1
|
Rechberger JS, Toll SA, Biswas S, You HB, Chow WD, Kendall N, Navalkele P, Khatua S. Advances in the Repurposing and Blood-Brain Barrier Penetrance of Drugs in Pediatric Brain Tumors. Cancers (Basel) 2025; 17:439. [PMID: 39941807 PMCID: PMC11816256 DOI: 10.3390/cancers17030439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Central nervous system (CNS) tumors are the leading cause of cancer-related mortality in children, with prognosis remaining dismal for some of these malignancies. Though the past two decades have seen advancements in surgery, radiation, and targeted therapy, major unresolved hurdles continue to undermine the therapeutic efficacy. These include challenges in suboptimal drug delivery through the blood-brain barrier (BBB), marked intra-tumoral molecular heterogeneity, and the elusive tumor microenvironment. Drug repurposing or re-tasking FDA-approved drugs with evidence of penetration into the CNS, using newer methods of intracranial drug delivery facilitating optimal drug exposure, has been an area of intense research. This could be a valuable tool, as most of these agents have already gone through the lengthy process of drug development and the evaluation of safety risks and the optimal pharmacokinetic profile. They can now be used and tested in clinics with an accelerated and different approach. Conclusions: The next-generation therapeutic strategy should prioritize repurposing oncologic and non-oncologic drugs that have been used for other indication, and have demonstrated robust preclinical activity against pediatric brain tumors. In combination with novel drug delivery techniques, these drugs could hold significant therapeutic promise in pediatric neurooncology.
Collapse
Affiliation(s)
| | - Stephanie A. Toll
- Children’s Hospital of Michigan, Central Michigan University School of Medicine, Saginaw, MI 48602, USA;
| | - Subhasree Biswas
- Bronglais General Hospital, Caradog Road, Aberystwyth SY23 1ER, Wales, UK;
| | - Hyo Bin You
- Mayo Clinic Alix School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (H.B.Y.); (W.D.C.)
| | - William D. Chow
- Mayo Clinic Alix School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (H.B.Y.); (W.D.C.)
| | - Nicholas Kendall
- School of Medicine, University of South Dakota Sanford, Vermillion, SD 57069, USA;
| | - Pournima Navalkele
- Division of Oncology, Children’s Hospital of Orange County, Orange, CA 92868, USA;
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Nonnenbroich LF, Bouchal SM, Millesi E, Rechberger JS, Khatua S, Daniels DJ. H3K27-Altered Diffuse Midline Glioma of the Brainstem: From Molecular Mechanisms to Targeted Interventions. Cells 2024; 13:1122. [PMID: 38994974 PMCID: PMC11240752 DOI: 10.3390/cells13131122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
Pediatric high-grade gliomas are a devastating subset of brain tumors, characterized by their aggressive pathophysiology and limited treatment options. Among them, H3 K27-altered diffuse midline gliomas (DMG) of the brainstem stand out due to their distinct molecular features and dismal prognosis. Recent advances in molecular profiling techniques have unveiled the critical role of H3 K27 alterations, particularly a lysine-to-methionine mutation on position 27 (K27M) of the histone H3 tail, in the pathogenesis of DMG. These mutations result in epigenetic dysregulation, which leads to altered chromatin structure and gene expression patterns in DMG tumor cells, ultimately contributing to the aggressive phenotype of DMG. The exploration of targeted therapeutic avenues for DMG has gained momentum in recent years. Therapies, including epigenetic modifiers, kinase inhibitors, and immunotherapies, are under active investigation; these approaches aim to disrupt aberrant signaling cascades and overcome the various mechanisms of therapeutic resistance in DMG. Challenges, including blood-brain barrier penetration and DMG tumor heterogeneity, require innovative approaches to improve drug delivery and personalized treatment strategies. This review aims to provide a comprehensive overview of the evolving understanding of DMG, focusing on the intricate molecular mechanisms driving tumorigenesis/tumor progression and the current landscape of emerging targeted interventions.
Collapse
Affiliation(s)
- Leo F. Nonnenbroich
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (L.F.N.); (J.S.R.)
- Hopp Children’s Cancer Center, Heidelberg (KiTZ), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
| | - Samantha M. Bouchal
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (L.F.N.); (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Elena Millesi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Research Laboratory of the Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Julian S. Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (L.F.N.); (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN 55905, USA;
| | - David J. Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (L.F.N.); (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Arms LM, Duchatel RJ, Jackson ER, Sobrinho PG, Dun MD, Hua S. Current status and advances to improving drug delivery in diffuse intrinsic pontine glioma. J Control Release 2024; 370:835-865. [PMID: 38744345 DOI: 10.1016/j.jconrel.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma - DIPG), is the primary cause of brain tumor-related death in pediatric patients. DIPG is characterized by a median survival of <12 months from diagnosis, harboring the worst 5-year survival rate of any cancer. Corticosteroids and radiation are the mainstay of therapy; however, they only provide transient relief from the devastating neurological symptoms. Numerous therapies have been investigated for DIPG, but the majority have been unsuccessful in demonstrating a survival benefit beyond radiation alone. Although many barriers hinder brain drug delivery in DIPG, one of the most significant challenges is the blood-brain barrier (BBB). Therapeutic compounds must possess specific properties to enable efficient passage across the BBB. In brain cancer, the BBB is referred to as the blood-brain tumor barrier (BBTB), where tumors disrupt the structure and function of the BBB, which may provide opportunities for drug delivery. However, the biological characteristics of the brainstem's BBB/BBTB, both under normal physiological conditions and in response to DIPG, are poorly understood, which further complicates treatment. Better characterization of the changes that occur in the BBB/BBTB of DIPG patients is essential, as this informs future treatment strategies. Many novel drug delivery technologies have been investigated to bypass or disrupt the BBB/BBTB, including convection enhanced delivery, focused ultrasound, nanoparticle-mediated delivery, and intranasal delivery, all of which are yet to be clinically established for the treatment of DIPG. Herein, we review what is known about the BBB/BBTB and discuss the current status, limitations, and advances of conventional and novel treatments to improving brain drug delivery in DIPG.
