1
|
Glomb T, Minta J, Nowosadko M, Radzikowska J, Świątek P. Search for New Compounds with Anti-Inflammatory Activity Among 1,2,4-Triazole Derivatives. Molecules 2024; 29:6036. [PMID: 39770124 PMCID: PMC11677506 DOI: 10.3390/molecules29246036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Compounds containing the 1,2,4-triazole moiety in their structure exhibit broad biological activities. Many of these compounds demonstrate anti-inflammatory activity in vitro through various mechanisms, such as inhibiting COX-1/COX-2 and LOX, modulating pro-inflammatory cytokine levels, or having effects on other specific enzymes. Some also display activities in vivo. In many publications, the activities of new 1,2,4-triazole-based compounds exceed those of the reference drugs, suggesting their promising potential as new therapeutic agents. This review of active 1,2,4-triazole derivatives with anti-inflammatory activity is based on literature published from 2015-2024.
Collapse
Affiliation(s)
- Teresa Glomb
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland;
| | - Julia Minta
- Student Science Club of Medicinal Chemistry, Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland; (J.M.); (M.N.); (J.R.)
| | - Michalina Nowosadko
- Student Science Club of Medicinal Chemistry, Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland; (J.M.); (M.N.); (J.R.)
| | - Julia Radzikowska
- Student Science Club of Medicinal Chemistry, Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland; (J.M.); (M.N.); (J.R.)
| | - Piotr Świątek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland;
| |
Collapse
|
2
|
Shalaby RM, El-Kosery SM, Soliman MM, Osman DA. Effect of blue light emitting diode therapy on recurrent vulvovaginal candidiasis: A randomized assessor-blinded controlled trial. PHYSIOTHERAPY RESEARCH INTERNATIONAL 2024; 29:e2129. [PMID: 39223951 DOI: 10.1002/pri.2129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Vulvovaginal Candidiasis (VVC) is a prevalent genital infection in women of reproductive age and requires effective non-drug therapies. Therefore, this study aimed to investigate the effect of blue light emitting diode (LED) therapy as an alternative treatment for recurrent VVC due to its proven antimicrobial properties. The safety and non-invasiveness of LED therapy make it a promising option for sensitive tissue applications. MATERIALS AND METHODS This randomized controlled trial recruited 60 women with culture-confirmed VVC. Participants were randomly allocated to two groups. Group A (control group) received standard antifungal treatment with Gynoconazol 0.8% vaginal cream for three consecutive nights (n = 30). Group B (study group) received the same antifungal treatment plus two 60-min sessions of blue LED therapy directed at the vagina and vulva, with the sessions separated by two days (n = 30). Candida count (via CHROMagar™ Candida) and vaginal pH (via AD110-AD111 m) were assessed at baseline and one week after initiating treatment. RESULTS Post-treatment, group (B) demonstrated a significantly greater reduction in Candida count compared to group (A) (mean difference (MD) 8.267; 95% Confidence Interval (CI) 6.723-9.811; p = 0.0001). However, there was no statistically significant difference in vaginal pH between the groups (MD -0.03; 95% CI -0.244-0.178; p = 0.749). CONCLUSION Blue LED therapy effectively reduces Candida count in women with recurrent VVC without adversely affecting the vaginal pH, highlighting its safety and efficacy as a treatment modality.
Collapse
Affiliation(s)
| | - Soheir M El-Kosery
- Department of Physical Therapy for Women's Health, Cairo University, Giza, Egypt
| | - Mahmoud M Soliman
- Department of Gynecology and Obstetrics, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Doaa A Osman
- Department of Physical Therapy for Women's Health, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
El-Emam NA, El-Ashmawy MB, Mohamed AAB, Habib ESE, Thamotharan S, Abdelbaky MSM, Garcia-Granda S, Moustafa MAA. Thiophene-Linked 1,2,4-Triazoles: Synthesis, Structural Insights and Antimicrobial and Chemotherapeutic Profiles. Pharmaceuticals (Basel) 2024; 17:1123. [PMID: 39338288 PMCID: PMC11435084 DOI: 10.3390/ph17091123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
The reaction of thiophene-2-carbohydrazide 1 or 5-bromothiophene-2-carbohydrazide 2 with various haloaryl isothiocyanates and subsequent cyclization by heating in aqueous sodium hydroxide yielded the corresponding 4-haloaryl-5-(thiophen-2-yl or 5-bromothiophen-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione 5a-e. The triazole derivatives 5a and 5b were reacted with different secondary amines and formaldehyde solution to yield the corresponding 2-aminomethyl-4-haloaryl-2,4-dihydro-3H-1,2,4-triazole-3-thiones 6a-e, 7a-e, 8, 9, 10a and 10b in good yields. The in vitro antimicrobial activity of compounds 5a-e, 6a-e, 7a-d, 8, 9, 10a and 10b was evaluated against a panel of standard pathogenic bacterial and fungal strains. Compounds 5a, 5b, 5e, 5f, 6a-e, 7a-d, 8, 9, 10a and 10b showed marked activity, particularly against the tested Gram-positive bacteria and the Gram-negative bacteria Escherichia coli, and all the tested compounds were almost inactive against all the tested fungal strains. In addition, compounds 5e, 6a-e, 7a-d and 10a exhibited potent anti-proliferative activity, particularly against HepG-2 and MCF-7 cancer cell lines (IC50 < 25 μM). A detailed structural insight study based on the single crystals of compounds 5a, 5b, 6a, 6d and 10a is also reported. Molecular docking studies of the highly active antibacterial compounds 5e, 6b, 6d, 7a and 7d showed a high affinity for DNA gyrase. Meanwhile, the potent anti-proliferative activity of compounds 6d, 6e and 7d may be attributed to their high affinity for cyclin-dependent kinase 2 (CDK2).
