results We found that the Alu methylation levels in gastric cancer tissue decreased compared with those in normal gastric tissue, with the change in methylation levels and pattern being most significant between chronic gastritis and intestinal metaplasia. Moreover, Alu methylation levels were not associated with Helicobacter pylori or Epstein-Barr virus infection. Conclusions Finally, our sensitivity and specificity analyses suggested that Alu methylation level can be used to distinguish gastric cancer tissue from normal tissue. Thus, Alu methylation level shows promise as biomarker for gastric cancer diagnosis.
Collapse
Affiliation(s)
- Jiraroch Meevassana
- Center of Excellence in Burn and Wound Care, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chawisa Wanda Vongsuly
- Center of Excellence in Burn and Wound Care, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanchanok Nakbua
- Center of Excellence in Burn and Wound Care, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supitcha Kamolratanakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Fardeela Bin-Alee
- Faculty of Medicine, Princess of Naradhiwas University, Narathiwat, Thailand
| | - Somboon Keelawat
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nakarin Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Gagnon M, Bouhamdani N, Kolev DP, Askree SH, Ben Amor M. Identification of an intronic Alu insertion in the SYNE1 gene associated with autosomal recessive spinocerebellar ataxia type 8. GENETICS IN MEDICINE OPEN 2024; 2:101893. [PMID: 39669622 PMCID: PMC11613682 DOI: 10.1016/j.gimo.2024.101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 12/14/2024]
Affiliation(s)
- Maryse Gagnon
- Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de formation médicale du Nouveau-Brunswick, Moncton, NB, Canada
| | - Nadia Bouhamdani
- Université de Sherbrooke, Sherbrooke, QC, Canada
- Vitalité Health Network, Moncton, NB, Canada
- Université de Moncton, Department of Chemistry and Biochemistry, Moncton, NB, Canada
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Dimiter P. Kolev
- MNG Laboratories (Medical Neurogenetics, LLC.), a Labcorp subsidiary, Atlanta, GA
| | - S. Hussain Askree
- MNG Laboratories (Medical Neurogenetics, LLC.), a Labcorp subsidiary, Atlanta, GA
| | - Mouna Ben Amor
- Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de formation médicale du Nouveau-Brunswick, Moncton, NB, Canada
- Vitalité Health Network, Moncton, NB, Canada
| |
Collapse
|
3
|
Del Prete R, Nesta D, Triggiano F, Lorusso M, Garzone S, Vitulano L, Denicolò S, Indraccolo F, Mastria M, Ronga L, Inchingolo F, Aityan SK, Nguyen KCD, Tran TC, Gargiulo Isacco C, Santacroce L. Human Papillomavirus Carcinogenicity and the Need of New Perspectives: Thoughts from a Retrospective Analysis on Human Papillomavirus Outcomes Conducted at the Hospital University of Bari, Apulia, Italy, between 2011 and 2022. Diagnostics (Basel) 2024; 14:968. [PMID: 38732382 PMCID: PMC11083870 DOI: 10.3390/diagnostics14090968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND The current manuscript's aim was to determine the human papillomavirus (HPV) genotype-specific prevalence and distribution among individuals, males, and females, of different ages in the region of Apulia, Italy, highlighting the possible variables involved in the carcinogenicity mechanism. In addition, we proposed two hypothetical models of HPV's molecular dynamics, intending to clarify the impact of prevention and therapeutic strategies, explicitly modeled by recent survey data. METHODS We presented clinical data from 9647 participants tested for either high-risk (HR) or low-risk (LR) HPV at the affiliated Bari Policlinic University Hospital of Bari from 2011 to 2022. HPV DNA detection was performed using nested-polymerase chain reaction (PCR) and multiplex real-time PCR assay. Statistical analysis showed significant associations for all genders and ages and both HR- and LR-HPV types. A major number of significant pairwise associations were detected for the higher-risk types and females and lower-risk types and males. RESULTS The overall prevalence of HPV was 50.5% (n-4.869) vs. 49.5% (n-4.778) of the study population, of which 74.4% (n-3621) were found to be HPV high-risk (HR-HPV) genotypes and 57.7% (n-2.807) low-risk HPV (LR-HPV) genotypes, of which males were 58% and females 49%; the three most prevalent HR-HPV genotypes were HPV 53 (n707-15%), 16 (n704-14%), and 31 (n589-12%), and for LR-HPV, they were 42 (19%), 6 (16%), and 54 (13%); 56% of patients screened for HPV were ≤ 30 years old, 53% were between 31 and 40 years old, 46% were 41-50 and 51-60 years old, and finally, 44% of subjects were >60 years old. CONCLUSIONS Our study provided comprehensive epidemiological data on HPV prevalence and genotype distribution among 9647 participants, which could serve as a significant reference for clinical practice, and it implied the necessity for more effective screening methods for HPV carcinogenesis covering the use of more specific molecular investigations. Although this is a predominantly descriptive and epidemiological study, the data obtained offer not only a fairly unique trend compared to other studies of different realities and latitudes but also lead us to focus on the HPV infection within two groups of young people and adults and hypothesize the possible involvement of dysbiosis, stem cells, and the retrotransposition mechanism.
Collapse
Affiliation(s)
- Raffaele Del Prete
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Daniela Nesta
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Francesco Triggiano
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Mara Lorusso
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Stefania Garzone
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Lorenzo Vitulano
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Sofia Denicolò
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Francesca Indraccolo
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Michele Mastria
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Luigi Ronga
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Sergey K. Aityan
- College of Engineering, Northeastern University, 5000 MacArthur Blvd., Oakland, CA 94613, USA;
| | - Kieu C. D. Nguyen
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Toai Cong Tran
- Department of Basic Medical Sciences and Biomedical Research Center, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 700100, Vietnam;
| | - Ciro Gargiulo Isacco
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| | - Luigi Santacroce
- Department of Interdisciplinary Medicine (DIM), U.O.C. Microbiology and Virology, University-Hospital of Bari, 70100 Bari, Italy; (R.D.P.); (D.N.); (F.T.); (M.L.); (S.G.); (L.V.); (S.D.); (F.I.); (M.M.); (L.R.); (F.I.); (K.C.D.N.); (L.S.)
| |
Collapse
|
4
|
Shiina T, Kulski JK. HLA Genetics for the Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:237-258. [PMID: 38467984 DOI: 10.1007/978-981-99-9781-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Highly polymorphic human leukocyte antigen (HLA) molecules (alleles) expressed by different classical HLA class I and class II genes have crucial roles in the regulation of innate and adaptive immune responses, transplant rejection and in the pathogenesis of numerous infectious and autoimmune diseases. To date, over 35,000 HLA alleles have been published from the IPD-IMGT/HLA database, and specific HLA alleles and HLA haplotypes have been reported to be associated with more than 100 different diseases and phenotypes. Next generation sequencing (NGS) technology developed in recent years has provided breakthroughs in various HLA genomic/gene studies and transplant medicine. In this chapter, we review the current information on the HLA genomic structure and polymorphisms, as well as the genetic context in which numerous disease associations have been identified in this region.
Collapse
Affiliation(s)
| | - Jerzy K Kulski
- Tokai University School of Medicine, Isehara, Japan
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
5
|
Cuenca-Guardiola J, Morena-Barrio BDL, Navarro-Manzano E, Stevens J, Ouwehand WH, Gleadall NS, Corral J, Fernández-Breis JT. Detection and annotation of transposable element insertions and deletions on the human genome using nanopore sequencing. iScience 2023; 26:108214. [PMID: 37953943 PMCID: PMC10638045 DOI: 10.1016/j.isci.2023.108214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/28/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Repetitive sequences represent about 45% of the human genome. Some are transposable elements (TEs) with the ability to change their position in the genome, creating genetic variability both as insertions or deletions, with potential pathogenic consequences. We used long-read nanopore sequencing to identify TE variants in the genomes of 24 patients with antithrombin deficiency. We identified 7 344 TE insertions and 3 056 TE deletions, 2 926 were not previously described in publicly available databases. The insertions affected 3 955 genes, with 6 insertions located in exons, 3 929 in introns, and 147 in promoters. Potential functional impact was evaluated with gene annotation and enrichment analysis, which suggested a strong relationship with neuron-related functions and autism. We conclude that this study encourages the generation of a complete map of TEs in the human genome, which will be useful for identifying new TEs involved in genetic disorders.