Collapse
Affiliation(s)
- Lauren M Arms
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Ryan J Duchatel
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Evangeline R Jackson
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Pedro Garcia Sobrinho
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
4
|
Weisbrod LJ, Thiraviyam A, Vengoji R, Shonka N, Jain M, Ho W, Batra SK, Salehi A. Diffuse intrinsic pontine glioma (DIPG): A review of current and emerging treatment strategies. Cancer Lett 2024; 590:216876. [PMID: 38609002 PMCID: PMC11231989 DOI: 10.1016/j.canlet.2024.216876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a childhood malignancy of the brainstem with a dismal prognosis. Despite recent advances in its understanding at the molecular level, the prognosis of DIPG has remained unchanged. This article aims to review the current understanding of the genetic pathophysiology of DIPG and to highlight promising therapeutic targets. Various DIPG treatment strategies have been investigated in pre-clinical studies, several of which have shown promise and have been subsequently translated into ongoing clinical trials. Ultimately, a multifaceted therapeutic approach that targets cell-intrinsic alterations, the micro-environment, and augments the immune system will likely be necessary to eradicate DIPG.
Collapse
Affiliation(s)
- Luke J Weisbrod
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Anand Thiraviyam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Nicole Shonka
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Winson Ho
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Afshin Salehi
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Division of Pediatric Neurosurgery, Children's Nebraska, Omaha, NE, 68114, USA.
| |
Collapse
|
5
|
Solipuram V, Soltani R, Venkatesulu BP, Annam S, Alavian F, Ghasemi S. Efficacy of Anti-VEGF Drugs Based Combination Therapies in Recurrent Glioblastoma: Systematic Review and Meta-Analysis. Curr Rev Clin Exp Pharmacol 2024; 19:173-183. [PMID: 35585804 DOI: 10.2174/2772432817666220517163609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Recurrent glioblastoma multiforme (rGBM) has a grim prognosis, with current therapies offering no survival benefit. Several combination therapies involving anti-VEGF agents have been studied with mixed results. METHODS A systematic search was performed using five electronic databases: PubMed, Scopus, ISI, Embase, and the Cochrane Library, without language limitations. The primary outcome of interest was progression-free survival (PFS). Secondary outcomes were overall survival (OS), objective response ratio (ORR), and grade ≥ 3 adverse events. Estimates for PFS and OS were calculated as random effects hazard ratio (HR) with 95% confidence intervals (CIs) using the generic inverse variance method. Estimates for ORR and grade ≥ 3 adverse events were calculated using a random-effects risk ratio (RR) with 95% confidence intervals (CIs) using the Mantel-Haenszel method. RESULTS Thirteen studies met the inclusion criteria and a total of 1994 patients were included in the analysis. There was no statistically significant improvement in PFS (HR 0.84; 95% CI (0.68, 1.03); I2=81%), OS (HR 0.99; 95% CI (0.88, 1.12); I2=0%), and ORR (RR 1.36; 95% CI (0.96, 1.92); I2=61%) in the combination therapy group when compared to the control group. Significantly higher grade ≥ 3 adverse events (RR 1.30; 95% CI (1.14, 1.48); I2=47%) were seen in the combination therapy when compared to the control group. CONCLUSION Our analysis showed that the use of combination therapy with anti-VEGF agents did not offer any benefit in PFS, OS, or ORR. In contrast, it had significantly higher grade 3-5 adverse events. Further studies are needed to identify effective therapies in rGBM that can improve survival.
Collapse
Affiliation(s)
- Vinod Solipuram
- Department of Medicine, Saint Agnes Hospital, Baltimore, MD, USA
| | - Ramin Soltani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - B P Venkatesulu
- Department of Radiation Oncology, Loyola University Stritch School of medicine, Chicago, IL, USA
- Edward Hines VA Hospital, Chicago, IL, USA
| | - Saketh Annam
- Osmania Medical College, Hyderabad, Telangana, India
| | - Firoozeh Alavian
- Department of Biology, School of Basic Sciences, Farhangian University, Tehran, Iran
| | - Sorayya Ghasemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
6
|
Zhao X, Ni S, Song Y, Hu K. Intranasal delivery of Borneol/R8dGR peptide modified PLGA nanoparticles co-loaded with curcumin and cisplatin alleviate hypoxia in pediatric brainstem glioma which improves the synergistic therapy. J Control Release 2023; 362:121-137. [PMID: 37633362 DOI: 10.1016/j.jconrel.2023.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023]
Abstract
Cisplatin (cis) is a first-line chemotherapeutic used for the treatment of intractable pediatric brainstem glioma (PBSG). Its therapeutic effect in PBSG is, however, critically challenged by the hypoxic microenvironment of the tumor and the presence of the blood brain barrier (BBB). Herein, we report on the intranasal administration of borneol (Bo)/R8dGR peptide modified PLGA based nanoparticles (NP) co-loaded with curcumin and cisplatin (cur/cis). We observed that borneol modification improved the brain penetration of the nanoparticles by reduction of the expression of ZO-1 and occludin in nasal mucosa, while the R8dGR peptide modification allowed the targeting of the NP through the binding on integrin αvβ3 receptors which are present on PBSG cells. Following intranasal administration, BoR-cur/cis-NP attenuated hypoxia in the PBSG microenvironment and reduced angiogenesis, which prolonged survival of GL261-bearing PBSG mice. Therefore, intranasal administration of BoR-cur/cis-NP, which deeply penetrate PBSG, is an encouraging strategy to attenuate hypoxia which potentiates the efficacy of cisplatin in the treatment of PBSG.
Collapse
Affiliation(s)
- Xiao Zhao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Shuting Ni
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yangjie Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Kaili Hu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
7
|
Rechberger JS, Bouchal SM, Power EA, Nonnenbroich LF, Nesvick CL, Daniels DJ. Bench-to-bedside investigations of H3 K27-altered diffuse midline glioma: drug targets and potential pharmacotherapies. Expert Opin Ther Targets 2023; 27:1071-1086. [PMID: 37897190 PMCID: PMC11079776 DOI: 10.1080/14728222.2023.2277232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/26/2023] [Indexed: 10/29/2023]
Abstract
INTRODUCTION H3 K27-altered diffuse midline glioma (DMG) is the most common malignant brainstem tumor in the pediatric population. Despite enormous preclinical and clinical efforts, the prognosis remains dismal, with fewer than 10% of patients surviving for two years after diagnosis. Fractionated radiation remains the only standard treatment options for DMG. Developing novel treatments and therapeutic delivery methods is critical to improving outcomes in this devastating disease. AREAS COVERED This review addresses recent advances in molecularly targeted pharmacotherapy and immunotherapy in DMG. The clinical presentation, diagnostic workup, unique pathological challenges, and current clinical trials are highlighted throughout. EXPERT OPINION Promising pharmacotherapies targeting various components of DMG pathology and the application of immunotherapies have the potential to improve patient outcomes. However, novel approaches are needed to truly revolutionize treatment for this tumor. First, combinational therapy should be employed, as DMG can develop resistance to single-agent approaches and many therapies are susceptible to rapid clearance from the brain. Second, drug-tumor residence time, i.e. the time for which a therapeutic is present at efficacious concentrations within the tumor, must be maximized to facilitate a durable treatment response. Engineering extended drug delivery methods with minimal off-tumor toxicity should be a focus of future studies.