Collapse
Affiliation(s)
- Nada A El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mahmoud B El-Ashmawy
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed A B Mohamed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - El-Sayed E Habib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Subbiah Thamotharan
- Biomolecular Crystallography Laboratory and DBT-Bioinformatics Center, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - Mohammed S M Abdelbaky
- Department of Physical Chemistry, Faculty of Chemical Sciences, University of Salamanca, 37008 Salamanca, Spain
| | - Santiago Garcia-Granda
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo-CINN (CSIC), 33006 Oviedo, Spain
| | - Mohamed A A Moustafa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
4
|
Li Y, Luo Z, Liu W, Chen W, Wang J, Zhu G, Guo B, Tang L, Fan L. Design and Synthesis of Novel Phthalide Derivatives containing 1,3,4-Oxadiazole/1,2,4-Triazole Units as Potential Antifungal Agents. Chem Biodivers 2024; 21:e202400043. [PMID: 38361278 DOI: 10.1002/cbdv.202400043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
Four series of novel 1,3,4-oxadiazole/1,2,4-triazole hybrids of phthalide derivatives were designed and synthesized to search for novel potential antifungal agents. Preliminary antifungal activity assay results showed that compounds 4 a, 4 b, 4 m, 5 b, 5 f, 5 h, and 7 h exhibited moderate to excellent inhibitory activity against some phytopathogenic fungi. Among them, compound 5 b displayed the most outstanding antifungal effects against V. mali and S. sclerotiorum, with the EC50 mean of 3.96 μg/mL and 5.60 μg/mL, respectively, which was superior to those of commercial fungicides hymexazol and chlorothalonil. Furthermore, compound 5 b could completely suppress the spore germination of V. mali at a concentration of 10 μg/mL. Finally, molecular docking revealed that the potential target for the antifungal activity of compound 5 b was succinate dehydrogenase (SDH). This research provides novel candidate compounds for the prevention of phytopathogenic fungi.
Collapse
Affiliation(s)
- Yong Li
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 561113, People's Republic of China
| | - Zhongfu Luo
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 561113, People's Republic of China
| | - Wenjing Liu
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 561113, People's Republic of China
| | - Wenzhang Chen
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 561113, People's Republic of China
| | - Jianta Wang
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 561113, People's Republic of China
| | - Gaofeng Zhu
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 561113, People's Republic of China
| | - Bing Guo
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 561113, People's Republic of China
| | - Lei Tang
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 561113, People's Republic of China
| | - Lingling Fan
- College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 561113, People's Republic of China
| |
Collapse
|
5
|
Emami L, Zare F, Khabnadideh S, Rezaei Z, Sabahi Z, Zare Gheshlaghi S, Behrouz M, Emami M, Ghobadi Z, Madadelahi Ardekani S, Barzegar F, Ebrahimi A, Sabet R. Synthesis, design, biological evaluation, and computational analysis of some novel uracil-azole derivatives as cytotoxic agents. BMC Chem 2024; 18:3. [PMID: 38173035 PMCID: PMC10765869 DOI: 10.1186/s13065-023-01106-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
The design and synthesis of novel cytotoxic agents is still an interesting topic for medicinal chemistry researchers due to the unwanted side effects of anticancer drugs. In this study, a novel series of uracil-azole hybrids were designed and synthesized. The cytotoxic activity, along with computational studies: molecular docking, molecular dynamic simulation, density functional theory, and ADME properties were also, evaluated. The compounds were synthesized by using 3-methyl-6-chlorouracil as the starting material. Cytotoxicity was determined using MTT assay in the breast carcinoma cell line (MCF-7) and Hepatocellular carcinoma cell line (HEPG-2). These derivatives demonstrated powerful inhibitory activity against breast and hepatocellular carcinoma cell lines in comparison to Cisplatin as positive control. Among these compounds, 4j displayed the best selectivity profile and good activity with IC50 values of 16.18 ± 1.02 and 7.56 ± 5.28 µM against MCF-7 and HEPG-2 cell lines respectively. Structure-activity relationships revealed that the variation in the cytotoxic potency of the synthesized compounds was affected by various substitutions of benzyl moiety. The docking output showed that 4j bind well in the active site of EGFR and formed a stable complex with the EGFR protein. DFT was used to investigate the reactivity descriptors of 4a and 4j. The outputs demonstrated that these uracil-azole hybrids can be considered as potential cytotoxic agents.