Collapse
Affiliation(s)
- Javier Cuenca-Guardiola
- Departamento de Informática y Sistemas, Universidad de Murcia, CEIR Campus Mare Nostrum, IMIB-Pascual Parrilla, Facultad de Informática, Campus de Espinardo, Murcia 30100, Spain
| | - Belén de la Morena-Barrio
- Servicio de Hematología, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-III, Ronda de Garay S/N, Murcia 30003, Spain
| | - Esther Navarro-Manzano
- Servicio de Hematología, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-III, Ronda de Garay S/N, Murcia 30003, Spain
| | - Jonathan Stevens
- Department of Haematology, University of Cambridge, CB2 0PT, Cambridge Biomedical Campus, Cambridge, Cambridge, England, UK
- Blood and Transplant, National Health Service (NHS), CB2 0QQ, Cambridge Biomedical Campus, Cambridge, England, UK
| | - Willem H. Ouwehand
- Department of Haematology, University of Cambridge, CB2 0PT, Cambridge Biomedical Campus, Cambridge, Cambridge, England, UK
- Blood and Transplant, National Health Service (NHS), CB2 0QQ, Cambridge Biomedical Campus, Cambridge, England, UK
- British Heart Foundation Cambridge Centre of Excellence, Division of Cardiovascular Medicine, Cambridge Heart and Lung Research Institute, Cambridge Biomedical Campus, Cambridge, England CB2 0AY, UK
- University College London Hospitals, NHS Foundation Trust, London, England, UK
| | - Nicholas S. Gleadall
- Department of Haematology, University of Cambridge, CB2 0PT, Cambridge Biomedical Campus, Cambridge, Cambridge, England, UK
- Blood and Transplant, National Health Service (NHS), CB2 0QQ, Cambridge Biomedical Campus, Cambridge, England, UK
| | - Javier Corral
- Servicio de Hematología, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-III, Ronda de Garay S/N, Murcia 30003, Spain
| | - Jesualdo Tomás Fernández-Breis
- Departamento de Informática y Sistemas, Universidad de Murcia, CEIR Campus Mare Nostrum, IMIB-Pascual Parrilla, Facultad de Informática, Campus de Espinardo, Murcia 30100, Spain
| |
Collapse
|
6
|
Garret P, Chevarin M, Vitobello A, Verdez S, Fournier C, Verloes A, Tisserant E, Vabres P, Prevel O, Philippe C, Denommé-Pichon AS, Bruel AL, Mau-Them FT, Safraou H, Boughalem A, Costa JM, Trost D, Thauvin-Robinet C, Faivre L, Duffourd Y. A second look at exome sequencing data: detecting mobile elements insertion in a rare disease cohort. Eur J Hum Genet 2023; 31:761-768. [PMID: 36450799 PMCID: PMC10326243 DOI: 10.1038/s41431-022-01250-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/01/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
About 0.3% of all variants are due to de novo mobile element insertions (MEIs). The massive development of next-generation sequencing has made it possible to identify MEIs on a large scale. We analyzed exome sequencing (ES) data from 3232 individuals (2410 probands) with developmental and/or neurological abnormalities, with MELT, a tool designed to identify MEIs. The results were filtered by frequency, impacted region and gene function. Following phenotype comparison, two candidates were identified in two unrelated probands. The first mobile element (ME) was found in a patient referred for poikilodermia. A homozygous insertion was identified in the FERMT1 gene involved in Kindler syndrome. RNA study confirmed its pathological impact on splicing. The second ME was a de novo Alu insertion in the GRIN2B gene involved in intellectual disability, and detected in a patient with a developmental disorder. The frequency of de novo exonic MEIs in our study is concordant with previous studies on ES data. This project, which aimed to identify pathological MEIs in the coding sequence of genes, confirms that including detection of MEs in the ES pipeline can increase the diagnostic rate. This work provides additional evidence that ES could be used alone as a diagnostic exam.
Collapse
Affiliation(s)
- Philippine Garret
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, Dijon, France.
- Laboratoire, CERBA, Saint-Ouen l'Aumône, France.
| | - Martin Chevarin
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - Antonio Vitobello
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - Simon Verdez
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - Cyril Fournier
- UMR 1231, Faculty of Medicine, University of Burgundy-iSITE-INSERM, Dijon, France
- Unit for innovation in genetics and epigenetic in oncology, Dijon University Hospital, Dijon, France
| | - Alain Verloes
- INSERM UMR1141, Université de Paris, Paris, France
- Genetics Department, AP-HP Nord, Robert-Debré University Hospital, Paris, France
| | - Emilie Tisserant
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - Pierre Vabres
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, Dijon, France
- Centre de Référence maladies rares « maladies dermatologiques en mosaïque », service de dermatologie, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
- Service Dermatologie, Dijon University Hospital, Dijon, France
| | - Orlane Prevel
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, Dijon, France
- Service Dermatologie, Dijon University Hospital, Dijon, France
| | - Christophe Philippe
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - Anne-Sophie Denommé-Pichon
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
- Centre de Référence maladies rares « Anomalies du développement et syndromes malformatifs », centre de génétique, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - Ange-Line Bruel
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - Frédéric Tran Mau-Them
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
- Centre de Référence maladies rares « Anomalies du développement et syndromes malformatifs », centre de génétique, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
- Centre de Référence maladies rares « Déficiences intellectuelles de cause rare », centre de génétique, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - Hana Safraou
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
- Centre de Référence maladies rares « Anomalies du développement et syndromes malformatifs », centre de génétique, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | | | | | | | - Christel Thauvin-Robinet
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
- Centre de Référence maladies rares « Déficiences intellectuelles de cause rare », centre de génétique, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - Laurence Faivre
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, Dijon, France
- Centre de Référence maladies rares « Anomalies du développement et syndromes malformatifs », centre de génétique, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| | - Yannis Duffourd
- UMR1231 GAD, Inserm-Université Bourgogne-Franche Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, Dijon, France
| |
Collapse
|
7
|
L'Abbate A, Moretti V, Pungolino E, Micheloni G, Valli R, Frattini A, Barcella M, Acquati F, Reinbold RA, Costantino L, Ferrara F, Trojani A, Ventura M, Porta G, Cairoli R. Occurrence of L1M Elements in Chromosomal Rearrangements Associated to Chronic Myeloid Leukemia (CML): Insights from Patient-Specific Breakpoints Characterization. Genes (Basel) 2023; 14:1351. [PMID: 37510256 PMCID: PMC10379433 DOI: 10.3390/genes14071351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a rare myeloproliferative disorder caused by the reciprocal translocation t(9;22)(q34;q11) in hematopoietic stem cells (HSCs). This chromosomal translocation results in the formation of an extra-short chromosome 22, called a Philadelphia chromosome (Ph), containing the BCR-ABL1 fusion gene responsible for the expression of a constitutively active tyrosine kinase that causes uncontrolled growth and replication of leukemic cells. Mechanisms behind the formation of this chromosomal rearrangement are not well known, even if, as observed in tumors, repetitive DNA may be involved as core elements in chromosomal rearrangements. We have participated in the explorative investigations of the PhilosoPhi34 study to evaluate residual Ph+ cells in patients with negative FISH analysis on CD34+/lin- cells with gDNA qPCR. Using targeted next-generation deep sequencing strategies, we analyzed the genomic region around the t(9;22) translocations of 82 CML patients and one CML cell line and assessed the relevance of interspersed repeat elements at breakpoints (BP). We found a statistically higher presence of LINE elements, in particular belonging to the subfamily L1M, in BP cluster regions of both chromosome 22 and 9 compared to the whole human genome. These data suggest that L1M elements could be potential drivers of t(9;22) translocation leading to the generation of the BCR-ABL1 chimeric gene and the expression of the active BCR-ABL1-controlled tyrosine kinase chimeric protein responsible for CML.
Collapse
Affiliation(s)
- Alberto L'Abbate
- Institute of Biomembranes, Bioenergetics, and Molecular Biotechnologies, National Research Council (IBIOM-CNR), 70125 Bari, Italy
| | - Vittoria Moretti
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5 Varese, 21100 Varese, Italy
| | - Ester Pungolino
- Division of Hematology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy
| | - Giovanni Micheloni
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5 Varese, 21100 Varese, Italy
| | - Roberto Valli
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5 Varese, 21100 Varese, Italy
| | - Annalisa Frattini
- Genetics and Biomedical Research Institute, National Research Council (IRGB-CNR), 20090 Milano, Italy
| | - Matteo Barcella
- Department of Health Science, University degli Studi of Milan, Via Rudini 8, 20142 Milan, Italy
| | - Francesco Acquati
- Department of Biotechnology and Life Science, University of Insubria, Via JH Dunant 3, 21100 Varese, Italy
- Genomic Medicine Research Center, Department of Biotechnology and Life Science, University of Insubria, Via JH Dunant 3, 21100 Varese, Italy
| | - Rolland A Reinbold
- Institute of Biomedical Technologies, National Research Council of Italy, 20054 Segrate, Milano, Italy
| | - Lucy Costantino
- Department of Molecular Genetics, Centro Diagnostico Italiano, 20147 Milano, Italy
| | - Fulvio Ferrara
- Department of Molecular Genetics, Centro Diagnostico Italiano, 20147 Milano, Italy
| | - Alessandra Trojani
- Division of Hematology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy
| | - Mario Ventura
- Department of Biology, University of Bari 'Aldo Moro', Via Edoardo Orabona 4, 70124 Bari, Italy
| | - Giovanni Porta
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5 Varese, 21100 Varese, Italy
| | - Roberto Cairoli
- Division of Hematology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy
| |
Collapse
|
8
|
Zhang S, Yu X, Xie Y, Ye G, Guo J. tRNA derived fragments:A novel player in gene regulation and applications in cancer. Front Oncol 2023; 13:1063930. [PMID: 36761955 PMCID: PMC9904238 DOI: 10.3389/fonc.2023.1063930] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
The heterogeneous species of tRNA-derived fragments (tRFs) with specific biological functions was recently identified. Distinct roles of tRFs in tumor development and viral infection, mediated through transcriptional and post-transcriptional regulation, has been demonstrated. In this review, we briefly summarize the current literatures on the classification of tRFs and the effects of tRNA modification on tRF biogenesis. Moreover, we highlight the tRF repertoire of biological roles such as gene silencing, and regulation of translation, cell apoptosis, and epigenetics. We also summarize the biological roles of various tRFs in cancer development and viral infection, their potential value as diagnostic and prognostic biomarkers for different types of cancers, and their potential use in cancer therapy.