Collapse
Affiliation(s)
- Julian S. Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Samantha M. Bouchal
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Erica A. Power
- Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Leo F. Nonnenbroich
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Cody L. Nesvick
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - David J. Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| |
Collapse
|
8
|
Vanbilloen WJF, Rechberger JS, Anderson JB, Nonnenbroich LF, Zhang L, Daniels DJ. Nanoparticle Strategies to Improve the Delivery of Anticancer Drugs across the Blood-Brain Barrier to Treat Brain Tumors. Pharmaceutics 2023; 15:1804. [PMID: 37513992 PMCID: PMC10383584 DOI: 10.3390/pharmaceutics15071804] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Primary brain and central nervous system (CNS) tumors are a diverse group of neoplasms that occur within the brain and spinal cord. Although significant advances in our understanding of the intricate biological underpinnings of CNS neoplasm tumorigenesis and progression have been made, the translation of these discoveries into effective therapies has been stymied by the unique challenges presented by these tumors' exquisitely sensitive location and the body's own defense mechanisms (e.g., the brain-CSF barrier and blood-brain barrier), which normally protect the CNS from toxic insult. These barriers effectively prevent the delivery of therapeutics to the site of disease. To overcome these obstacles, new methods for therapeutic delivery are being developed, with one such approach being the utilization of nanoparticles. Here, we will cover the current state of the field with a particular focus on the challenges posed by the BBB, the different nanoparticle classes which are under development for targeted CNS tumor therapeutics delivery, and strategies which have been developed to bypass the BBB and enable effective therapeutics delivery to the site of disease.
Collapse
Affiliation(s)
- Wouter J. F. Vanbilloen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Neurology, Elisabeth-Tweesteden Hospital, 5022 GC Tilburg, The Netherlands
| | - Julian S. Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jacob B. Anderson
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Leo F. Nonnenbroich
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
| | - Liang Zhang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
| | - David J. Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
9
|
Omidian H, Mfoafo K. Exploring the Potential of Nanotechnology in Pediatric Healthcare: Advances, Challenges, and Future Directions. Pharmaceutics 2023; 15:1583. [PMID: 37376032 DOI: 10.3390/pharmaceutics15061583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The utilization of nanotechnology has brought about notable advancements in the field of pediatric medicine, providing novel approaches for drug delivery, disease diagnosis, and tissue engineering. Nanotechnology involves the manipulation of materials at the nanoscale, resulting in improved drug effectiveness and decreased toxicity. Numerous nanosystems, including nanoparticles, nanocapsules, and nanotubes, have been explored for their therapeutic potential in addressing pediatric diseases such as HIV, leukemia, and neuroblastoma. Nanotechnology has also shown promise in enhancing disease diagnosis accuracy, drug availability, and overcoming the blood-brain barrier obstacle in treating medulloblastoma. It is important to acknowledge that while nanotechnology offers significant opportunities, there are inherent risks and limitations associated with the use of nanoparticles. This review provides a comprehensive summary of the existing literature on nanotechnology in pediatric medicine, highlighting its potential to revolutionize pediatric healthcare while also recognizing the challenges and limitations that need to be addressed.
Collapse
Affiliation(s)
- Hossein Omidian
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Kwadwo Mfoafo
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
10
|
Wei D, Zhang N, Qu S, Wang H, Li J. Advances in nanotechnology for the treatment of GBM. Front Neurosci 2023; 17:1180943. [PMID: 37214394 PMCID: PMC10196029 DOI: 10.3389/fnins.2023.1180943] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/05/2023] [Indexed: 05/24/2023] Open
Abstract
Glioblastoma (GBM), a highly malignant glioma of the central nervous system, is the most dread and common brain tumor with a high rate of therapeutic resistance and recurrence. Currently, the clinical treatment methods are surgery, radiotherapy, and chemotherapy. However, owning to the highly invasive nature of GBM, it is difficult to completely resect them due to the unclear boundary between the edges of GBM and normal brain tissue. Traditional radiotherapy and the combination of alkylating agents and radiotherapy have significant side effects, therapeutic drugs are difficult to penetrate the blood brain barrier. Patients receiving treatment have a high postoperative recurrence rate and a median survival of less than 2 years, Less than 5% of patients live longer than 5 years. Therefore, it is urgent to achieve precise treatment through the blood brain barrier and reduce toxic and side effects. Nanotechnology exhibit great potential in this area. This article summarizes the current treatment methods and shortcomings of GBM, and summarizes the research progress in the diagnosis and treatment of GBM using nanotechnology.
Collapse
Affiliation(s)
- Dongyan Wei
- Department of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
- College of Life Sciences, Tarim University, Alar, China
| | - Ni Zhang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shuang Qu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Hao Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jin Li
- Department of Psychiatry, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Lyu Y, Guo Y, Okeoma CM, Yan Z, Hu N, Li Z, Zhou S, Zhao X, Li J, Wang X. Engineered extracellular vesicles (EVs): Promising diagnostic/therapeutic tools for pediatric high-grade glioma. Biomed Pharmacother 2023; 163:114630. [PMID: 37094548 DOI: 10.1016/j.biopha.2023.114630] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/26/2023] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a highly malignant brain tumor that mainly occurs in children with extremely low overall survival. Traditional therapeutic strategies, such as surgical resection and chemotherapy, are not feasible mostly due to the special location and highly diffused features. Radiotherapy turns out to be the standard treatment method but with limited benefits of overall survival. A broad search for novel and targeted therapies is in the progress of both preclinical investigations and clinical trials. Extracellular vesicles (EVs) emerged as a promising diagnostic and therapeutic candidate due to their distinct biocompatibility, excellent cargo-loading-delivery capacity, high biological barrier penetration efficiency, and ease of modification. The utilization of EVs in various diseases as biomarker diagnoses or therapeutic agents is revolutionizing modern medical research and practice. In this review, we will briefly talk about the research development of DIPG, and present a detailed description of EVs in medical applications, with a discussion on the application of engineered peptides on EVs. The possibility of applying EVs as a diagnostic tool and drug delivery system in DIPG is also discussed.