Collapse
Affiliation(s)
- Leila Emami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Zare
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. of Iran
| | - Soghra Khabnadideh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Rezaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Sabahi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. of Iran
| | - Saman Zare Gheshlaghi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Marzieh Behrouz
- Department of Chemistry, Shiraz University of Technology, Shiraz, Iran
| | - Mina Emami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Ghobadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. of Iran
| | | | - Fatemeh Barzegar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Ebrahimi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Razieh Sabet
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. of Iran.
| |
Collapse
|
6
|
Deshkar S, Yeole P, Mahore J, Shinde A, Giram P. Polyelectrolyte-Complex-Based Hydrogel Inserts for Vaginal Delivery of Posaconazole and Probiotics. Gels 2023; 9:851. [PMID: 37998941 PMCID: PMC10670537 DOI: 10.3390/gels9110851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Worldwide, 40 to 50% of women suffer from reproductive tract infections. Most of these infections are mixed infections, are recurrent and difficult to treat with antimicrobials or antifungals alone. For symptomatic relief of infections, oral antimicrobial therapy must be combined with topical therapy. The purpose of this work is to optimize and develop a polyelectrolyte complex (PEC) of chitosan/anion for the formulation of posaconazole- and probiotic-loaded vaginal hydrogel inserts with prolonged release and significant mucoadhesion. PECs were prepared using chitosan as cationic and carrageenan, pectin and polycarbophil as anionic polymers via a lyophilization technique. PEC formation was confirmed by scanning electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry, by observing changes in its surface, physical and thermal properties. The probiotic, Lactobacillus casei, was added to the PEC during the lyophilization process and the effect on the probiotic viability was studied. The PECs were further compressed along with posaconazole to form hydrogel inserts and optimized using a 32 full-factorial design. The hydrogel inserts were assessed for swelling behavior, drug release, in vitro mucoadhesion and in vitro antifungal activity. The chitosan-pectin hydrogel insert demonstrated excellent mucoadhesion (1.25 N), sustained drug release (88.2 ± 2.4% in 8 h) and a swelling index of 154.7%. The efficacy of hydrogel inserts was evaluated using in vitro study with a co-culture of Lactobacillus casei and Candida albicans. This study revealed an increase in Lactobacilli casei count and a significant drop in the viable count of Candida albicans (4-log reduction in 24 h), indicating the effectiveness of hydrogel inserts in alleviating the fungal infection. Overall, our study demonstrated the potential of the hydrogel insert for preventing vaginal infection and restoring normal vaginal microbiota.
Collapse
Affiliation(s)
- Sanjeevani Deshkar
- Department of Pharmaceutics, Dr. D. Y. Patil Unitech Society’s, Dr. D. Y. Patil Institute of Pharmaceutical Science & Research, Pune 411018, India; (P.Y.); (J.M.); (A.S.)
| | - Purva Yeole
- Department of Pharmaceutics, Dr. D. Y. Patil Unitech Society’s, Dr. D. Y. Patil Institute of Pharmaceutical Science & Research, Pune 411018, India; (P.Y.); (J.M.); (A.S.)
| | - Jayashri Mahore
- Department of Pharmaceutics, Dr. D. Y. Patil Unitech Society’s, Dr. D. Y. Patil Institute of Pharmaceutical Science & Research, Pune 411018, India; (P.Y.); (J.M.); (A.S.)
| | - Ankita Shinde
- Department of Pharmaceutics, Dr. D. Y. Patil Unitech Society’s, Dr. D. Y. Patil Institute of Pharmaceutical Science & Research, Pune 411018, India; (P.Y.); (J.M.); (A.S.)
| | - Prabhanjan Giram
- Department of Pharmaceutics, Dr. D. Y. Patil Unitech Society’s, Dr. D. Y. Patil Institute of Pharmaceutical Science & Research, Pune 411018, India; (P.Y.); (J.M.); (A.S.)