Collapse
Affiliation(s)
- Shuangshuang Zhang
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, China
| | - Xiuchong Yu
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, China
| | - Yaoyao Xie
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, China
| | - Guoliang Ye
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,Institute of Digestive Diseases, Ningbo University, Ningbo, China
| | - Junming Guo
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, China,Institute of Digestive Diseases, Ningbo University, Ningbo, China,*Correspondence: Junming Guo,
| |
Collapse
|
9
|
Bernardt TM, Treviso EM, Cancian M, Silva MDM, da Rocha JBT, Loreto ELS. Chemotherapy Drugs Act Differently in the Expression and Somatic Mobilization of the mariner Transposable Element in Drosophila simulans. Genes (Basel) 2022; 13:genes13122374. [PMID: 36553641 PMCID: PMC9777735 DOI: 10.3390/genes13122374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Transposable elements (TEs) are abundant in genomes. Their mobilization can lead to genetic variability that is useful for evolution, but can also have deleterious biological effects. Somatic mobilization (SM) has been linked to degenerative diseases, such as Alzheimer's disease and cancer. We used a Drosophila simulans strain, in which SM can be measured by counting red spots in the eyes, to investigate how chemotherapeutic agents affect expression and SM of the mariner TE. Flies were treated with Cisplatin, Dacarbazine, and Daunorubicin. After acute exposure, relative expression of mariner was quantified by RT-qPCR and oxidative stress was measured by biochemical assays. Exposure to 50 and 100 µg/mL Cisplatin increased mariner expression and ROS levels; catalase activity increased at 100 µg/mL. With chronic exposure, the number of spots also increased, indicating higher mariner SM. Dacarbazine (50 and 100 µg/mL) did not significantly alter mariner expression or mobilization or ROS levels, but decreased catalase activity (100 µg/mL). Daunorubicin (25 and 50 µM) increased mariner expression, but decreased mariner SM. ROS and catalase activity were also reduced. Our data suggest that stress factors may differentially affect the expression and SM of TEs. The increase in mariner transposase gene expression is necessary, but not sufficient for mariner SM.
Collapse
Affiliation(s)
- Taís Maus Bernardt
- Biological Sciences, Federal University of Santa Maria (UFSM), Santa Maria 97105-000, RS, Brazil
| | - Estéfani Maria Treviso
- Biological Sciences, Federal University of Santa Maria (UFSM), Santa Maria 97105-000, RS, Brazil
| | - Mariana Cancian
- Genetic and Molecular Biology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
| | - Monica de Medeiros Silva
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Av. Roraima 1000, Camobi, Santa Maria 97105-900, RS, Brazil
| | - João Batista Teixeira da Rocha
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Av. Roraima 1000, Camobi, Santa Maria 97105-900, RS, Brazil
| | - Elgion Lucio Silva Loreto
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Av. Roraima 1000, Camobi, Santa Maria 97105-900, RS, Brazil
- Correspondence:
| |
Collapse
|
10
|
Rodríguez-Quiroz R, Valdebenito-Maturana B. SoloTE for improved analysis of transposable elements in single-cell RNA-Seq data using locus-specific expression. Commun Biol 2022; 5:1063. [PMID: 36202992 PMCID: PMC9537157 DOI: 10.1038/s42003-022-04020-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/21/2022] [Indexed: 11/08/2022] Open
Abstract
Transposable Elements (TEs) contribute to the repetitive fraction in almost every eukaryotic genome known to date, and their transcriptional activation can influence the expression of neighboring genes in healthy and disease states. Single cell RNA-Seq (scRNA-Seq) is a technical advance that allows the study of gene expression on a cell-by-cell basis. Although a current computational approach is available for the single cell analysis of TE expression, it omits their genomic location. Here we show SoloTE, a pipeline that outperforms the previous approach in terms of computational resources and by allowing the inclusion of locus-specific TE activity in scRNA-Seq expression matrixes. We then apply SoloTE to several datasets to reveal the repertoire of TEs that become transcriptionally active in different cell groups, and based on their genomic location, we predict their potential impact on gene expression. As our tool takes as input the resulting files from standard scRNA-Seq processing pipelines, we expect it to be widely adopted in single cell studies to help researchers discover patterns of cellular diversity associated with TE expression.
Collapse
Affiliation(s)
- Rocío Rodríguez-Quiroz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | |
Collapse
|
11
|
Transposable Elements and Human Diseases: Mechanisms and Implication in the Response to Environmental Pollutants. Int J Mol Sci 2022; 23:ijms23052551. [PMID: 35269693 PMCID: PMC8910135 DOI: 10.3390/ijms23052551] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Transposable elements (TEs) are recognized as major players in genome plasticity and evolution. The high abundance of TEs in the human genome, especially the Alu and Long Interspersed Nuclear Element-1 (LINE-1) repeats, makes them responsible for the molecular origin of several diseases. This involves several molecular mechanisms that are presented in this review: insertional mutation, DNA recombination and chromosomal rearrangements, modification of gene expression, as well as alteration of epigenetic regulations. This literature review also presents some of the more recent and/or more classical examples of human diseases in which TEs are involved. Whether through insertion of LINE-1 or Alu elements that cause chromosomal rearrangements, or through epigenetic modifications, TEs are widely implicated in the origin of human cancers. Many other human diseases can have a molecular origin in TE-mediated chromosomal recombination or alteration of gene structure and/or expression. These diseases are very diverse and include hemoglobinopathies, metabolic and neurological diseases, and common diseases. Moreover, TEs can also have an impact on aging. Finally, the exposure of individuals to stresses and environmental contaminants seems to have a non-negligible impact on the epigenetic derepression and mobility of TEs, which can lead to the development of diseases. Thus, improving our knowledge of TEs may lead to new potential diagnostic markers of diseases.
Collapse
|
12
|
Meevassana J, Serirodom S, Prabsattru P, Boonsongserm P, Kamolratanakul S, Siritientong T, Mutirangura A, Angspatt A. Alu repetitive sequence CpG methylation changes in burn scars. Burns 2021; 48:1417-1424. [PMID: 34657766 DOI: 10.1016/j.burns.2021.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/16/2021] [Accepted: 10/05/2021] [Indexed: 11/25/2022]
Abstract
Alu elements are retrotransposons related to epigenetic modifications. To date, the role of epigenetics in hypertrophic scars from burn remains unknown. Here, our aim was to examine the pathophysiology of hypertrophic scars from an epigenetic perspective. For that, we performed a cross-sectional analytical study using tissue and blood samples from burned and healthy patients (n = 23 each) to detect Alu methylation levels and patterns. The results of the combined bisulfite restriction analysis technique were categorized into four groups based on the methylation status at the CpG dinucleotides from the 5' to the 3' ends of the Alu sequence: hypermethylated (mCmC), hypomethylated (uCuC), and partially methylated (uCmC and mCuC). Alu methylation levels were significantly lower in hypertrophic scar tissues than in normal skin (29.37 ± 2.49% vs. 35.56 ± 3.18%, p = 0.0002). In contrast, the levels were significantly higher in white blood cells from blood samples of burned patients than in those of control blood samples (26.92 ± 4.04% vs. 24.58 ± 3.34%, p = 0.0278). Alu total methylation (mC) and the uCmC pattern were significantly lower, whereas uCuC was significantly higher, in hypertrophic scar tissues than in normal skin (p < 0.0001). Receiver operating characteristic analysis indicated that the uCmC and uCuC patterns are useful as hypertrophic scar DNA methylation markers after burn, with 91.30% sensitivity and 96.23% specificity and 100% sensitivity and 94.23% specificity, respectively. Our findings suggest that epigenetic modifications play a major role in hypertrophic scar pathogenesis, and may be the starting point for developing a novel technique for burn scar treatment.