Collapse
Affiliation(s)
- Yuan Lyu
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yupei Guo
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chioma M Okeoma
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA
| | - Zhaoyue Yan
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Nan Hu
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zian Li
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shaolong Zhou
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xin Zhao
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Junqi Li
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Xinjun Wang
- Henan Joint International Laboratory of Glioma Metabolism and Microenvironment Research, Henan Provincial Department of Science and Technology, Zhengzhou, Henan 450052, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
12
|
Immunogenic Cell Death Enhances Immunotherapy of Diffuse Intrinsic Pontine Glioma: From Preclinical to Clinical Studies. Pharmaceutics 2022; 14:pharmaceutics14091762. [PMID: 36145510 PMCID: PMC9502387 DOI: 10.3390/pharmaceutics14091762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is the most lethal tumor involving the pediatric central nervous system. The median survival of children that are diagnosed with DIPG is only 9 to 11 months. More than 200 clinical trials have failed to increase the survival outcomes using conventional cytotoxic or myeloablative chemotherapy. Immunotherapy presents exciting therapeutic opportunities against DIPG that is characterized by unique and heterogeneous features. However, the non-inflammatory DIPG microenvironment greatly limits the role of immunotherapy in DIPG. Encouragingly, the induction of immunogenic cell death, accompanied by the release of damage-associated molecular patterns (DAMPs) shows satisfactory efficacy of immune stimulation and antitumor strategies. This review dwells on the dilemma and advances in immunotherapy for DIPG, and the potential efficacy of immunogenic cell death (ICD) in the immunotherapy of DIPG.
Collapse
|
13
|
Power EA, Rechberger JS, Gupta S, Schwartz JD, Daniels DJ, Khatua S. Drug delivery across the blood-brain barrier for the treatment of pediatric brain tumors - An update. Adv Drug Deliv Rev 2022; 185:114303. [PMID: 35460714 DOI: 10.1016/j.addr.2022.114303] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022]
Abstract
Even though the last decade has seen a surge in the identification of molecular targets and targeted therapies in pediatric brain tumors, the blood brain barrier (BBB) remains a significant challenge in systemic drug delivery. This continues to undermine therapeutic efficacy. Recent efforts have identified several strategies that can facilitate enhanced drug delivery into pediatric brain tumors. These include invasive methods such as intra-arterial, intrathecal, and convection enhanced delivery and non-invasive technologies that allow for transient access across the BBB, including focused ultrasound and nanotechnology. This review discusses current strategies that are being used to enhance delivery of different therapies across the BBB to the tumor site - a major unmet need in pediatric neuro-oncology.
Collapse
Affiliation(s)
- Erica A Power
- Mayo Clinic Graduate School of Biomedical Sciences, 200 First Street SW, Rochester, MN 55905, United States; Department of Neurologic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States
| | - Julian S Rechberger
- Mayo Clinic Graduate School of Biomedical Sciences, 200 First Street SW, Rochester, MN 55905, United States; Department of Neurologic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States
| | - Sumit Gupta
- Department of Pediatric Hematology/Oncology, Roseman University of Health Sciences, Las Vegas, NV 89118, United States
| | - Jonathan D Schwartz
- Department of Pediatric Hematology/Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States.
| |
Collapse
|
14
|
Wang Z, Wang X, Yu H, Chen M. Glioma-targeted multifunctional nanoparticles to co-deliver camptothecin and curcumin for enhanced chemo-immunotherapy. Biomater Sci 2022; 10:1292-1303. [PMID: 35083994 DOI: 10.1039/d1bm01987b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Camptothecin (CPT) is a potent broad-spectrum antitumor agent with efficient therapeutic effect for various cancers. However, its application in glioma therapy has been impeded by the tumor immunosuppressive environment and blood-brain barrier (BBB)-associated drug delivery challenges. Herein, neurotransmitter analogs-modified liposomes (NTs-LIP) were prepared by doping lipidized tryptamine (Tryp) to co-deliver CPT and curcumin (CUR) for improved chemo-immunotherapy in glioma. The introduction of Tryp promotes the delivery efficiency of CPT and CUR across the BBB. CPT inhibits cell proliferation after cellular uptake of NTs-LIP, the combination of which with CUR downregulates the elevated expression of the programmed cell death 1 ligand 1 (PD-L1) caused by CPT to prevent the inactivation of T-cells and synergistically enhance chemo-immunotherapy efficacy. Furthermore, both Tryp and CUR interfere with the indoleamine 2,3-dioxygenase (IDO) pathway to reduce regulatory T cell (Treg)-mediated immunosuppression, exhibiting the potential to combine with PD-L1 inhibition for synergistic antitumor immunity. Taken together, this platform contributes towards targeted delivery and alleviation of the immunosuppressive environment in glioma therapy.
Collapse
Affiliation(s)
- Zian Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| | - Xuan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
15
|
Guido C, Baldari C, Maiorano G, Mastronuzzi A, Carai A, Quintarelli C, De Angelis B, Cortese B, Gigli G, Palamà IE. Nanoparticles for Diagnosis and Target Therapy in Pediatric Brain Cancers. Diagnostics (Basel) 2022; 12:diagnostics12010173. [PMID: 35054340 PMCID: PMC8774904 DOI: 10.3390/diagnostics12010173] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Pediatric brain tumors represent the most common types of childhood cancer and novel diagnostic and therapeutic solutions are urgently needed. The gold standard treatment option for brain cancers in children, as in adults, is tumor resection followed by radio- and chemotherapy, but with discouraging therapeutic results. In particular, the last two treatments are often associated to significant neurotoxicity in the developing brain of a child, with resulting disabilities such as cognitive problems, neuroendocrine, and neurosensory dysfunctions/deficits. Nanoparticles have been increasingly and thoroughly investigated as they show great promises as diagnostic tools and vectors for gene/drug therapy for pediatric brain cancer due to their ability to cross the blood–brain barrier. In this review we will discuss the developments of nanoparticle-based strategies as novel precision nanomedicine tools for diagnosis and therapy in pediatric brain cancers, with a particular focus on targeting strategies to overcome the main physiological obstacles that are represented by blood–brain barrier.