- Department of Pharmaceutical Sciences, The State University of New York, Buffalo, NY 14214, USA
| |
Collapse
|
7
|
Vlocskó RB, Xie G, Török B. Green Synthesis of Aromatic Nitrogen-Containing Heterocycles by Catalytic and Non-Traditional Activation Methods. Molecules 2023; 28:molecules28104153. [PMID: 37241894 DOI: 10.3390/molecules28104153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Recent advances in the environmentally benign synthesis of aromatic N-heterocycles are reviewed, focusing primarily on the application of catalytic methods and non-traditional activation. This account features two main parts: the preparation of single ring N-heterocycles, and their condensed analogs. Both groups include compounds with one, two and more N-atoms. Due to the large number of protocols, this account focuses on providing representative examples to feature the available methods.
Collapse
Affiliation(s)
- R Bernadett Vlocskó
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Guoshu Xie
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Béla Török
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| |
Collapse
|
8
|
Synthesis and Antibacterial Evaluation of Ciprofloxacin Congeners with Spirocyclic Amine Periphery. Int J Mol Sci 2023; 24:ijms24020954. [PMID: 36674469 PMCID: PMC9863982 DOI: 10.3390/ijms24020954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
The synthesis of novel fluoroquinolones, congeners of ciprofloxacin, which was inspired by earlier work on spirocyclic ciprofloxacin, is described. An antibacterial evaluation of the 11 fluoroquinolone compounds synthesized against the ESKAPE panel of pathogens in comparison with ciprofloxacin revealed that the more compact spirocycles in the fluoroquinolone periphery resulted in active compounds, while larger congeners gave compounds that displayed no activity at all. In the active cohort, the level of potency was comparable to that of ciprofloxacin. However, the spectrum of antibacterial activity was quite different, as the new compounds showed no activity against Pseudomonas aeruginosa. Among the prepared and tested compounds, the broadest range of activity (five pathogens of the six in the ESKAPE panel) and the highest level of activity were demonstrated by 1-yclopropyl-7-[8-(4-cyclopropyl-4H-1,2,4-triazol-3-yl)-6-azaspiro[3.4]oct-6-yl]-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid, which is the lead compound nominated for further characterization and development.
Collapse
|
9
|
Syntheses, crystal structure, luminescent properties and Hirshfeld surface of a set of triazole-based salts. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
Mishra P, Shruti I, Kant R, Thakur TS, Kumar A, Rastogi N. Visible Light Organo‐Photocatalytic Synthesis of 3‐Imidazolines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202201079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Poornima Mishra
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road 226 031 Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) 201002 Ghaziabad India
| | - Ipsha Shruti
- Biochemistry & Structural Biology Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road 226031 Lucknow India
| | - Ruchir Kant
- Biochemistry & Structural Biology Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road 226031 Lucknow India
| | - Tejender S. Thakur
- Academy of Scientific and Innovative Research (AcSIR) 201002 Ghaziabad India
- Biochemistry & Structural Biology Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road 226031 Lucknow India
| | - Akhilesh Kumar
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road 226 031 Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) 201002 Ghaziabad India
| | - Namrata Rastogi
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road 226 031 Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) 201002 Ghaziabad India
| |
Collapse
|
11
|
Al-Wahaibi LH, Karthikeyan S, Blacque O, El-Masry AA, Hassan HM, Percino MJ, El-Emam AA, Thamotharan S. Structural and Energetic Properties of Weak Noncovalent Interactions in Two Closely Related 3,6-Disubstituted-[1,2,4]triazolo[3,4- b][1,3,4]thiadiazole Derivatives: In Vitro Cyclooxygenase Activity, Crystallography, and Computational Investigations. ACS OMEGA 2022; 7:34506-34520. [PMID: 36188268 PMCID: PMC9520738 DOI: 10.1021/acsomega.2c04252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/03/2022] [Indexed: 11/27/2022]
Abstract
![]()
Two 3,6-disubstituted-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole
derivatives, namely, 3-(adamantan-1-yl)-6-(2-chloro-6-fluorophenyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole 1 and 6-(2-chloro-6-fluorophenyl)-3-phenyl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole 2, were prepared, and
the detailed analysis of the weak intermolecular interactions responsible
for the supramolecular self-assembly was performed using X-ray diffraction
and theoretical tools. Analyses of Hirshfeld surface and 2D fingerprint
plot demonstrated the effect of adamant-1-yl/phenyl moieties on intermolecular
interactions in solid-state structures. The effect of these substituents
on H···H/Cl/N contacts was more specific. The CLP-PIXEL
and density functional theory methods provide information on the energetics
of molecular dimers observed in these compounds. The crystal structure
of compound 1 stabilizes with a variety of weak intermolecular
interactions, including C–H···N, C–H···π,
and C–H···Cl hydrogen bonds, a directional C–S···π
chalcogen bond, and unconventional short F···C/N contacts.