Collapse
Affiliation(s)
- Jiraroch Meevassana
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Burn and Wound Care, Chulalongkorn University, Bangkok, Thailand.
| | - Siwat Serirodom
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Piyawan Prabsattru
- Center of Excellence in Burn and Wound Care, Chulalongkorn University, Bangkok, Thailand
| | - Papatson Boonsongserm
- Center of Excellence in Burn and Wound Care, Chulalongkorn University, Bangkok, Thailand
| | - Supitcha Kamolratanakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tippawan Siritientong
- Center of Excellence in Burn and Wound Care, Chulalongkorn University, Bangkok, Thailand; Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Apiwat Mutirangura
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Apichai Angspatt
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Burn and Wound Care, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
13
|
Liu J. Giant cells: Linking McClintock's heredity to early embryogenesis and tumor origin throughout millennia of evolution on Earth. Semin Cancer Biol 2021; 81:176-192. [PMID: 34116161 DOI: 10.1016/j.semcancer.2021.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/12/2021] [Accepted: 06/06/2021] [Indexed: 02/08/2023]
Abstract
The "life code" theory postulates that egg cells, which are giant, are the first cells in reproduction and that damaged or aged giant somatic cells are the first cells in tumorigenesis. However, the hereditary basis for giant cells remains undefined. Here I propose that stress-induced genomic reorganization proposed by Nobel Laureate Barbara McClintock may represent the underlying heredity for giant cells, referred to as McClintock's heredity. Increase in cell size may serve as a response to environmental stress via switching proliferative mitosis to intranuclear replication for reproduction. Intranuclear replication activates McClintock's heredity to reset the genome following fertilization for reproduction or restructures the somatic genome for neoplastic transformation via formation of polyploid giant cancer cells (PGCCs). The genome-based McClintock heredity functions together with gene-based Mendel's heredity to regulate the genomic stability at two different stages of life cycle or tumorigenesis. Thus, giant cells link McClintock's heredity to both early embryogenesis and tumor origin. Cycling change in cell size together with ploidy number switch may represent the most fundamental mechanism on how both germ and soma for coping with environmental stresses for the survival across the tree of life which evolved over millions of years on Earth.
Collapse
Affiliation(s)
- Jinsong Liu
- Department of Anatomical Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, United States.
| |
Collapse
|
14
|
Jain D, Chu C, Alver BH, Lee S, Lee EA, Park PJ. HiTea: a computational pipeline to identify non-reference transposable element insertions in Hi-C data. Bioinformatics 2021; 37:1045-1051. [PMID: 33136153 DOI: 10.1093/bioinformatics/btaa923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/14/2020] [Accepted: 10/17/2020] [Indexed: 11/13/2022] Open
Abstract
Hi-C is a common technique for assessing 3D chromatin conformation. Recent studies have shown that long-range interaction information in Hi-C data can be used to generate chromosome-length genome assemblies and identify large-scale structural variations. Here, we demonstrate the use of Hi-C data in detecting mobile transposable element (TE) insertions genome-wide. Our pipeline Hi-C-based TE analyzer (HiTea) capitalizes on clipped Hi-C reads and is aided by a high proportion of discordant read pairs in Hi-C data to detect insertions of three major families of active human TEs. Despite the uneven genome coverage in Hi-C data, HiTea is competitive with the existing callers based on whole-genome sequencing (WGS) data and can supplement the WGS-based characterization of the TE-insertion landscape. We employ the pipeline to identify TE-insertions from human cell-line Hi-C samples. AVAILABILITY AND IMPLEMENTATION HiTea is available at https://github.com/parklab/HiTea and as a Docker image. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Dhawal Jain
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Chong Chu
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Burak Han Alver
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Soohyun Lee
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Many Different LINE-1 Retroelements Are Activated in Bladder Cancer. Int J Mol Sci 2020; 21:ijms21249433. [PMID: 33322422 PMCID: PMC7763009 DOI: 10.3390/ijms21249433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022] Open
Abstract
Human genomes contain about 100,000 LINE-1 (L1) retroelements, of which more than 100 are intact. L1s are normally tightly controlled by epigenetic mechanisms, which often fail in cancer. In bladder urothelial carcinoma (UC), particularly, L1s become DNA-hypomethylated, expressed and contribute to genomic instability and tumor growth. It is, however, unknown which individual L1s are activated. Following RNA-immunoprecipitation with a L1-specific antibody, third generation nanopore sequencing detected transcripts of 90 individual elements in the VM-Cub-1 UC line with high overall L1 expression. In total, 10 L1s accounted for >60% of the reads. Analysis of five specific L1s by RT-qPCR revealed generally increased expression in UC tissues and cell lines over normal controls, but variable expression among tumor cell lines from bladder, prostate and testicular cancer. Chromatin immunoprecipitation demonstrated active histone marks at L1 sequences with increased expression in VM-Cub-1, but not in a different UC cell line with low L1 expression. We conclude that many L1 elements are epigenetically activated in bladder cancer in a varied pattern. Our findings indicate that expression of individual L1s is highly heterogeneous between and among cancer types.
Collapse
|
16
|
Ahmadi A, De Toma I, Vilor-Tejedor N, Eftekhariyan Ghamsari MR, Sadeghi I. Transposable elements in brain health and disease. Ageing Res Rev 2020; 64:101153. [PMID: 32977057 DOI: 10.1016/j.arr.2020.101153] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 07/22/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
Transposable elements (TEs) occupy a large fraction of the human genome but only a small proportion of these elements are still active today. Recent works have suggested that TEs are expressed and active in the brain, challenging the dogma that neuronal genomes are static and revealing that they are susceptible to somatic genomic alterations. These new findings have major implications for understanding the neuroplasticity of the brain, which could hypothetically have a role in behavior and cognition, and contribute to vulnerability to disease. As active TEs could induce genetic diversity and mutagenesis, their influences on human brain development and diseases are of great interest. In this review, we will focus on the active TEs in the human genome and discuss in detail their impacts on human brain development. Furthermore, the association between TEs and brain-related diseases is discussed.
Collapse
|
17
|
Tiwari B, Jones AE, Caillet CJ, Das S, Royer SK, Abrams JM. p53 directly represses human LINE1 transposons. Genes Dev 2020; 34:1439-1451. [PMID: 33060137 PMCID: PMC7608743 DOI: 10.1101/gad.343186.120] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
p53 is a potent tumor suppressor and commonly mutated in human cancers. Recently, we demonstrated that p53 genes act to restrict retrotransposons in germline tissues of flies and fish but whether this activity is conserved in somatic human cells is not known. Here we show that p53 constitutively restrains human LINE1s by cooperatively engaging sites in the 5'UTR and stimulating local deposition of repressive histone marks at these transposons. Consistent with this, the elimination of p53 or the removal of corresponding binding sites in LINE1s, prompted these retroelements to become hyperactive. Concurrently, p53 loss instigated chromosomal rearrangements linked to LINE sequences and also provoked inflammatory programs that were dependent on reverse transcriptase produced from LINE1s. Taken together, our observations establish that p53 continuously operates at the LINE1 promoter to restrict autonomous copies of these mobile elements in human cells. Our results further suggest that constitutive restriction of these retroelements may help to explain tumor suppression encoded by p53, since erupting LINE1s produced acute oncogenic threats when p53 was absent.
Collapse
Affiliation(s)
- Bhavana Tiwari
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Amanda E Jones
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Candace J Caillet
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Simanti Das
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Stephanie K Royer
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
18
|
Park J, Ahn SH, Shin MG, Kim HK, Chang S. tRNA-Derived Small RNAs: Novel Epigenetic Regulators. Cancers (Basel) 2020; 12:cancers12102773. [PMID: 32992597 PMCID: PMC7599909 DOI: 10.3390/cancers12102773] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Cells must synthesize new proteins to maintain its life and tRNA (transfer RNA) is an essential component of the translation process. tRNA-derived small RNA (tsRNA) is a relatively uncharacterized small RNA, derived from enzymatic cleavage of the tRNAs. Accumulating evidences suggest that tsRNA is an abundant, highly modified, dynamically regulated small-RNA and interacts with other types of RNAs or proteins. Moreover, it is abnormally expressed in multiple human diseases including systemic lupus, neurological disorder, metabolic disorder and cancer, implying its diverse function in the initiation or progression of such diseases. In this review, we summarize the classification of tsRNA and its role focused on the epigenetic regulation. Further, we discuss the limitation of current knowledge about the tsRNA and its potential applications. Abstract An epigenetic change is a heritable genetic alteration that does not involve any nucleotide changes. While the methylation of specific DNA regions such as CpG islands or histone modifications, including acetylation or methylation, have been investigated in detail, the role of small RNAs in epigenetic regulation is largely unknown. Among the many types of small RNAs, tRNA-derived small RNAs (tsRNAs) represent a class of noncoding small RNAs with multiple roles in diverse physiological processes, including neovascularization, sperm maturation, immune modulation, and stress response. Regarding these roles, several pioneering studies have revealed that dysregulated tsRNAs are associated with human diseases, such as systemic lupus, neurological disorder, metabolic disorder, and cancer. Moreover, recent findings suggest that tsRNAs regulate the expression of critical genes linked with these diseases by a variety of mechanisms, including epigenetic regulation. In this review, we will describe different classes of tsRNAs based on their biogenesis and will focus on their role in epigenetic regulation.
Collapse
Affiliation(s)
- Joonhyeong Park
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (J.P.); (M.G.S.)
| | - Se Hee Ahn
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea;
| | - Myung Geun Shin
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (J.P.); (M.G.S.)
| | - Hak Kyun Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (J.P.); (M.G.S.)
- Correspondence: (H.K.K.); (S.C.); Tel.: +82-2-820-5197 (H.K.K.); +82-2-3010-2095 (S.C.)