Collapse
Affiliation(s)
- Clara Guido
- Department of Mathematics and Physics, University of Salento, Monteroni Street, 73100 Lecce, Italy; (C.G.); (C.B.); (G.G.)
| | - Clara Baldari
- Department of Mathematics and Physics, University of Salento, Monteroni Street, 73100 Lecce, Italy; (C.G.); (C.B.); (G.G.)
| | - Gabriele Maiorano
- Nanotechnology Institute, CNR-NANOTEC, Monteroni Street, 73100 Lecce, Italy;
| | - Angela Mastronuzzi
- Neuro-Oncology Unit, Department of Onco-Haematology, Cell Therapy, Gene Therapy and Haemopoietic Transplant, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurosciences, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
| | - Concetta Quintarelli
- Department Onco-Haematology, and Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (C.Q.); (B.D.A.)
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Biagio De Angelis
- Department Onco-Haematology, and Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (C.Q.); (B.D.A.)
| | - Barbara Cortese
- Nanotechnology Institute, CNR-NANOTEC, c/o La Sapienza University, Piazzale A. Moro, 00165 Rome, Italy;
| | - Giuseppe Gigli
- Department of Mathematics and Physics, University of Salento, Monteroni Street, 73100 Lecce, Italy; (C.G.); (C.B.); (G.G.)
- Nanotechnology Institute, CNR-NANOTEC, Monteroni Street, 73100 Lecce, Italy;
| | - Ilaria Elena Palamà
- Nanotechnology Institute, CNR-NANOTEC, Monteroni Street, 73100 Lecce, Italy;
- Correspondence:
| |
Collapse
|
16
|
Rechberger JS, Thiele F, Daniels DJ. Status Quo and Trends of Intra-Arterial Therapy for Brain Tumors: A Bibliometric and Clinical Trials Analysis. Pharmaceutics 2021; 13:pharmaceutics13111885. [PMID: 34834300 PMCID: PMC8625566 DOI: 10.3390/pharmaceutics13111885] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Intra-arterial drug delivery circumvents the first-pass effect and is believed to increase both efficacy and tolerability of primary and metastatic brain tumor therapy. The aim of this update is to report on pertinent articles and clinical trials to better understand the research landscape to date and future directions. Elsevier's Scopus and ClinicalTrials.gov databases were reviewed in August 2021 for all possible articles and clinical trials of intra-arterial drug injection as a treatment strategy for brain tumors. Entries were screened against predefined selection criteria and various parameters were summarized. Twenty clinical trials and 271 articles satisfied all inclusion criteria. In terms of articles, 201 (74%) were primarily clinical and 70 (26%) were basic science, published in a total of 120 different journals. Median values were: publication year, 1986 (range, 1962-2021); citation count, 15 (range, 0-607); number of authors, 5 (range, 1-18). Pertaining to clinical trials, 9 (45%) were phase 1 trials, with median expected start and completion years in 2011 (range, 1998-2019) and 2022 (range, 2008-2025), respectively. Only one (5%) trial has reported results to date. Glioma was the most common tumor indication reported in both articles (68%) and trials (75%). There were 215 (79%) articles investigating chemotherapy, while 13 (65%) trials evaluated targeted therapy. Transient blood-brain barrier disruption was the commonest strategy for articles (27%) and trials (60%) to optimize intra-arterial therapy. Articles and trials predominately originated in the United States (50% and 90%, respectively). In this bibliometric and clinical trials analysis, we discuss the current state and trends of intra-arterial therapy for brain tumors. Most articles were clinical, and traditional anti-cancer agents and drug delivery strategies were commonly studied. This was reflected in clinical trials, of which only a single study had reported outcomes. We anticipate future efforts to involve novel therapeutic and procedural strategies based on recent advances in the field.
Collapse
Affiliation(s)
- Julian S. Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence:
| | - Frederic Thiele
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA;
| | - David J. Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
17
|
Xu C, Liu H, Pirozzi CJ, Chen LH, Greer PK, Diplas BH, Zhang L, Waitkus MS, He Y, Yan H. TP53 wild-type/PPM1D mutant diffuse intrinsic pontine gliomas are sensitive to a MDM2 antagonist. Acta Neuropathol Commun 2021; 9:178. [PMID: 34732238 PMCID: PMC8565061 DOI: 10.1186/s40478-021-01270-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/05/2021] [Indexed: 01/22/2023] Open
Abstract
Diffuse intrinsic pontine gliomas (DIPGs) are high-grade tumors of the brainstem that often occur in children, with a median overall survival of less than one year. Given the fact that DIPGs are resistant to chemotherapy and are not amenable to surgical resection, it is imperative to develop new therapeutic strategies for this deadly disease. The p53 pathway is dysregulated by TP53 (~ 60%) or PPM1D gain-of-function mutations (~ 30%) in DIPG cases. PPM1D gain-of-function mutations suppress p53 activity and result in DIPG tumorigenesis. While MDM2 is a major negative regulator of p53, the efficacy of MDM2 inhibitor has not been tested in DIPG preclinical models. In this study, we performed a comprehensive validation of MDM2 inhibitor RG7388 in patient-derived DIPG cell lines established from both TP53 wild-type/PPM1D-mutant and TP53 mutant/PPM1D wild-type tumors, as well in TP53 knockout isogenic DIPG cell line models. RG7388 selectively inhibited the proliferation of the TP53 wild-type/PPM1D mutant DIPG cell lines in a dose- and time-dependent manner. The anti-proliferative effects were p53-dependent. RNA-Seq data showed that differential gene expression induced by RG7388 treatment was enriched in the p53 pathways. RG7388 reactivated the p53 pathway and induced apoptosis as well as G1 arrest. In vivo, RG7388 was able to reach the brainstem and exerted therapeutic efficacy in an orthotopic DIPG xenograft model. Hence, this study demonstrates the pre-clinical efficacy potential of RG7388 in the TP53 wild-type/PPM1D mutant DIPG subgroup and may provide critical insight on the design of future clinical trials applying this drug in DIPG patients.
