1
|
Li X, Gao J, Liu X, Guo J, Liu Y, Cui P, Yan D, Fei T, Chen M, Gao Y. Modulation of neural activity and gene expression by arecoline. Front Integr Neurosci 2025; 19:1545260. [PMID: 40271198 PMCID: PMC12014716 DOI: 10.3389/fnint.2025.1545260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/27/2025] [Indexed: 04/25/2025] Open
Abstract
Arecoline, a biologically active alkaloid extracted from the areca nut, serves as the primary psychoactive ingredient in betel quid, one of the most widely consumed psychoactive substances worldwide. Despite its extensive use, the central nervous system (CNS) effects of arecoline remain inadequately understood. This study aims to investigate the central actions of arecoline through a comprehensive, multi-dimensional approach that integrates behavioral assays, neuroimaging techniques, calcium signaling analysis, and transcriptomic profiling. Our findings demonstrate dose-dependent addictive properties of arecoline, alongside distinct behavioral alterations that highlight its potential for addiction. Neuroimaging and calcium signaling data revealed region-specific alterations in neural activity, particularly in areas associated with learning, memory, and reward processing. Furthermore, transcriptomic analysis identified significant changes in gene expression, particularly in pathways related to synaptic plasticity, calcium signaling, and metal ion transport. These results provide valuable insights into the addictive potential of arecoline and its underlying neurobiological mechanisms, offering crucial information for understanding its broader impact on CNS function. The study's findings hold significant implications for informing public health strategies aimed at addressing arecoline misuse and its potential role in addiction-related disorders.
Collapse
Affiliation(s)
- Xiaonan Li
- Shanghai New Tobacco Products Research Institute Co., Ltd., Shanghai, China
| | - Jie Gao
- Shanghai New Tobacco Products Research Institute Co., Ltd., Shanghai, China
| | - Xiaomin Liu
- Shanghai New Tobacco Products Research Institute Co., Ltd., Shanghai, China
| | - Jianfeng Guo
- Shanghai New Tobacco Products Research Institute Co., Ltd., Shanghai, China
| | - Yifan Liu
- Shanghai New Tobacco Products Research Institute Co., Ltd., Shanghai, China
| | - Peicai Cui
- Shanghai New Tobacco Products Research Institute Co., Ltd., Shanghai, China
| | - Dawei Yan
- Shanghai New Tobacco Products Research Institute Co., Ltd., Shanghai, China
| | - Ting Fei
- Shanghai New Tobacco Products Research Institute Co., Ltd., Shanghai, China
| | | | - Yihan Gao
- Shanghai New Tobacco Products Research Institute Co., Ltd., Shanghai, China
| |
Collapse
|
2
|
Sampaio Moura N, Schledwitz A, Alizadeh M, Kodan A, Njei LP, Raufman JP. Cholinergic Mechanisms in Gastrointestinal Neoplasia. Int J Mol Sci 2024; 25:5316. [PMID: 38791353 PMCID: PMC11120676 DOI: 10.3390/ijms25105316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Acetylcholine-activated receptors are divided broadly into two major structurally distinct classes: ligand-gated ion channel nicotinic and G-protein-coupled muscarinic receptors. Each class encompasses several structurally related receptor subtypes with distinct patterns of tissue expression and post-receptor signal transduction mechanisms. The activation of both nicotinic and muscarinic cholinergic receptors has been associated with the induction and progression of gastrointestinal neoplasia. Herein, after briefly reviewing the classification of acetylcholine-activated receptors and the role that nicotinic and muscarinic cholinergic signaling plays in normal digestive function, we consider the mechanics of acetylcholine synthesis and release by neuronal and non-neuronal cells in the gastrointestinal microenvironment, and current methodology and challenges in measuring serum and tissue acetylcholine levels accurately. Then, we critically evaluate the evidence that constitutive and ligand-induced activation of acetylcholine-activated receptors plays a role in promoting gastrointestinal neoplasia. We focus primarily on adenocarcinomas of the stomach, pancreas, and colon, because these cancers are particularly common worldwide and, when diagnosed at an advanced stage, are associated with very high rates of morbidity and mortality. Throughout this comprehensive review, we concentrate on identifying novel ways to leverage these observations for prognostic and therapeutic purposes.