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea;
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
- Correspondence: (H.K.K.); (S.C.); Tel.: +82-2-820-5197 (H.K.K.); +82-2-3010-2095 (S.C.)
| |
Collapse
|
19
|
Kumar D, Anand T, Talluri TR, Kues WA. Potential of transposon-mediated cellular reprogramming towards cell-based therapies. World J Stem Cells 2020; 12:527-544. [PMID: 32843912 PMCID: PMC7415244 DOI: 10.4252/wjsc.v12.i7.527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/09/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem (iPS) cells present a seminal discovery in cell biology and promise to support innovative treatments of so far incurable diseases. To translate iPS technology into clinical trials, the safety and stability of these reprogrammed cells needs to be shown. In recent years, different non-viral transposon systems have been developed for the induction of cellular pluripotency, and for the directed differentiation into desired cell types. In this review, we summarize the current state of the art of different transposon systems in iPS-based cell therapies.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India.
| | - Taruna Anand
- NCVTC, ICAR-National Research Centre on Equines, Hisar 125001, India
| | - Thirumala R Talluri
- Equine Production Campus, ICAR-National Research Centre on Equines, Bikaner 334001, India
| | - Wilfried A Kues
- Friedrich-Loeffler-Institut, Institute of Farm Animal Genetics, Department of Biotechnology, Mariensee 31535, Germany
| |
Collapse
|
20
|
Solassol J, Larrieux M, Leclerc J, Ducros V, Corsini C, Chiésa J, Pujol P, Rey JM. Alu element insertion in the MLH1 exon 6 coding sequence as a mutation predisposing to Lynch syndrome. Hum Mutat 2020; 40:716-720. [PMID: 30815977 DOI: 10.1002/humu.23725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 12/17/2022]
Abstract
Lynch syndrome (LS) is the most frequent cause of hereditary colorectal cancer. A subset of patients with a history of LS shows no causal germline pathogenic alteration and are identified as having Lynch-like syndrome (LLS). Alu retrotransposons are the most abundant mobile DNA sequences in the human genome and have been associated with numerous human cancers by either disrupting coding regions or altering epigenetic modifications or splicing signals. We report a family first classified as having LLS by Sanger sequencing analysis. Next-generation sequencing (NGS) analysis identified an AluY5a insertion in MLH1 exon 6 that led to exon skipping. This splicing alteration inducing a pathogenic frameshift was found in patients who developed colorectal adenocarcinomas. Retroelement insertion might thus be an important but underestimated mechanism of cancer genetics that could be systematically tested in patients with a phenotype suggesting LS to accurately assess family risk and surveillance approaches.
Collapse
Affiliation(s)
- Jérôme Solassol
- Department of Pathology and Oncobiology, Montpellier University Hospital, Montpellier, France.,IRCM Inserm, Montpellier University, Montpellier, France
| | - Marion Larrieux
- Department of Pathology and Oncobiology, Montpellier University Hospital, Montpellier, France
| | - Julie Leclerc
- Department of Biochemistry and Molecular Biology, and Inserm UMR-S, Lille University Hospital, JPA Research Center, Lille University, Lille, France
| | - Vincent Ducros
- Department of Pathology and Oncobiology, Montpellier University Hospital, Montpellier, France
| | - Carole Corsini
- Department of Genetics, Montpellier University Hospital, Montpellier, France
| | - Jean Chiésa
- Department of Cytogenetics, Nimes University Hospital, Nîmes, France
| | - Pascal Pujol
- Department of Genetics, Montpellier University Hospital, Montpellier, France.,Montpellier University, Montpellier, France
| | - Jean-Marc Rey
- Department of Pathology and Oncobiology, Montpellier University Hospital, Montpellier, France
| |
Collapse
|
21
|
Zeng Y, Cao Y, Halevy RS, Nguyen P, Liu D, Zhang X, Ahituv N, Han JDJ. Characterization of functional transposable element enhancers in acute myeloid leukemia. SCIENCE CHINA-LIFE SCIENCES 2020; 63:675-687. [PMID: 32170627 DOI: 10.1007/s11427-019-1574-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
Abstract
Transposable elements (TEs) have been shown to have important gene regulatory functions and their alteration could lead to disease phenotypes. Acute myeloid leukemia (AML) develops as a consequence of a series of genetic changes in hematopoietic precursor cells, including mutations in epigenetic factors. Here, we set out to study the gene regulatory role of TEs in AML. We first explored the epigenetic landscape of TEs in AML patients using ATAC-seq data. We show that a large number of TEs in general, and more specifically mammalian-wide interspersed repeats (MIRs), are more enriched in AML cells than in normal blood cells. We obtained a similar finding when analyzing histone modification data in AML patients. Gene Ontology enrichment analysis showed that genes near MIRs in open chromatin regions are involved in leukemogenesis. To functionally validate their regulatory role, we selected 19 MIR regions in AML cells, and tested them for enhancer activity in an AML cell line (Kasumi-1) and a chronic myeloid leukemia (CML) cell line (K562); the results revealed several MIRs to be functional enhancers. Taken together, our results suggest that TEs are potentially involved in myeloid leukemogenesis and highlight these sequences as potential candidates harboring AML-associated variation.
Collapse
Affiliation(s)
- Yingying Zeng
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yaqiang Cao
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Rivka Sukenik Halevy
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, 94158, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, 94143, USA.,Sackler School of Medicine, Tel-Aviv University, Tel Aviv, 6997801, Israel
| | - Picard Nguyen
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, 94158, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, 94143, USA
| | - Denghui Liu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoli Zhang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, 94158, USA. .,Institute for Human Genetics, University of California San Francisco, San Francisco, 94143, USA.
| | - Jing-Dong J Han
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China. .,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
22
|
Yandım C, Karakülah G. Dysregulated expression of repetitive DNA in ER+/HER2- breast cancer. Cancer Genet 2019; 239:36-45. [PMID: 31536958 DOI: 10.1016/j.cancergen.2019.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/03/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022]
Abstract
Limited studies on breast cancer indicated pathogenic changes in the expressions of some repeat elements. A global analysis was much needed within this context to distinguish the most significant repeats from more than a thousand repeat motifs. Utilising a previously presented RNA-seq dataset, we studied expression changes of all repeats in ER+/HER2- human breast tumour samples obtained from 22 patients in comparison to matched normal tissues. Fifty six (56) repeat subtypes including satellites and transposons were found to be differentially expressed and most of them were novel for breast cancer. HERVKC4-int and HERV1_LTRc, whose expressions correlated well with that of the estrogen receptor gene ESR1, were upregulated at the highest level. REP522 and D20S16 satellites were also significantly upregulated along with insignificant increases in the expressions of other satellites including HSATI and BSR/beta. Interestingly, expressions of REP522 and D20S16 correlated with many key breast cancer pathway (e.g. BRCA1, BRCA2, AKT1, MTOR, KRAS) and survival genes; possibly highlighting their importance in the carcinogenesis of breast. Additional differentially expressed elements such as L1P and various MER transposons also exhibited a similar pattern. Finally, our repeat enrichment analysis on the promoters of differentially expressed genes revealed further links between additional repeats and nearby genes.
Collapse
Affiliation(s)
- Cihangir Yandım
- İzmir University of Economics, Faculty of Engineering, Department of Genetics and Bioengineering, 35330, Balçova, İzmir, Turkey; İzmir Biomedicine and Genome Center (IBG), Dokuz Eylül University Health Campus, 35340, İnciraltı, İzmir, Turkey
| | - Gökhan Karakülah
- İzmir Biomedicine and Genome Center (IBG), Dokuz Eylül University Health Campus, 35340, İnciraltı, İzmir, Turkey; İzmir International Biomedicine and Genome Institute (iBG-İzmir), Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey.
| |
Collapse
|
23
|
Lyu X, Chastain M, Chai W. Genome-wide mapping and profiling of γH2AX binding hotspots in response to different replication stress inducers. BMC Genomics 2019; 20:579. [PMID: 31299901 PMCID: PMC6625122 DOI: 10.1186/s12864-019-5934-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/25/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Replication stress (RS) gives rise to DNA damage that threatens genome stability. RS can originate from different sources that stall replication by diverse mechanisms. However, the mechanism underlying how different types of RS contribute to genome instability is unclear, in part due to the poor understanding of the distribution and characteristics of damage sites induced by different RS mechanisms. RESULTS We use ChIP-seq to map γH2AX binding sites genome-wide caused by aphidicolin (APH), hydroxyurea (HU), and methyl methanesulfonate (MMS) treatments in human lymphocyte cells. Mapping of γH2AX ChIP-seq reveals that APH, HU, and MMS treatments induce non-random γH2AX chromatin binding at discrete regions, suggesting that there are γH2AX binding hotspots in the genome. Characterization of the distribution and sequence/epigenetic features of γH2AX binding sites reveals that the three treatments induce γH2AX binding at largely non-overlapping regions, suggesting that RS may cause damage at specific genomic loci in a manner dependent on the fork stalling mechanism. Nonetheless, γH2AX binding sites induced by the three treatments share common features including compact chromatin, coinciding with larger-than-average genes, and depletion of CpG islands and transcription start sites. Moreover, we observe significant enrichment of SINEs in γH2AX sites in all treatments, indicating that SINEs may be a common barrier for replication polymerases. CONCLUSIONS Our results identify the location and common features of genome instability hotspots induced by different types of RS, and help in deciphering the mechanisms underlying RS-induced genetic diseases and carcinogenesis.