The crystal structure of compound 2 is stabilized by
π-stacking interactions, C–H···N, C–H···π,
and C–H···Cl hydrogen bonds, and highly directional
attractive σ–hole interactions such as the C–Cl···N
halogen bond and the C–S···N chalcogen bond.
In addition, S(lp)···C(π) and short N···N
contacts play a supportive role in the stabilization of certain molecular
dimers. The final supramolecular architectures resulting from the
combination of different intermolecular interactions are observed
in both the crystal packing. The molecular electrostatic potential
map reveals complementary electrostatic potentials of the interacting
atoms. The quantum theory of atoms in molecules approach was used
to delineate the nature and strength of different intermolecular interactions
present in different dimers of compounds 1 and 2. The in vitro experiments suggest that both compounds showed
selectivity against COX-2 targets rather than COX-1. Molecular docking
analysis showed the binding pose of the compounds at the active sites
of COX-1/2 enzymes.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Sekar Karthikeyan
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Amal A. El-Masry
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Hanan M. Hassan
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Costal Road, Gamasa City, Mansoura 11152, Egypt
| | - M. Judith Percino
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa, Puebla-C.P. 72960, Mexico
| | - Ali A. El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Subbiah Thamotharan
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| |
Collapse
|
12
|
Cebeci YU, Ceylan Ş, Karaoğlu ŞA, Altun M. An Efficient
Microwave‐Assisted
Synthesis of Novel
Quinolone‐Triazole
and
Conazole‐Triazole
Hybrid Derivatives as Antimicrobial and Anticancer Agents. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Şule Ceylan
- Artvin Çoruh University, Faculty of Forestry, Department of Forest Industrial Engineering Artvin Turkey
| | | | - Muhammed Altun
- Cankiri Karatekin University, Faculty of Science, Department of Chemistry Cankiri Turkey
| |
Collapse
|
13
|
3-Phenyl-4-(prop-2-en-1-yl)-5-[(prop-2-en-1-yl)sulfanyl]-4H-1,2,4-triazole. MOLBANK 2022. [DOI: 10.3390/m1405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
1,2,4-Triazoles appear to be attractive substances due to their wide range of applications. Previously 3-phenyl-4-(prop-2-en-1-yl)-5-[(prop-2-en-1-yl)sulfanyl]-4H-1,2,4-triazole (Atr) has proven to be an effective precursor for us to prepare Cu(I)-π,σ-coordination compounds with nonlinear optical and magnetic properties. In this study, we present the structural characterization of Atr by a single-crystal X-ray diffraction method. The crystals are monoclinic, Sp.gr. P21, Z = 2, unit cell dimensions: a = 5.6967(3), b = 7.8045(3), c = 14.9327(7) Å, β = 91.113(4)°, V = 663.78(5) Å3 at 150 K. To analyze the intermolecular interactions in the crystal structure of Atr, a DFT computational study was also performed.
Collapse
|
14
|
Emerging impact of triazoles as anti-tubercular agent. Eur J Med Chem 2022; 238:114454. [PMID: 35597009 DOI: 10.1016/j.ejmech.2022.114454] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 01/08/2023]
Abstract
Tuberculosis, a disease of poverty is a communicable infection with a reasonably high mortality rate worldwide. 10 Million new cases of TB were reported with approx 1.4 million deaths in the year 2019. Due to the growing number of drug-sensitive and drug-resistant tuberculosis cases, there is a vital need to develop new and effective candidates useful to combat this deadly disease. Despite tremendous efforts to identify a mechanism-based novel antitubercular agent, only a few have entered into clinical trials in the last six decades. In recent years, triazoles have been well explored as the most valuable scaffolds in drug discovery and development. Triazole framework possesses favorable properties like hydrogen bonding, moderate dipole moment, enhanced water solubility, and also the ability to bind effectively with biomolecular targets of M. tuberculosis and therefore this scaffold displayed excellent potency against TB. This review is an endeavor to summarize an up-to-date innovation of triazole-appended hybrids during the last 10 years having potential in vitro and in vivo antitubercular activity with structure activity relationship analysis. This review may help medicinal chemists to explore the triazole scaffolds for the rational design of potent drug candidates having better efficacy, improved selectivity and minimal toxicity so that these hybrid NCEs can effectively be explored as potential lead to fight against M. tuberculosis.