Collapse
Affiliation(s)
- Natalia Sampaio Moura
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.S.M.); (A.S.); (A.K.)
| | - Alyssa Schledwitz
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.S.M.); (A.S.); (A.K.)
| | - Madeline Alizadeh
- The Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Asha Kodan
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.S.M.); (A.S.); (A.K.)
| | - Lea-Pearl Njei
- Department of Biological Science, University of Maryland, Baltimore County, Baltimore, MD 21250, USA;
| | - Jean-Pierre Raufman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.S.M.); (A.S.); (A.K.)
- Veterans Affairs Maryland Healthcare System, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Singh S, Agrawal N, Goyal A. Role of Alpha-7-Nicotinic Acetylcholine Receptor in Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:384-394. [PMID: 37366362 DOI: 10.2174/1871527322666230627123426] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder affecting millions worldwide. One of the leading hypotheses for the underlying cause of AD is a reduction in nicotinic receptor levels in the brain. Among the nicotinic receptors, the alpha-7-nicotinic acetylcholine receptor (α7nAChR) has received particular attention due to its involvement in cognitive function.α7nAChR is a ligand-gated ion channel that is primarily found in the hippocampus and prefrontal cortex, areas of the brain responsible for learning, memory, and attention. Studies have shown that α7nAChR dysfunction is a key contributor to the pathogenesis of AD. The receptor is involved in regulating amyloidbeta (Aβ) production, a hallmark of AD pathology. Many drugs have been investigated as α7nAChR agonists or allosteric modulators to improve cognitive deficits in AD. Clinical studies have shown promising results with α7nAChR agonists, including improved memory and cognitive function. Although several studies have shown the significance of the α7 nAChR in AD, little is known about its function in AD pathogenesis. As a result, in this review, we have outlined the basic information of the α7 nAChR's structure, functions, cellular responses to its activation, and its role in AD's pathogenesis.
Collapse
Affiliation(s)
- Sushma Singh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, UP, India
- Pharmacy College, Azamgarh- 276128, UP, India
| | - Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, UP, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, UP, India
| |
Collapse
|
4
|
Expression of Chrna9 is regulated by Tbx3 in undifferentiated pluripotent stem cells. Sci Rep 2023; 13:1611. [PMID: 36709241 PMCID: PMC9884305 DOI: 10.1038/s41598-023-28814-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/25/2023] [Indexed: 01/30/2023] Open
Abstract
It was reported that nicotinic acetylcholine receptor (nAChR)-mediated signaling pathways affect the proliferation and differentiation of pluripotent stem cells. However, detail expression profiles of nAChR genes were unrevealed in these cells. In this study, we comprehensively investigated the gene expression of α subunit of nAChRs (Chrna) during differentiation and induction of pluripotent stem cells. Mouse embryonic stem (ES) cells expressed multiple Chrna genes (Chrna3-5, 7 and 9) in undifferentiated status. Among them, Chrna9 was markedly down-regulated upon the differentiation into mesenchymal cell lineage. In mouse tissues and cells, Chrna9 was mainly expressed in testes, ES cells and embryonal F9 teratocarcinoma stem cells. Expression of Chrna9 gene was acutely reduced during differentiation of ES and F9 cells within 24 h. In contrast, Chrna9 expression was increased in induced pluripotent stem cells established from mouse embryonic fibroblast. It was shown by the reporter assays that T element-like sequence in the promoter region of Chrna9 gene is important for its activities in ES cells. Chrna9 was markedly reduced by siRNA-mediated knockdown of Tbx3, a pluripotency-related transcription factor of the T-box gene family. These results indicate that Chrna9 is a nAChR gene that are transcriptionally regulated by Tbx3 in undifferentiated pluripotent cells.