Collapse
Affiliation(s)
- Xinxing Lyu
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Megan Chastain
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Weihang Chai
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA.
| |
Collapse
|
24
|
Jiang Y, Zong W, Ju S, Jing R, Cui M. Promising member of the short interspersed nuclear elements ( Alu elements): mechanisms and clinical applications in human cancers. J Med Genet 2019; 56:639-645. [PMID: 30852527 DOI: 10.1136/jmedgenet-2018-105761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/13/2019] [Accepted: 01/31/2019] [Indexed: 12/11/2022]
Abstract
Alu elements are one of most ubiquitous repetitive sequences in human genome, which were considered as the junk DNA in the past. Alu elements have been found to be associated with human diseases including cancers via events such as amplification, insertion, recombination or RNA editing, which provide a new perspective of oncogenesis at both DNA and RNA levels. Due to the prevalent distribution, Alu elements are widely used as target molecule of liquid biopsy. Alu-based cell-free DNA shows feasible application value in tumour diagnosis, postoperative monitoring and adjuvant therapy. In this review, the special tumourigenesis mechanism of Alu elements in human cancers is discussed, and the application of Alu elements in various tumour liquid biopsy is summarised.
Collapse
Affiliation(s)
- Yun Jiang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Medical college, Nantong University, Nantong, Jiangsu, China
| | - Wei Zong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Medical college, Nantong University, Nantong, Jiangsu, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Rongrong Jing
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ming Cui
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
25
|
Huang W, Zhao C, Zhong H, Zhang S, Xia Y, Cai Z. Bisphenol S induced epigenetic and transcriptional changes in human breast cancer cell line MCF-7. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:697-703. [PMID: 30616060 DOI: 10.1016/j.envpol.2018.12.084] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/07/2018] [Accepted: 12/27/2018] [Indexed: 05/18/2023]
Abstract
In recent years, concerns about using Bisphenol A (BPA) in daily consume products and its effects in many chronic human diseases have prompted the removal of BPA. However, the widely used BPA alternatives, including Bisphenol S (BPS), have a high structural similarity with BPA, suggesting that they may have similar biological effects towards human beings. Indeed, BPS was also found to have endocrine-disrupting effects. Epigenetic mechanism was reported to be involved in BPA-induced biological effects in both in vitro and in vivo models. However, there is no assessment on whether BPS could cause epigenetic changes. In this work, we investigated the possible epigenetic effects of BPS that might induce in human breast cancer cell line MCF-7. We found that BPS could change DNA methylation level of transposons. Besides, methylation status in promoter of breast cancer related genes CDH1, SFN, TNFRSF10C were also changed, which implied that BPS might play a role in the development of breast cancer. Gene expression profiling showed that some genes related to breast cancer progression were upregulated, including THBS4, PPARGC1A, CREB5, COL5A3. Gene ontology (GO) analysis of the differentially expressed genes revealed the significantly changes in PI3K-Akt signaling pathway and extracellular matrix, which were related to the proliferation, migration and invasion of breast cancer cells. These results illustrated that BPS exposure might play roles in the progression of breast cancer.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, PR China
| | - Chao Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, PR China
| | - Huan Zhong
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, PR China
| | - Shoudong Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, PR China
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, PR China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, PR China.
| |
Collapse
|
26
|
Petersen M, Armisén D, Gibbs RA, Hering L, Khila A, Mayer G, Richards S, Niehuis O, Misof B. Diversity and evolution of the transposable element repertoire in arthropods with particular reference to insects. BMC Evol Biol 2019; 19:11. [PMID: 30626321 PMCID: PMC6327564 DOI: 10.1186/s12862-018-1324-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 12/11/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Transposable elements (TEs) are a major component of metazoan genomes and are associated with a variety of mechanisms that shape genome architecture and evolution. Despite the ever-growing number of insect genomes sequenced to date, our understanding of the diversity and evolution of insect TEs remains poor. RESULTS Here, we present a standardized characterization and an order-level comparison of arthropod TE repertoires, encompassing 62 insect and 11 outgroup species. The insect TE repertoire contains TEs of almost every class previously described, and in some cases even TEs previously reported only from vertebrates and plants. Additionally, we identified a large fraction of unclassifiable TEs. We found high variation in TE content, ranging from less than 6% in the antarctic midge (Diptera), the honey bee and the turnip sawfly (Hymenoptera) to more than 58% in the malaria mosquito (Diptera) and the migratory locust (Orthoptera), and a possible relationship between the content and diversity of TEs and the genome size. CONCLUSION While most insect orders exhibit a characteristic TE composition, we also observed intraordinal differences, e.g., in Diptera, Hymenoptera, and Hemiptera. Our findings shed light on common patterns and reveal lineage-specific differences in content and evolution of TEs in insects. We anticipate our study to provide the basis for future comparative research on the insect TE repertoire.
Collapse
Affiliation(s)
- Malte Petersen
- University of Bonn, Bonn, Germany
- Zoological Research Museum Alexander Koenig, Center for Molecular Biodiversity Research, Adenauerallee 160, Bonn, 53113 Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, Frankfurt, 60325 Germany
| | - David Armisén
- Université de Lyon, Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d’Italie, Lyon, 69364 France
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, 77030 TX USA
| | - Lars Hering
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, Kassel, 34132 Germany
| | - Abderrahman Khila
- Université de Lyon, Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 allée d’Italie, Lyon, 69364 France
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, Kassel, 34132 Germany
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, 77030 TX USA
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, Freiburg (Brsg.), 79104 Germany
| | - Bernhard Misof
- Zoological Research Museum Alexander Koenig, Center for Molecular Biodiversity Research, Adenauerallee 160, Bonn, 53113 Germany
| |
Collapse
|
27
|
Weng W, Li H, Goel A. Piwi-interacting RNAs (piRNAs) and cancer: Emerging biological concepts and potential clinical implications. Biochim Biophys Acta Rev Cancer 2018; 1871:160-169. [PMID: 30599187 DOI: 10.1016/j.bbcan.2018.12.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/09/2018] [Accepted: 12/24/2018] [Indexed: 12/12/2022]
Abstract
Piwi-interacting RNAs (piRNAs) are a very recently discovered class of small non-coding RNAs (ncRNAs), with approximately 20,000 piRNA genes already identified within the human genome. These short RNAs were originally described as key functional regulators for the germline maintenance and transposon silencing. However, due to our limited knowledge regarding their function, piRNAs were for a long time assumed to be the "dark matter" of ncRNAs in our genome. However, recent evidence has now changed our viewpoint of their biological and clinical significance in various diseases, as newly emerging data reveals that aberrant expression of piRNAs is a unique and distinct feature in many diseases, including multiple human cancers. Furthermore, their altered expression in cancer patients has been significantly associated with clinical outcomes, highlighting their important biological functional role in disease progression. Functionally, piRNAs maintain genomic integrity by silencing transposable elements, and are capable of regulating the expression of specific downstream target genes in a post-transcriptional manner. Moreover, accumulating evidences demonstrates that analogous to other small ncRNAs (e.g. miRNAs) piRNAs have both oncogenic and tumor suppressive roles in cancer development. In this article, we discuss emerging insights into roles of piRNAs in a variety of cancers, reveal new findings underpinning various mechanisms of piRNAs-mediated gene regulation, and highlight their potential clinical significance in the management of cancer patients.
Collapse
Affiliation(s)
- Wenhao Weng
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China; Center for Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Hanhua Li
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, TX 75246-2017, USA.
| |
Collapse
|
28
|
Yin L, Yan J, Wang Y, Sun Q. TIGD1, a gene of unknown function, involves cell-cycle progression and correlates with poor prognosis in human cancer. J Cell Biochem 2018; 120:9758-9767. [PMID: 30548305 DOI: 10.1002/jcb.28256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Trigger transposable element-derived 1 (TIGD1), a human species-specific gene, was identified as a cell cycle-related differentially expressed gene during the formation of liver cancer. As far as we know, there are no reports about the function of TIGD1. This study aimed to explore the expression of TIGD1 in human cancers and establish whether elevated TIGD1 can be used as a prognostic cancer biomarker and its potential role in cancer. METHODS Molecular profiling of TIGD1 in human cancers was assessed using a series of databases, including Oncomine, COSMIC, Kaplan-Meier, UCSC, and cBioPortal. RESULTS We found that TIGD1 overexpressed in colorectal, gastric, liver, lung, and pancreatic cancers than their normal tissues and its expression might be negatively related with the prognosis. The TIGD1 coexpression genes were obtained from cBioPortal and analyzed using ClueGO plugin in Cytoscape to predict the function of TIGD1. CONCLUSIONS In summary, the elevated TIGD1 expression is coupled with a malignant survival rate in several cancers. It may play its role by regulating cell-cycle progression. These findings provide fresh insight into our understanding of TEs in cancers. As a previously unreported gene, future research is required to validate our findings and illuminate the molecular mechanisms. In conclusion, we systemically analyze the expression, prognostic value, and likely role of TIGD1, the unknown function gene, in cancer. Our finding provides evidence that TIGD1 involve in the cell cycle. These findings provide fresh insight into our understanding of TEs in cancers. Next, the detailed mechanism of TIGD1 needs to be studied in the future.