Collapse
|
15
|
1,2,3-Triazolyl-tetrahydropyrimidine Conjugates as Potential Sterol Carrier Protein-2 Inhibitors: Larvicidal Activity against the Malaria Vector Anopheles arabiensis and In Silico Molecular Docking Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092676. [PMID: 35566029 PMCID: PMC9102322 DOI: 10.3390/molecules27092676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 12/18/2022]
Abstract
Alteration of insect growth regulators by the action of inhibitors is becoming an attractive strategy to combat disease-transmitting insects. In the present study, we investigated the larvicidal effect of 1,2,3-triazolyl-pyrimidinone derivatives against the larvae of the mosquito Anopheles arabiensis, a vector of malaria. All compounds demonstrated insecticidal activity against mosquito larvae in a dose-dependent fashion. A preliminary study of the structure-activity relationship indicated that the electron-withdrawing substituent in the para position of the 4-phenyl-pyrimidinone moiety enhanced the molecules' potency. A docking study of these derivatives revealed favorable binding affinity for the sterol carrier protein-2 receptor, a protein present in the intestine of the mosquito larvae. Being effective insecticides against the malaria-transmitting Anopheles arabiensis, 1,2,3-triazole-based pyrimidinones represent a starting point to develop novel inhibitors of insect growth regulators.
Collapse
|
16
|
Reducing the off-target endocrinologic adverse effects of azole antifungals – can it be done? Int J Antimicrob Agents 2022; 59:106587. [DOI: 10.1016/j.ijantimicag.2022.106587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/08/2022] [Accepted: 04/03/2022] [Indexed: 11/18/2022]
|
17
|
SAMELİUK Y, KAPLAUSHENKO A, NEDOREZANIUK N, OSTRETSOVA L, DİAKOVA F, GUTYJ B. Prospects for the search for new biologically active compounds among the derivatives of the heterocyclic system of 1,2,4-triazole. HACETTEPE UNIVERSITY JOURNAL OF THE FACULTY OF PHARMACY 2022. [DOI: 10.52794/hujpharm.1019625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The authors are not native speakers of Turkish
The purpose of this literature review was to systematize data from studies of the biological activity of 1,2,4-triazole derivatives with substituents in positions 4 and 5. The authors set the task of forming an idea of current directions in the selection of substitutions for 1,2,4-triazole based on research.
As a result of the study, 75 literature sources were analyzed. This made it possible to form a further vector in terms of searching for biologically active structures among 1,2,4-triazole derivatives. The review develops a modern approach to the search for biologically active substances among 1,2,4-triazole derivatives. Systematized data on the nature of substituents in the core of 1,2,4-triazole, which affect a specific type of activity.
The search material was selected over the past decade with the highest number of citations at the time of literature analysis.
Collapse
Affiliation(s)
| | | | | | | | - Feodosiia DİAKOVA
- KARABUK UNIVERSITY, FACULTY OF ENGINEERING, DEPARTMENT OF MEDICAL ENGINEERING, MEDICAL ENGINEERING PR. (TRNC NATIONAL)
| | - Bogdan GUTYJ
- Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies
| |
Collapse
|
18
|
Novel 1, 2, 4-Triazoles as Antifungal Agents. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4584846. [PMID: 35360519 PMCID: PMC8964166 DOI: 10.1155/2022/4584846] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/03/2022] [Indexed: 12/17/2022]
Abstract
The development of innovative antifungal agents is essential. Some fungicidal agents are no longer effective due to resistance development, various side effects, and high toxicity. Therefore, the synthesis and development of some new antifungal agents are necessary. 1,2,4-Triazole is one of the most essential pharmacophore systems between five-membered heterocycles. The structure-activity relationship (SAR) of this nitrogen-containing heterocyclic compound showed potential antifungal activity. The 1,2,4-triazole core is present as the nucleus in a variety of antifungal drug categories. The most potent and broad activity of triazoles have confirmed them as pharmacologically significant moieties. The goal of this review is to highlight recent developments in the synthesis and SAR study of 1,2,4-triazole as a potential fungicidal compound. In this study, we provide the results of a biological activity evaluation using various structures and figures. Literature investigation showed that 1, 2, 4-triazole derivatives reveal the extensive span of antifungal activity. This review will assist researchers in the development of new potential antifungal drug candidates with high effectiveness and selectivity.
