1
|
Zhang Y, Gao Z, Chao S, Lu W, Zhang P. Transdermal delivery of inflammatory factors regulated drugs for rheumatoid arthritis. Drug Deliv 2022; 29:1934-1950. [PMID: 35757855 PMCID: PMC9246099 DOI: 10.1080/10717544.2022.2089295] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune disease, with the features of recurrent chronic inflammation of synovial tissue, destruction of cartilage, and bone erosion, which further affects joints tissue, organs, and systems, and eventually leads to irreversible joint deformities and body dysfunction. Therapeutic drugs for rheumatoid arthritis mainly reduce inflammation through regulating inflammatory factors. Transdermal administration is gradually being applied to the treatment of rheumatoid arthritis, which can allow the drug to overcome the skin stratum corneum barrier, reduce gastrointestinal side effects, and avoid the first-pass effect, thus improving bioavailability and relieving inflammation. This paper reviewed the latest research progress of transdermal drug delivery in the treatment of rheumatoid arthritis, and discussed in detail the dosage forms such as gel (microemulsion gel, nanoemulsion gel, nanomicelle gel, sanaplastic nano-vesiclegel, ethosomal gel, transfersomal gel, nanoparticles gel), patch, drug microneedles, nanostructured lipid carrier, transfersomes, lyotropic liquid crystal, and drug loaded electrospinning nanofibers, which provide inspiration for the rich dosage forms of transdermal drug delivery systems for rheumatoid arthritis.
Collapse
Affiliation(s)
- Yanyan Zhang
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Zhaoju Gao
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Shushu Chao
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Wenjuan Lu
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Pingping Zhang
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| |
Collapse
|
2
|
Anderson JM, Moy L, Moy RL. Preventative Options and the Future of Chemoprevention for Cutaneous Tumors. Dermatol Clin 2022; 41:231-238. [DOI: 10.1016/j.det.2022.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Photo-Protective and Anti-Inflammatory Effects of Antidesma thwaitesianum Müll. Arg. Fruit Extract against UVB-Induced Keratinocyte Cell Damage. Molecules 2022; 27:molecules27155034. [PMID: 35956984 PMCID: PMC9370488 DOI: 10.3390/molecules27155034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The main cause of most skin cancers is damage from UVB from sunlight, which penetrate the skin surface and induce inflammation. For this reason, this study aims to identify natural products with photo-protection properties and their mode of action by using the UVB-irradiated HaCaT keratinocyte model. Antidesma thwaitesianum fruit extracts at 25, 50, and 100 µg/mL recovered cell viability following UVB exposure in a dose-dependent manner. Cell survival was associated with the reduction in intracellular ROS and NO. In addition, we showed that the pre-treatment with the fruit extract lowered the phosphorylation level of two MAPK-signaling pathways: p38 MAPKs and JNKs. The resulting lower MAPK activation decreased their downstream pro-inflammatory cascade through COX-2 expression and subsequently reduced the PGE2 proinflammatory mediator level. The photoprotective effects of the fruit extract were correlated with the presence of polyphenolic compounds, including cyanidin, ferulic acid, caffeic acid, vanillic acid, and protocatechuic acid, which have been previously described as antioxidant and anti-inflammation. Together, we demonstrated that the pre-treatment with the fruit extract had photo-protection by inhibiting oxidative stress and subsequently lowered stress-induced MAPK responses. Therefore, this fresh fruit is worthy of investigation to be utilized as a skincare ingredient for preventing UVB-induced skin damage.
Collapse
|
4
|
The medicinal mushroom Ganoderma lucidum attenuates UV-induced skin carcinogenesis and immunosuppression. PLoS One 2022; 17:e0265615. [PMID: 35312729 PMCID: PMC8936451 DOI: 10.1371/journal.pone.0265615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/01/2022] [Indexed: 11/27/2022] Open
Abstract
The medicinal mushroom Ganoderma lucidum is traditionally used for treating multiple diseases, including cancer. This study examined skin cancer preventive activity of a commercial product containing spore and fruiting body in 30:8 ratio (GLSF). Extracts of GLSF and spore component (GLS) were prepared using artificial gastrointestinal juice and examined on JB6 cells. GLSF and GLS dose-dependently inhibited epidermal growth factor-induced JB6 transformation at non-toxic concentrations. SKH-1 mice which were fed with diets containing GLSF (1.25%), GLS (0.99%) or the fruiting body (GLF) (0.26%) were exposed to chronic low-dose ultraviolet (UV) radiation to assess their effects on skin carcinogenesis. GLSF, but not GLS or GLF, reduced skin tumor incidence and multiplicity. In non-tumor skin tissues of mice, GLSF attenuated UV-induced epidermal thickening, expression of Ki-67, COX-2 and NF-κB, while in tumor tissues, GLSF increased expression of CD8 and Granzyme B. To examine the effects of GLSF on UV-induced immunosuppression, mice which were fed with GLSF were evaluated for the contact hypersensitivity (CHS) response to dinitrofluorobenzene (DNFB). GLSF significantly reversed UV-mediated suppression of DNFB-induced CHS by increasing CD8+ and decreasing CD4+ and FoxP3+ T-cells in mouse ears. Therefore, GLSF prevents skin cancer probably via attenuating UV-induced immunosuppression.