Collapse
Affiliation(s)
- Li Yin
- Medicine and Laboratory Medicine, Laboratory of Tropical Biomedicine and Biotechnology, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, China
| | - Jia Yan
- School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya, China
| | - Yuanyuan Wang
- Medicine and Laboratory Medicine, Laboratory of Tropical Biomedicine and Biotechnology, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, China
| | - Qinghui Sun
- Medicine and Laboratory Medicine, Laboratory of Tropical Biomedicine and Biotechnology, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, China
| |
Collapse
|
29
|
Rishishwar L, Wang L, Wang J, Yi SV, Lachance J, Jordan IK. Evidence for positive selection on recent human transposable element insertions. Gene 2018; 675:69-79. [DOI: 10.1016/j.gene.2018.06.077] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 06/24/2018] [Indexed: 11/29/2022]
|
30
|
Li L, Barth NKH, Hirth E, Taher L. Pairs of Adjacent Conserved Noncoding Elements Separated by Conserved Genomic Distances Act as Cis-Regulatory Units. Genome Biol Evol 2018; 10:2535-2550. [PMID: 30184074 PMCID: PMC6161761 DOI: 10.1093/gbe/evy196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2018] [Indexed: 01/02/2023] Open
Abstract
Comparative genomic studies have identified thousands of conserved noncoding elements (CNEs) in the mammalian genome, many of which have been reported to exert cis-regulatory activity. We analyzed ∼5,500 pairs of adjacent CNEs in the human genome and found that despite divergence at the nucleotide sequence level, the inter-CNE distances of the pairs are under strong evolutionary constraint, with inter-CNE sequences featuring significantly lower transposon densities than expected. Further, we show that different degrees of conservation of the inter-CNE distance are associated with distinct cis-regulatory functions at the CNEs. Specifically, the CNEs in pairs with conserved and mildly contracted inter-CNE sequences are the most likely to represent active or poised enhancers. In contrast, CNEs in pairs with extremely contracted or expanded inter-CNE sequences are associated with no cis-regulatory activity. Furthermore, we observed that functional CNEs in a pair have very similar epigenetic profiles, hinting at a functional relationship between them. Taken together, our results support the existence of epistatic interactions between adjacent CNEs that are distance-sensitive and disrupted by transposon insertions and deletions, and contribute to our understanding of the selective forces acting on cis-regulatory elements, which are crucial for elucidating the molecular mechanisms underlying adaptive evolution and human genetic diseases.
Collapse
Affiliation(s)
- Lifei Li
- Division of Bioinformatics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nicolai K H Barth
- Division of Bioinformatics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Eva Hirth
- Division of Bioinformatics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Leila Taher
- Division of Bioinformatics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
31
|
ALUminating the Path of Atherosclerosis Progression: Chaos Theory Suggests a Role for Alu Repeats in the Development of Atherosclerotic Vascular Disease. Int J Mol Sci 2018; 19:ijms19061734. [PMID: 29895733 PMCID: PMC6032270 DOI: 10.3390/ijms19061734] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/04/2018] [Accepted: 06/09/2018] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis (ATH) and coronary artery disease (CAD) are chronic inflammatory diseases with an important genetic background; they derive from the cumulative effect of multiple common risk alleles, most of which are located in genomic noncoding regions. These complex diseases behave as nonlinear dynamical systems that show a high dependence on their initial conditions; thus, long-term predictions of disease progression are unreliable. One likely possibility is that the nonlinear nature of ATH could be dependent on nonlinear correlations in the structure of the human genome. In this review, we show how chaos theory analysis has highlighted genomic regions that have shared specific structural constraints, which could have a role in ATH progression. These regions were shown to be enriched with repetitive sequences of the Alu family, genomic parasites that have colonized the human genome, which show a particular secondary structure and are involved in the regulation of gene expression. Here, we show the impact of Alu elements on the mechanisms that regulate gene expression, especially highlighting the molecular mechanisms via which the Alu elements alter the inflammatory response. We devote special attention to their relationship with the long noncoding RNA (lncRNA); antisense noncoding RNA in the INK4 locus (ANRIL), a risk factor for ATH; their role as microRNA (miRNA) sponges; and their ability to interfere with the regulatory circuitry of the (nuclear factor kappa B) NF-κB response. We aim to characterize ATH as a nonlinear dynamic system, in which small initial alterations in the expression of a number of repetitive elements are somehow amplified to reach phenotypic significance.
Collapse
|
32
|
Sharma R, Nirwal S, Narayanan N, Nair DT. Dimerization through the RING-Finger Domain Attenuates Excision Activity of the piggyBac Transposase. Biochemistry 2018; 57:2913-2922. [DOI: 10.1021/acs.biochem.7b01191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Rahul Sharma
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shivlee Nirwal
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Naveen Narayanan
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Deepak T. Nair
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| |
Collapse
|
33
|
Auvinet J, Graça P, Belkadi L, Petit L, Bonnivard E, Dettaï A, Detrich WH, Ozouf-Costaz C, Higuet D. Mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation: the case for the Antarctic teleost genus Trematomus. BMC Genomics 2018; 19:339. [PMID: 29739320 PMCID: PMC5941688 DOI: 10.1186/s12864-018-4714-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/23/2018] [Indexed: 11/29/2022] Open
Abstract
Background The importance of transposable elements (TEs) in the genomic remodeling and chromosomal rearrangements that accompany lineage diversification in vertebrates remains the subject of debate. The major impediment to understanding the roles of TEs in genome evolution is the lack of comparative and integrative analyses on complete taxonomic groups. To help overcome this problem, we have focused on the Antarctic teleost genus Trematomus (Notothenioidei: Nototheniidae), as they experienced rapid speciation accompanied by dramatic chromosomal diversity. Here we apply a multi-strategy approach to determine the role of large-scale TE mobilization in chromosomal diversification within Trematomus species. Results Despite the extensive chromosomal rearrangements observed in Trematomus species, our measurements revealed strong interspecific genome size conservation. After identifying the DIRS1, Gypsy and Copia retrotransposon superfamilies in genomes of 13 nototheniid species, we evaluated their diversity, abundance (copy numbers) and chromosomal distribution. Four families of DIRS1, nine of Gypsy, and two of Copia were highly conserved in these genomes; DIRS1 being the most represented within Trematomus genomes. Fluorescence in situ hybridization mapping showed preferential accumulation of DIRS1 in centromeric and pericentromeric regions, both in Trematomus and other nototheniid species, but not in outgroups: species of the Sub-Antarctic notothenioid families Bovichtidae and Eleginopsidae, and the non-notothenioid family Percidae. Conclusions In contrast to the outgroups, High-Antarctic notothenioid species, including the genus Trematomus, were subjected to strong environmental stresses involving repeated bouts of warming above the freezing point of seawater and cooling to sub-zero temperatures on the Antarctic continental shelf during the past 40 millions of years (My). As a consequence of these repetitive environmental changes, including thermal shocks; a breakdown of epigenetic regulation that normally represses TE activity may have led to sequential waves of TE activation within their genomes. The predominance of DIRS1 in Trematomus species, their transposition mechanism, and their strategic location in “hot spots” of insertion on chromosomes are likely to have facilitated nonhomologous recombination, thereby increasing genomic rearrangements. The resulting centric and tandem fusions and fissions would favor the rapid lineage diversification, characteristic of the nototheniid adaptive radiation. Electronic supplementary material The online version of this article (10.1186/s12864-018-4714-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J Auvinet
- Laboratoire Evolution Paris Seine, Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), F-75005, Paris, France. .,Institut de Systématique, Evolution, Biodiversité (ISYEB), Museum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, 57, rue Cuvier, 75005, Paris, France.
| | - P Graça
- Laboratoire Evolution Paris Seine, Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), F-75005, Paris, France
| | - L Belkadi
- Institut Pasteur, Laboratoire Signalisation et Pathogénèse, UMR CNRS 3691, Bâtiment DARRE, 25-28 rue du Dr Roux, 75015, Paris, France
| | - L Petit
- Plateforme d'Imagerie et Cytométrie en flux, Sorbonne Université, CNRS, - Institut de Biologie Paris-Seine (BDPS - IBPS), F-75005, Paris, France
| | - E Bonnivard
- Laboratoire Evolution Paris Seine, Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), F-75005, Paris, France
| | - A Dettaï
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Museum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, 57, rue Cuvier, 75005, Paris, France
| | - W H Detrich
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, MA, 01908, USA
| | - C Ozouf-Costaz
- Laboratoire Evolution Paris Seine, Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), F-75005, Paris, France
| | - D Higuet
- Laboratoire Evolution Paris Seine, Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), F-75005, Paris, France
| |
Collapse
|
34
|
Lesmana H, Dyer L, Li X, Denton J, Griffiths J, Chonat S, Seu KG, Heeney MM, Zhang K, Hopkin RJ, Kalfa TA. Alu element insertion in PKLR gene as a novel cause of pyruvate kinase deficiency in Middle Eastern patients. Hum Mutat 2018; 39:389-393. [PMID: 29288557 DOI: 10.1002/humu.23392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 01/24/2023]
Abstract
Pyruvate kinase deficiency (PKD) is the most frequent red blood cell enzyme abnormality of the glycolytic pathway and the most common cause of hereditary nonspherocytic hemolytic anemia. Over 250 PKLR-gene mutations have been described, including missense/nonsense, splicing and regulatory mutations, small insertions, small and gross deletions, causing PKD and hemolytic anemia of variable severity. Alu retrotransposons are the most abundant mobile DNA sequences in the human genome, contributing to almost 11% of its mass. Alu insertions have been associated with a number of human diseases either by disrupting a coding region or a splice signal. Here, we report on two unrelated Middle Eastern patients, both born from consanguineous parents, with transfusion-dependent hemolytic anemia, where sequence analysis revealed a homozygous insertion of AluYb9 within exon 6 of the PKLR gene, causing precipitous decrease of PKLR RNA levels. This Alu element insertion consists a previously unrecognized mechanism underlying pathogenesis of PKD.