Collapse
|
18
|
A Power E, Rechberger JS, Lu VM, Daniels DJ. The emerging role of nanotechnology in pursuit of successful drug delivery to H3K27M diffuse midline gliomas. Nanomedicine (Lond) 2021; 16:1343-1346. [PMID: 33998840 DOI: 10.2217/nnm-2021-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Erica A Power
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Victor M Lu
- Department of Neurologic Surgery, University of Miami, Miami, FL 33136, USA
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
19
|
Convection-enhanced delivery for H3K27M diffuse midline glioma: how can we efficaciously modulate the blood-brain barrier? Ther Deliv 2021; 12:419-422. [PMID: 33949200 DOI: 10.4155/tde-2021-0026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Graphical abstract [Formula: see text].
Collapse
|
20
|
Ung C, Tsoli M, Liu J, Cassano D, Pocoví-Martínez S, Upton DH, Ehteda A, Mansfeld FM, Failes TW, Farfalla A, Katsinas C, Kavallaris M, Arndt GM, Vittorio O, Cirillo G, Voliani V, Ziegler DS. Doxorubicin-Loaded Gold Nanoarchitectures as a Therapeutic Strategy against Diffuse Intrinsic Pontine Glioma. Cancers (Basel) 2021; 13:1278. [PMID: 33805713 PMCID: PMC7999568 DOI: 10.3390/cancers13061278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 01/11/2023] Open
Abstract
Diffuse Intrinsic Pontine Gliomas (DIPGs) are highly aggressive paediatric brain tumours. Currently, irradiation is the only standard treatment, but is palliative in nature and most patients die within 12 months of diagnosis. Novel therapeutic approaches are urgently needed for the treatment of this devastating disease. We have developed non-persistent gold nano-architectures (NAs) functionalised with human serum albumin (HSA) for the delivery of doxorubicin. Doxorubicin has been previously reported to be cytotoxic in DIPG cells. In this study, we have preclinically evaluated the cytotoxic efficacy of doxorubicin delivered through gold nanoarchitectures (NAs-HSA-Dox). We found that DIPG neurospheres were equally sensitive to doxorubicin and doxorubicin-loaded NAs. Colony formation assays demonstrated greater potency of NAs-HSA-Dox on colony formation compared to doxorubicin. Western blot analysis indicated increased apoptotic markers cleaved Parp, cleaved caspase 3 and phosphorylated H2AX in NAs-HSA-Dox treated DIPG neurospheres. Live cell content and confocal imaging demonstrated significantly higher uptake of NAs-HSA-Dox into DIPG neurospheres compared to doxorubicin alone. Despite the potency of the NAs in vitro, treatment of an orthotopic model of DIPG showed no antitumour effect. This disparate outcome may be due to the integrity of the blood-brain barrier and highlights the need to develop therapies to enhance penetration of drugs into DIPG.
Collapse
Affiliation(s)
- Caitlin Ung
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (C.U.); (J.L.); (D.H.U.); (A.E.); (F.M.M.); (C.K.); (M.K.); (O.V.)
| | - Maria Tsoli
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (C.U.); (J.L.); (D.H.U.); (A.E.); (F.M.M.); (C.K.); (M.K.); (O.V.)
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
| | - Jie Liu
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (C.U.); (J.L.); (D.H.U.); (A.E.); (F.M.M.); (C.K.); (M.K.); (O.V.)
| | - Domenico Cassano
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy; (D.C.); (S.P.-M.); (V.V.)
| | - Salvador Pocoví-Martínez
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy; (D.C.); (S.P.-M.); (V.V.)
| | - Dannielle H. Upton
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (C.U.); (J.L.); (D.H.U.); (A.E.); (F.M.M.); (C.K.); (M.K.); (O.V.)
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
| | - Anahid Ehteda
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (C.U.); (J.L.); (D.H.U.); (A.E.); (F.M.M.); (C.K.); (M.K.); (O.V.)
| | - Friederike M. Mansfeld
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (C.U.); (J.L.); (D.H.U.); (A.E.); (F.M.M.); (C.K.); (M.K.); (O.V.)
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales, Kensington, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Royal Parade, Parkville, VIC 3052, Australia
| | - Timothy W. Failes
- ACRF Drug Discovery Centre, Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (T.W.F.); (G.M.A.)
| | - Annafranca Farfalla
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy; (A.F.); (G.C.)
| | - Christopher Katsinas
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (C.U.); (J.L.); (D.H.U.); (A.E.); (F.M.M.); (C.K.); (M.K.); (O.V.)
| | - Maria Kavallaris
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (C.U.); (J.L.); (D.H.U.); (A.E.); (F.M.M.); (C.K.); (M.K.); (O.V.)
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Greg M. Arndt
- ACRF Drug Discovery Centre, Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (T.W.F.); (G.M.A.)
| | - Orazio Vittorio
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (C.U.); (J.L.); (D.H.U.); (A.E.); (F.M.M.); (C.K.); (M.K.); (O.V.)
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy; (A.F.); (G.C.)
| | - Valerio Voliani
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy; (D.C.); (S.P.-M.); (V.V.)
| | - David S. Ziegler
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, High Street, Randwick, NSW 2052, Australia; (C.U.); (J.L.); (D.H.U.); (A.E.); (F.M.M.); (C.K.); (M.K.); (O.V.)