Collapse
|
19
|
Moussaoui O, Bhadane R, Sghyar R, Ilaš J, El Hadrami EM, Chakroune S, Salo‐Ahen OMH. Design, Synthesis, in vitro and in silico Characterization of 2-Quinolone-L-alaninate-1,2,3-triazoles as Antimicrobial Agents. ChemMedChem 2022; 17:e202100714. [PMID: 34978160 PMCID: PMC9305408 DOI: 10.1002/cmdc.202100714] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/16/2021] [Indexed: 11/07/2022]
Abstract
Due to the ever-increasing antimicrobial resistance there is an urgent need to continuously design and develop novel antimicrobial agents. Inspired by the broad antibacterial activities of various heterocyclic compounds such as 2-quinolone derivatives, we designed and synthesized new methyl-(2-oxo-1,2-dihydroquinolin-4-yl)-L-alaninate-1,2,3-triazole derivatives via 1,3-dipolar cycloaddition reaction of 1-propargyl-2-quinolone-L-alaninate with appropriate azide groups. The synthesized compounds were obtained in good yield ranging from 75 to 80 %. The chemical structures of these novel hybrid molecules were determined by spectroscopic methods and the antimicrobial activity of the compounds was investigated against both bacterial and fungal strains. The tested compounds showed significant antimicrobial activity and weak to moderate antifungal activity. Despite the evident similarity of the quinolone moiety of our compounds with fluoroquinolones, our compounds do not function by inhibiting DNA gyrase. Computational characterization of the compounds shows that they have attractive physicochemical and pharmacokinetic properties and could serve as templates for developing potential antimicrobial agents for clinical use.
Collapse
Affiliation(s)
- Oussama Moussaoui
- Laboratory of Applied Organic ChemistrySidi Mohamed Ben Abdellah University30000FezMorocco
| | - Rajendra Bhadane
- Structural Bioinformatics Laboratory, BiochemistryÅbo Akademi University20520TurkuFinland
- Pharmaceutical Sciences Laboratory, PharmacyÅbo Akademi University20520TurkuFinland
| | - Riham Sghyar
- Laboratory of Applied Organic ChemistrySidi Mohamed Ben Abdellah University30000FezMorocco
| | - Janez Ilaš
- Faculty of PharmacyUniversity of Ljubljana1000LjubljanaSlovenia
| | - El Mestafa El Hadrami
- Laboratory of Applied Organic ChemistrySidi Mohamed Ben Abdellah University30000FezMorocco
| | - Said Chakroune
- Laboratory of Applied Organic ChemistrySidi Mohamed Ben Abdellah University30000FezMorocco
| | - Outi M. H. Salo‐Ahen
- Structural Bioinformatics Laboratory, BiochemistryÅbo Akademi University20520TurkuFinland
- Pharmaceutical Sciences Laboratory, PharmacyÅbo Akademi University20520TurkuFinland
| |
Collapse
|
20
|
Fallarini S, Bhela IP, Aprile S, Torre E, Ranza A, Orecchini E, Panfili E, Pallotta MT, Massarotti A, Serafini M, Pirali T. The [1,2,4]Triazolo[4,3-a]pyridine as a New Player in the Field of IDO1 Catalytic Holo-Inhibitors. ChemMedChem 2021; 16:3439-3450. [PMID: 34355531 PMCID: PMC9291769 DOI: 10.1002/cmdc.202100446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/03/2021] [Indexed: 01/22/2023]
Abstract
Inhibitors of indoleamine 2,3-dioxygenase 1 (IDO1) are considered a promising strategy in cancer immunotherapy as they are able to boost the immune response and to work in synergy with other immunotherapeutic agents. Despite the fact that no IDO1 inhibitor has been approved so far, recent studies have shed light on the additional roles that IDO1 mediates beyond its catalytic activity, conferring new life to the field. Here we present a novel class of compounds originated from a structure-based virtual screening made on IDO1 active site. The starting hit compound is a novel chemotype based on a [1,2,4]triazolo[4,3-a]pyridine scaffold, so far underexploited among the heme binding moieties. Thanks to the rational and in silico-guided design of analogues, an improvement of the potency to sub-micromolar levels has been achieved, with excellent in vitro metabolic stability and exquisite selectivity with respect to other heme-containing enzymes.