Collapse
Affiliation(s)
- Harry Lesmana
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Lisa Dyer
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Xia Li
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - James Denton
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jenna Griffiths
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Satheesh Chonat
- The Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia
| | - Katie G Seu
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Matthew M Heeney
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kejian Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Robert J Hopkin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Theodosia A Kalfa
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
35
|
Abstract
DNA methylation is a dynamic epigenetic mark that characterizes different cellular developmental stages, including tissue-specific profiles. This CpG dinucleotide modification cooperates in the regulation of the output of the cellular genetic content, in both healthy and pathological conditions. According to endogenous and exogenous stimuli, DNA methylation is involved in gene transcription, alternative splicing, imprinting, X-chromosome inactivation, and control of transposable elements. When these dinucleotides are organized in dense regions are called CpG islands (CGIs), being commonly known as transcriptional regulatory regions frequently associated with the promoter region of several genes. In cancer, promoter DNA hypermethylation events sustained the mechanistic hypothesis of epigenetic transcriptional silencing of an increasing number of tumor suppressor genes. CGI hypomethylation-mediated reactivation of oncogenes was also documented in several cancer types. In this chapter, we aim to summarize the functional consequences of the differential DNA methylation at CpG dinucleotides in cancer, focused in CGIs. Interestingly, cancer methylome is being recently explored, looking for biomarkers for diagnosis, prognosis, and predictors of drug response.
Collapse
Affiliation(s)
- Humberto J Ferreira
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
36
|
Therapeutic Applications of Targeted Alternative Splicing to Cancer Treatment. Int J Mol Sci 2017; 19:ijms19010075. [PMID: 29283381 PMCID: PMC5796025 DOI: 10.3390/ijms19010075] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 12/22/2017] [Accepted: 12/24/2017] [Indexed: 12/16/2022] Open
Abstract
A growing body of studies has documented the pathological influence of impaired alternative splicing (AS) events on numerous diseases, including cancer. In addition, the generation of alternatively spliced isoforms is frequently noted to result in drug resistance in many cancer therapies. To gain comprehensive insights into the impacts of AS events on cancer biology and therapeutic developments, this paper highlights recent findings regarding the therapeutic routes of targeting alternative-spliced isoforms and splicing regulators to treatment strategies for distinct cancers.
Collapse
|
37
|
Planells-Palop V, Hazazi A, Feichtinger J, Jezkova J, Thallinger G, Alsiwiehri NO, Almutairi M, Parry L, Wakeman JA, McFarlane RJ. Human germ/stem cell-specific gene TEX19 influences cancer cell proliferation and cancer prognosis. Mol Cancer 2017; 16:84. [PMID: 28446200 PMCID: PMC5406905 DOI: 10.1186/s12943-017-0653-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/18/2017] [Indexed: 12/15/2022] Open
Abstract
Background Cancer/testis (CT) genes have expression normally restricted to the testis, but become activated during oncogenesis, so they have excellent potential as cancer-specific biomarkers. Evidence is starting to emerge to indicate that they also provide function(s) in the oncogenic programme. Human TEX19 is a recently identified CT gene, but a functional role for TEX19 in cancer has not yet been defined. Methods siRNA was used to deplete TEX19 levels in various cancer cell lines. This was extended using shRNA to deplete TEX19 in vivo. Western blotting, fluorescence activated cell sorting and immunofluorescence were used to study the effect of TEX19 depletion in cancer cells and to localize TEX19 in normal testis and cancer cells/tissues. RT-qPCR and RNA sequencing were employed to determine the changes to the transcriptome of cancer cells depleted for TEX19 and Kaplan-Meier plots were generated to explore the relationship between TEX19 expression and prognosis for a range of cancer types. Results Depletion of TEX19 levels in a range of cancer cell lines in vitro and in vivo restricts cellular proliferation/self-renewal/reduces tumour volume, indicating TEX19 is required for cancer cell proliferative/self-renewal potential. Analysis of cells depleted for TEX19 indicates they enter a quiescent-like state and have subtle defects in S-phase progression. TEX19 is present in both the nucleus and cytoplasm in both cancerous cells and normal testis. In cancer cells, localization switches in a context-dependent fashion. Transcriptome analysis of TEX19 depleted cells reveals altered transcript levels of a number of cancer-/proliferation-associated genes, suggesting that TEX19 could control oncogenic proliferation via a transcript/transcription regulation pathway. Finally, overall survival analysis of high verses low TEX19 expressing tumours indicates that TEX19 expression is linked to prognostic outcomes in different tumour types. Conclusions TEX19 is required to drive cell proliferation in a range of cancer cell types, possibly mediated via an oncogenic transcript regulation mechanism. TEX19 expression is linked to a poor prognosis for some cancers and collectively these findings indicate that not only can TEX19 expression serve as a novel cancer biomarker, but may also offer a cancer-specific therapeutic target with broad spectrum potential. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0653-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vicente Planells-Palop
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - Ali Hazazi
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - Julia Feichtinger
- Computational Biotechnology and Bioinformatics Group, Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria.,Omics Center Graz, BioTechMed Graz, Graz, Austria
| | - Jana Jezkova
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - Gerhard Thallinger
- Computational Biotechnology and Bioinformatics Group, Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria.,Omics Center Graz, BioTechMed Graz, Graz, Austria
| | - Naif O Alsiwiehri
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - Mikhlid Almutairi
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK.,Present address: Department of Zoology, King Saud University, Al-Ryiadh, Saudi Arabia
| | - Lee Parry
- European Cancer Stem Cell Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Jane A Wakeman
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - Ramsay J McFarlane
- North West Cancer Research Institute, School of Medical Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK.
| |
Collapse
|
38
|
Rishishwar L, Wang L, Clayton EA, Mariño-Ramírez L, McDonald JF, Jordan IK. Population and clinical genetics of human transposable elements in the (post) genomic era. Mob Genet Elements 2017; 7:1-20. [PMID: 28228978 PMCID: PMC5305044 DOI: 10.1080/2159256x.2017.1280116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 10/26/2022] Open
Abstract
Recent technological developments-in genomics, bioinformatics and high-throughput experimental techniques-are providing opportunities to study ongoing human transposable element (TE) activity at an unprecedented level of detail. It is now possible to characterize genome-wide collections of TE insertion sites for multiple human individuals, within and between populations, and for a variety of tissue types. Comparison of TE insertion site profiles between individuals captures the germline activity of TEs and reveals insertion site variants that segregate as polymorphisms among human populations, whereas comparison among tissue types ascertains somatic TE activity that generates cellular heterogeneity. In this review, we provide an overview of these new technologies and explore their implications for population and clinical genetic studies of human TEs. We cover both recent published results on human TE insertion activity as well as the prospects for future TE studies related to human evolution and health.
Collapse
Affiliation(s)
- Lavanya Rishishwar
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA; PanAmerican Bioinformatics Institute, Cali, Colombia; Applied Bioinformatics Laboratory, Atlanta, GA, USA
| | - Lu Wang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA; PanAmerican Bioinformatics Institute, Cali, Colombia
| | - Evan A Clayton
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA; Ovarian Cancer Institute, Atlanta, GA, USA
| | - Leonardo Mariño-Ramírez
- PanAmerican Bioinformatics Institute, Cali, Colombia; National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - John F McDonald
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA; Ovarian Cancer Institute, Atlanta, GA, USA
| | - I King Jordan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA; PanAmerican Bioinformatics Institute, Cali, Colombia; Applied Bioinformatics Laboratory, Atlanta, GA, USA
| |
Collapse
|
39
|
Abstract
DNA transposons are defined segments of DNA that are able to move from one genomic location to another. Movement is facilitated by one or more proteins, called the transposase, typically encoded by the mobile element itself. Here, we first provide an overview of the classification of such mobile elements in a variety of organisms. From a mechanistic perspective, we have focused on one particular group of DNA transposons that encode a transposase with a DD(E/D) catalytic domain that is topologically similar to RNase H. For these, a number of three-dimensional structures of transpososomes (transposase-nucleic acid complexes) are available, and we use these to describe the basics of their mechanisms. The DD(E/D) group, in addition to being the largest and most common among all DNA transposases, is the one whose members have been used for a wide variety of genomic applications. Therefore, a second focus of the article is to provide a nonexhaustive overview of transposon applications. Although several non-transposon-based approaches to site-directed genome modifications have emerged in the past decade, transposon-based applications are highly relevant when integration specificity is not sought. In fact, for many applications, the almost-perfect randomness and high frequency of integration make transposon-based approaches indispensable.
Collapse
Affiliation(s)
- Alison B. Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|