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW 2052, Australia
| |
Collapse
|
21
|
Zhang X, Ye D, Yang L, Yue Y, Sultan D, Pacia CP, Pang H, Detering L, Heo GS, Luehmann H, Choksi A, Sethi A, Limbrick DD, Becher OJ, Tai YC, Rubin JB, Chen H, Liu Y. Magnetic Resonance Imaging-Guided Focused Ultrasound-Based Delivery of Radiolabeled Copper Nanoclusters to Diffuse Intrinsic Pontine Glioma. ACS APPLIED NANO MATERIALS 2020; 3:11129-11134. [PMID: 34337344 PMCID: PMC8320805 DOI: 10.1021/acsanm.0c02297] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an invasive pediatric brainstem malignancy exclusively in children without effective treatment due to the often-intact blood-brain tumor barrier (BBTB), an impediment to the delivery of therapeutics. Herein, we used focused ultrasound (FUS) to transiently open BBTB and delivered radiolabeled nanoclusters (64Cu-CuNCs) to tumors for positron emission tomography (PET) imaging and quantification in a mouse DIPG model. First, we optimized FUS acoustic pressure to open the blood-brain barrier (BBB) for effective delivery of 64Cu-CuNCs to pons in wildtype mice. Then the optimized FUS pressure was used to deliver radiolabeled agents in DIPG mouse. Magnetic resonance imaging (MRI)-guided FUS-induced BBTB opening was demonstrated using a low molecular weight, short-lived 68Ga-DOTA-ECL1i radiotracer and PET/CT before and after treatment. We then compared the delivery efficiency of 64Cu-CuNCs to DIPG tumor with and without FUS treatment and demonstrated the FUS-enhanced delivery and time-dependent diffusion of 64Cu-CuNCs within the tumor.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neurosurgery, Washington University in St. Louis, Saint Louis, MO 63110, USA
| | - Dezhuang Ye
- Department of Mechanical Engineering and Material Science, Washington University in St. Louis, Saint Louis, MO 63130, USA
- Department of Neurosurgery, Washington University in St. Louis, Saint Louis, MO 63110, USA
| | - Lihua Yang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yimei Yue
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Deborah Sultan
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christopher Pham Pacia
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Hannah Pang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Lisa Detering
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gyu Seong Heo
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hannah Luehmann
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ankur Choksi
- School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Abhishek Sethi
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David D Limbrick
- Department of Neurosurgery, Washington University in St. Louis, Saint Louis, MO 63110, USA
| | - Oren J Becher
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yuan-Chuan Tai
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
22
|
Radio-Resistance and DNA Repair in Pediatric Diffuse Midline Gliomas. Cancers (Basel) 2020; 12:cancers12102813. [PMID: 33007840 PMCID: PMC7600397 DOI: 10.3390/cancers12102813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Malignant gliomas (MG) are among the most prevalent and lethal primary intrinsic brain tumors. Although radiotherapy (RT) is the most effective nonsurgical therapy, recurrence is universal. Dysregulated DNA damage response pathway (DDR) signaling, rampant genomic instability, and radio-resistance are among the hallmarks of MGs, with current therapies only offering palliation. A subgroup of pediatric high-grade gliomas (pHGG) is characterized by H3K27M mutation, which drives global loss of di- and trimethylation of histone H3K27. Here, we review the most recent literature and discuss the key studies dissecting the molecular biology of H3K27M-mutated gliomas in children. We speculate that the aberrant activation and/or deactivation of some of the key components of DDR may be synthetically lethal to H3K27M mutation and thus can open novel avenues for effective therapeutic interventions for patients suffering from this deadly disease.
Collapse
|
23
|
Bhargav AG, Mondal SK, Garcia CA, Green JJ, Quiñones‐Hinojosa A. Nanomedicine Revisited: Next Generation Therapies for Brain Cancer. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Adip G. Bhargav
- Mayo Clinic College of Medicine and Science Mayo Clinic 200 First Street SW Rochester MN 55905 USA
- Department of Neurologic Surgery Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
| | - Sujan K. Mondal
- Department of Pathology University of Pittsburgh School of Medicine 200 Lothrop Street Pittsburgh PA 15213 USA
| | - Cesar A. Garcia
- Department of Neurologic Surgery Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
| | - Jordan J. Green
- Departments of Biomedical Engineering, Neurosurgery, Oncology, Ophthalmology, Materials Science and Engineering, and Chemical and Biomolecular Engineering, Translational Tissue Engineering Center, Bloomberg‐Kimmel Institute for Cancer Immunotherapy, Institute for Nanobiotechnology Johns Hopkins University School of Medicine 400 N. Broadway, Smith 5017 Baltimore MD 21231 USA
| | - Alfredo Quiñones‐Hinojosa
- Department of Neurologic Surgery Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
- Departments of Otolaryngology‐Head and Neck Surgery/Audiology Neuroscience, Cancer Biology, and Anatomy Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
| |
Collapse
|
24
|
Wu Y, Lu Z, Li Y, Yang J, Zhang X. Surface Modification of Iron Oxide-Based Magnetic Nanoparticles for Cerebral Theranostics: Application and Prospection. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1441. [PMID: 32722002 PMCID: PMC7466388 DOI: 10.3390/nano10081441] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 12/22/2022]
Abstract
Combining diagnosis with therapy, magnetic iron oxide nanoparticles (INOPs) act as an important vehicle for drug delivery. However, poor biocompatibility of INOPs limits their application. To improve the shortcomings, various surface modifications have been developed, including small molecules coatings, polymers coatings, lipid coatings and lipopolymer coatings. These surface modifications facilitate iron nanoparticles to cross the blood-brain-barrier, which is essential for diagnosis and treatments of brain diseases. Here we focus on the characteristics of different coated INOPs and their application in brain disease, particularly gliomas, Alzheimer's disease (AD) and Parkinson's disease (PD). Moreover, we summarize the current progress and expect to provide help for future researches.
Collapse
Affiliation(s)
- Yanyue Wu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Lu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Li
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Yang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Felker J, Broniscer A. Improving long-term survival in diffuse intrinsic pontine glioma. Expert Rev Neurother 2020; 20:647-658. [PMID: 32543245 DOI: 10.1080/14737175.2020.1775584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Diffuse intrinsic pontine glioma (DIPG) is an almost universally fatal pediatric brain cancer. There has been no improvement in event-free survival (EFS) or overall survival (OS) despite immense effort through a multitude of clinical trials to find a cure. Recently, there has been a surge in the knowledge of DIPG biology, including the discovery of a recurrent H3F3A mutation in over 80% of these tumors. AREAS COVERED The authors review the most recent approaches to diagnosis and treatment of DIPG including chemotherapy, biologics, surgical approaches, and immunotherapy. EXPERT OPINION The authors propose four main opportunities to improve long-term survival. First, patients should be enrolled in scientifically sound clinical trials that include molecularly profiling either via stereotactic biopsy or liquid biopsy. Second, clinical trials should include more innovative endpoints other than traditional EFS and OS such as MRI/PET imaging findings combined with surrogates of activity (e.g. serial liquid biopsies) to better ascertain biologically active treatments. Third, innovative clinical trial approaches are needed to help allow for the rapid development of combination therapies to be tested. Finally, effort should be concentrated on reversing the effects of the histone mutation, as this malfunctioning development program seems to be key to DIPG relentlessness.