Collapse
|
5
|
Reimann H, Ngo QA, Stopper H, Hintzsche H. Cytokinesis-block micronucleus assay of celecoxib and celecoxib derivatives. Toxicol Rep 2020; 7:1588-1591. [PMID: 33304828 PMCID: PMC7708851 DOI: 10.1016/j.toxrep.2020.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/01/2020] [Accepted: 11/05/2020] [Indexed: 11/19/2022] Open
Abstract
New derivatives of celecoxib can improve beneficial effects with better safety profile. DNA damage in form of micronuclei has not been observed after treatment with celecoxib or any derivative. Further development of celecoxib derivatives for chemoprevention may be promising.
Celecoxib is used widely for the acute treatment of pain and for pain relief in various diseases. Furthermore, it shows potential in chemoprevention, although chronic treatment with celecoxib could lead to adverse effects like cardiovascular events. New derivatives of celecoxib were synthesised that may be suitable as chemopreventive agent without inducing adverse effects. Critical endpoint for a safe use of pharmaceuticals is genotoxicity after application. A standard test for the assessment of genotoxicity is the cytokinesis-block micronucleus assay, that evaluates the number micronuclei after treatment of cells with a test compound as biomarker for DNA damage. Various promising derivatives of celecoxib have been assessed with the cytokinesis-block micronucleus assay in HeLa-H2B-GFP cells. It could be demonstrated, that neither celecoxib nor its derivatives were genotoxic in this assay and therefore celecoxib derivatives could be developed further for a safe use as chemopreventive agent.
Collapse
Affiliation(s)
- Hauke Reimann
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078 Würzburg, Germany
| | - Quoc Anh Ngo
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, Viet Nam
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078 Würzburg, Germany
| | - Henning Hintzsche
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078 Würzburg, Germany
- Bavarian Health and Food Safety Authority, Eggenreuther Weg 43, 91058 Erlangen, Germany
- Corresponding author at: Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078 Würzburg, Germany.
| |
Collapse
|
6
|
Cao N, Lu Y, Liu J, Cai F, Xu H, Chen J, Zhang X, Hua ZC, Zhuang H. Metformin Synergistically Enhanced the Antitumor Activity of Celecoxib in Human Non-Small Cell Lung Cancer Cells. Front Pharmacol 2020; 11:1094. [PMID: 32792943 PMCID: PMC7387512 DOI: 10.3389/fphar.2020.01094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/06/2020] [Indexed: 12/25/2022] Open
Abstract
Celecoxib has potential as an effective antineoplastic agent, but it may exhibit side effects. Given the glucose-addicted properties of tumor cells, metformin is recognized for its inhibitory effect on oxidative phosphorylation. In the present study, we aimed to combine low dose of celecoxib with metformin to alleviate the side effects of nonsteroidal anti-inflammatory drugs (NSAIDs) and overcome potential drug resistance. We found that celecoxib combined with metformin obviously suppressed cell migration and proliferation and induced cell apoptosis. Most importantly, in vivo experiments revealed the superior antitumor efficacy of combination treatment with a low dosage of celecoxib (25 mg/kg/day) without apparent toxicity. Further study of the underlying mechanism revealed that the two drugs in combination caused ROS aggregation in NSCLC cells, leading to DNA double-strand breaks and increased expression of the tumor suppressor factor p53. Elevated p53 subsequently caused cell cycle arrest and cell proliferation inhibition. The presence of metformin also sensitized NSCLC cells to celecoxib-induced apoptosis by activating caspase-9, -8, -3, and -7, upregulating the pro-apoptotic proteins Bad and Bax, and downregulating the antiapoptotic proteins Bcl-xl and Bcl-2. Moreover, the superior anticancer effect of combined therapy was also due to suppression of Raf-MEK-ERK cascades and PI3K-AKT signaling, which is conducive to overcoming drug resistance. In addition, either celecoxib alone or in combination with metformin suppressed NSCLC cell migration and invasion by inhibiting FAK, N-cadherin, and matrix metalloproteinase-9 activities. Together, our study provided a rational combination strategy with a low dosage of celecoxib and metformin for preclinical cancer application.
Collapse
Affiliation(s)
- Nini Cao
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Yanyan Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Jia Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Fangfang Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Huangru Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Jia Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Xiangyu Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China.,Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, China
| | - Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Yan XQ, Wang ZC, Zhang B, Qi PF, Li GG, Zhu HL. Dihydropyrazole Derivatives Containing Benzo Oxygen Heterocycle and Sulfonamide Moieties Selectively and Potently Inhibit COX-2: Design, Synthesis, and Anti-Colon Cancer Activity Evaluation. Molecules 2019; 24:molecules24091685. [PMID: 31052167 PMCID: PMC6539903 DOI: 10.3390/molecules24091685] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/19/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) as a rate-limiting metabolism enzyme of arachidonic acid has been found to be implicated in tumor occurrence, angiogenesis, metastasis as well as apoptosis inhibition, regarded as an attractive therapeutic target for cancer therapy. In our research, a series of dihydropyrazole derivatives containing benzo oxygen heterocycle and sulfonamide moieties were designed as highly potent and selective COX-2 inhibitors by computer-aided drug analysis of known COX-2 inhibitors. A total of 26 compounds were synthesized and evaluated COX-2 inhibition and pharmacological efficiency both in vitro and in vivo with multi-angle of view. Among them, compound 4b exhibited most excellent anti-proliferation activities against SW620 cells with IC50 of 0.86 ± 0.02 µM than Celecoxib (IC50 = 1.29 ± 0.04 µM). The results favored our rational design intention and provides compound 4b as an effective COX-2 inhibitor available for the development of colon tumor therapeutics.
Collapse
Affiliation(s)
- Xiao-Qiang Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zhong-Chang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.
| | - Peng-Fei Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.
| | - Gui-Gen Li
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.
| |
Collapse
|