Collapse
Affiliation(s)
- Silvia Fallarini
- Department of Pharmaceutical SciencesUniversità degli Studi del Piemonte OrientaleLargo Donegani 228100NovaraItaly
| | - Irene P. Bhela
- Department of Pharmaceutical SciencesUniversità degli Studi del Piemonte OrientaleLargo Donegani 228100NovaraItaly
| | - Silvio Aprile
- Department of Pharmaceutical SciencesUniversità degli Studi del Piemonte OrientaleLargo Donegani 228100NovaraItaly
| | - Enza Torre
- Department of Pharmaceutical SciencesUniversità degli Studi del Piemonte OrientaleLargo Donegani 228100NovaraItaly
| | - Alice Ranza
- Department of Pharmaceutical SciencesUniversità degli Studi del Piemonte OrientaleLargo Donegani 228100NovaraItaly
| | - Elena Orecchini
- Department of Medicine and SurgeryUniversity of PerugiaPerugia06132Italy
| | - Eleonora Panfili
- Department of Medicine and SurgeryUniversity of PerugiaPerugia06132Italy
| | - Maria T. Pallotta
- Department of Medicine and SurgeryUniversity of PerugiaPerugia06132Italy
| | - Alberto Massarotti
- Department of Pharmaceutical SciencesUniversità degli Studi del Piemonte OrientaleLargo Donegani 228100NovaraItaly
| | - Marta Serafini
- Department of Pharmaceutical SciencesUniversità degli Studi del Piemonte OrientaleLargo Donegani 228100NovaraItaly
- Current address: Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Tracey Pirali
- Department of Pharmaceutical SciencesUniversità degli Studi del Piemonte OrientaleLargo Donegani 228100NovaraItaly
| |
Collapse
|
21
|
Mısır MN, Mısır G, Bekircan O, Kantekin H, Öztürk D, Durmuş M. Sulfur bridged new metal-free and metallo phthalocyanines carrying 1,2,4-triazole rings and their photophysicochemical properties. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
Fizer M, Slivka M, Sidey V, Baumer V, Fizer O. On the protonation of a polysubstituted 1,2,4-triazole: A structural study of a hexabromotellurate salt. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Xi YR, Chen XK, Wu YS, Xue YK, Sun WC, Chen XM, Liu XR, Wang YT, Tang GM. The hydroxylic position mediated the luminescent properties based on 4-amino-4H-1,2,4-triazole: Syntheses, crystal structures and Hirshfeld analyses. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Haroun M, Tratrat C, Kochkar H, Nair AB. CDATA[Recent Advances in the Development of 1,2,3-Triazole-containing Derivatives as Potential Antifungal Agents and Inhibitors of Lanoster ol 14α-Demethylase. Curr Top Med Chem 2021; 21:462-506. [PMID: 33319673 DOI: 10.2174/1568026621999201214232018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/12/2020] [Accepted: 11/03/2020] [Indexed: 11/22/2022]
Abstract
1,2,3-Triazole, a five-membered heterocyclic nucleus, is widely recognized as a key chromophore of great value in medicinal chemistry for delivering compounds possessing innumerable biological activities, including antimicrobial, antitubercular, antidiabetic, antiviral, antitumor, antioxidants, and anti-inflammatory activities. Mainly, in the past years, diverse conjugates carrying this biologically valuable core have been reported due to their attractive fungicidal potential and potent effects on various infective targets. Hence, hybridization of 1,2,3-triazole with other antimicrobial pharmacophores appears to be a judicious strategy to develop new effective anti-fungal candidates to combat the emergence of drug-sensitive and drug-resistant infectious diseases. Thus, the current review highlights the recent advances of this promising category of 1,2,3-triazole-containing hybrids incorporating diverse varieties of bioactive heterocycles such as conozole, coumarin, imidazole, benzimidazole, pyrazole, indole, oxindole, chromene, pyrane, quinazoline, chalcone, isoflavone, carbohydrates, and amides. It underlies their inhibition behavior against a wide array of infectious fungal species during 2015-2020.
Collapse
Affiliation(s)
- Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Hafedh Kochkar
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
25
|
Wang M, Hou S, Wei Y, Li D, Lin J. Discovery of novel dual adenosine A1/A2A receptor antagonists using deep learning, pharmacophore modeling and molecular docking. PLoS Comput Biol 2021; 17:e1008821. [PMID: 33739970 PMCID: PMC7978378 DOI: 10.1371/journal.pcbi.1008821] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Adenosine receptors (ARs) have been demonstrated to be potential therapeutic targets against Parkinson's disease (PD). In the present study, we describe a multistage virtual screening approach that identifies dual adenosine A1 and A2A receptor antagonists using deep learning, pharmacophore models, and molecular docking methods. Nineteen hits from the ChemDiv library containing 1,178,506 compounds were selected and further tested by in vitro assays (cAMP functional assay and radioligand binding assay); of these hits, two compounds (C8 and C9) with 1,2,4-triazole scaffolds possessing the most potent binding affinity and antagonistic activity for A1/A2A ARs at the nanomolar level (pKi of 7.16-7.49 and pIC50 of 6.31-6.78) were identified. Further molecular dynamics (MD) simulations suggested similarly strong binding interactions of the complexes between the A1/A2A ARs and two compounds (C8 and C9). Notably, the 1,2,4-triazole derivatives (compounds C8 and C9) were identified as the most potent dual A1/A2A AR antagonists in our study and could serve as a basis for further development. The effective multistage screening approach developed in this study can be utilized to identify potent ligands for other drug targets.
Collapse
Affiliation(s)
- Mukuo Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Shujing Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yu Wei
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- * E-mail: (YW); (DL); (JL)
| | - Dongmei Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- * E-mail: (YW); (DL); (JL)
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Platform of Pharmaceutical Intelligence, Tianjin International Joint Academy of Biomedicine, Tianjin, China
- * E-mail: (YW); (DL); (JL)
| |
Collapse
|