Collapse
Affiliation(s)
- James Felker
- Department of Pediatrics, University of Pittsburgh School of Medicine , Pittsburgh, PA, USA.,Pediatric Neuro-Oncology, UPMC Children's Hospital of Pittsburgh , Pittsburgh, PA, USA
| | - Alberto Broniscer
- Department of Pediatrics, University of Pittsburgh School of Medicine , Pittsburgh, PA, USA.,Pediatric Neuro-Oncology, UPMC Children's Hospital of Pittsburgh , Pittsburgh, PA, USA
| |
Collapse
|
26
|
Cimini A, Ricci M, Chiaravalloti A, Filippi L, Schillaci O. Theragnostic Aspects and Radioimmunotherapy in Pediatric Tumors. Int J Mol Sci 2020; 21:ijms21113849. [PMID: 32481723 PMCID: PMC7312954 DOI: 10.3390/ijms21113849] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/19/2022] Open
Abstract
The use of theragnostic radiopharmaceuticals in nuclear medicine has grown rapidly over the years to combine the diagnosis and therapy of tumors. In this review, we performed web-based and desktop literature research to investigate and explain the potential role of theragnostic imaging in pediatric oncology. We focused primarily on patients with aggressive malignancies such as neuroblastoma and brain tumors, to select patients with the highest chance of benefit from personalized therapy. Moreover, the most critical and groundbreaking applications of radioimmunotherapy in children’s oncology were examined in this peculiar context. Preliminary results showed the potential feasibility of theragnostic imaging and radioimmunotherapy in pediatric oncology. They revealed advantages in the management of the disease, thereby allowing an intra-personal approach and adding new weapons to conventional therapies.
Collapse
Affiliation(s)
- Andrea Cimini
- Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.R.); (A.C.); (O.S.)
- Correspondence: ; Tel.: +39-062-090-2467
| | - Maria Ricci
- Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.R.); (A.C.); (O.S.)
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.R.); (A.C.); (O.S.)
- Nuclear Medicine Section, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Luca Filippi
- Nuclear Medicine Section, “Santa Maria Goretti” Hospital, 04100 Latina, Italy;
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.R.); (A.C.); (O.S.)
- Nuclear Medicine Section, IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
27
|
Moscote-Salazar L, Padilla-Zambrano H, Garcia-Ballestas E, Agrawal A, Paez-Nova M, Pacheco-Hernandez A. Pediatric diffuse intrinsic pontine gliomas. GLIOMA 2019. [DOI: 10.4103/glioma.glioma_50_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
28
|
Rodríguez-Nogales C, González-Fernández Y, Aldaz A, Couvreur P, Blanco-Prieto MJ. Nanomedicines for Pediatric Cancers. ACS NANO 2018; 12:7482-7496. [PMID: 30071163 DOI: 10.1021/acsnano.8b03684] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Chemotherapy protocols for childhood cancers are still problematic due to the high toxicity associated with chemotherapeutic agents and incorrect dosing regimens extrapolated from adults. Nanotechnology has demonstrated significant ability to reduce toxicity of anticancer compounds. Improvement in the therapeutic index of cytostatic drugs makes this strategy an alternative to common chemotherapy in adults. However, the lack of nanomedicines specifically for pediatric cancer care raises a medical conundrum. This review highlights the current state and progress of nanomedicine in pediatric cancer and discusses the real clinical challenges and opportunities.
Collapse
Affiliation(s)
- Carlos Rodríguez-Nogales
- Pharmacy and Pharmaceutical Technology Department , University of Navarra , Pamplona 31008 , Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA) , Pamplona 31008 , Spain
| | | | - Azucena Aldaz
- Department of Pharmacy , Clínica Universidad de Navarra , Pamplona 31008 , Spain
| | - Patrick Couvreur
- Institut Galien Paris-Sud, UMR CNRS 8612, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry Cedex 92296 , France
| | - María J Blanco-Prieto
- Pharmacy and Pharmaceutical Technology Department , University of Navarra , Pamplona 31008 , Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA) , Pamplona 31008 , Spain
| |
Collapse
|
29
|
Dental Mesenchymal Stem/Stromal Cells and Their Exosomes. Stem Cells Int 2018; 2018:8973613. [PMID: 29760738 PMCID: PMC5924966 DOI: 10.1155/2018/8973613] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 03/06/2018] [Indexed: 01/07/2023] Open
Abstract
Stem cells derived from human dental pulp tissue (DP-MSC) differ from the other mesenchymal stem cells prepared from bone marrow or adipose tissue due to their embryonic origin from the neural crest and are of special interest because of their neurotropic character. Furthermore, the therapeutic potential of DP-MSCs is realized through paracrine action of extracellularly released components, for which exosomes play an important role. In this review, we intend to explore the properties of these cells with an emphasis on exosomes. The therapeutic applicability of these cells and exosomes in dental practice, neurodegenerative diseases, and many other difficultly treatable diseases, like myocardial infarction, focal cerebral ischemia, acute lung or brain injury, acute respiratory distress syndrome, acute inflammation, and several others is concisely covered. The use of cellular exosomes as an important diagnostic marker and indicator of targeted cancer therapies is also discussed, while the importance of stem cells from human exfoliated deciduous teeth as a source of evolutionally young cells for future regenerative therapies is stressed. We conclude that exosomes derived from these cells are potent therapeutic tools for regenerative medicine in the near future as clinical administration of DP-MSC-conditioned medium and/or exosomes is safer and more practical than stem cells.
Collapse
|
30
|
Long W, Yi Y, Chen S, Cao Q, Zhao W, Liu Q. Potential New Therapies for Pediatric Diffuse Intrinsic Pontine Glioma. Front Pharmacol 2017; 8:495. [PMID: 28790919 PMCID: PMC5525007 DOI: 10.3389/fphar.2017.00495] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/11/2017] [Indexed: 12/20/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an extensively invasive malignancy with infiltration into other regions of the brainstem. Although large numbers of specific targeted therapies have been tested, no significant progress has been made in treating these high-grade gliomas. Therefore, the identification of new therapeutic approaches is of great importance for the development of more effective treatments. This article reviews the conventional therapies and new potential therapeutic approaches for DIPG, including epigenetic therapy, immunotherapy, and the combination of stem cells with nanoparticle delivery systems.
Collapse
Affiliation(s)
- Wenyong Long
- Department of Neurosurgery, Xiangya Hospital, Central South UniversityChangsha, China
| | - Yang Yi
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China.,Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| | - Shen Chen
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China.,Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| | - Qi Cao
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, HoustonTX, United States
| | - Wei Zhao
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen UniversityGuangzhou, China.,Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South UniversityChangsha, China
| |
Collapse
|