Collapse
|
5
|
Shen Y, Huang Q, Ji M, Hsueh CY, Zhou L. Smoking-mediated nicotinic acetylcholine receptors (nAChRs) for predicting outcomes for head and neck squamous cell carcinomas. BMC Cancer 2022; 22:1093. [PMID: 36284268 PMCID: PMC9594873 DOI: 10.1186/s12885-022-10161-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022] Open
Abstract
Background As a human tumor disease, head and neck squamous cell carcinoma (HNSCC) is associated with a high mortality rate worldwide. Nicotinic acetylcholine receptors (nAChRs) are transmembrane receptor proteins and exert their biological effects following activation by nicotine. We aimed to construct a prognostic signature based on the expression of nAChRs among smokers with HNSCC. Methods The transcriptome profile of nAChRs was obtained from The Cancer Genome Atlas (TCGA). Following the integration of survival information, univariate Cox regression and least absolute shrinkage and selection operator (LASSO) analyses were performed to screen the prognosis-related nAChRs and construct a prognostic signature. Kaplan–Meier (KM), receiver operating characteristic (ROC), principal component analysis (PCA), and independent prognostic analysis were utilized to verify the predictive power of the nAChR-associated prognostic signature. The expression of α5 nAChR in clinical samples was verified by quantitative reverse transcriptase PCR. Results Subunits α2, α5, α9, and β4 were related to the prognosis. The prognostic signature comprised the expression of subunits α5, α9, and β4. The nAChR-associated signature showed high sensitivity and specificity for prognostic prediction and was an independent factor for overall survival. Based on the clinical variables and expression of nAChRs, a nomogram was constructed for predicting the outcomes of HNSCC patients who were smokers in the clinical settings. In clinical specimens, α5 nAChR showed high expression in HNSCC tissues, especially among smokers. Conclusions The nAChR-associated signature constructed in this study may provide a better system for the classification of HNSCC patients and facilitate personalized treatment according to their smoking habits. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10161-x.
Collapse
Affiliation(s)
- Yujie Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Qiang Huang
- Department of Otorhinolaryngology Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Mengyou Ji
- Department of Otorhinolaryngology Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| | - Chi-Yao Hsueh
- Department of Otorhinolaryngology Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China.
| | - Liang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Qiu T, Xie F, Zeng Q, Shen Z, Du G, Xu X, Wang C, Li X, Luo X, Li K, Huang P, Zhang T, Zhang J, Dai S, Zhang M. Interactions between cigarette smoking and cognitive status on functional connectivity of the cortico-striatal circuits in individuals without dementia: A resting-state functional MRI study. CNS Neurosci Ther 2022; 28:1195-1204. [PMID: 35506354 PMCID: PMC9253779 DOI: 10.1111/cns.13852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 11/27/2022] Open
Abstract
Aims Cigarette smoking is a modifiable risk factor for Alzheimer's disease (AD), and controlling risk factors may curb the progression of AD. However, the underlying neural mechanisms of the effects of smoking on cognition remain largely unclear. Therefore, we aimed to explore the interaction effects of smoking × cognitive status on cortico‐striatal circuits, which play a crucial role in addiction and cognition, in individuals without dementia. Methods We enrolled 304 cognitively normal (CN) non‐smokers, 44 CN smokers, 130 mild cognitive impairment (MCI) non‐smokers, and 33 MCI smokers. The mixed‐effect analysis was performed to explore the interaction effects between smoking and cognitive status (CN vs. MCI) based on functional connectivity (FC) of the striatal subregions (caudate, putamen, and nucleus accumbens [NAc]). Results The significant interaction effects of smoking × cognitive status on FC of the striatal subregions were detected in the left inferior parietal lobule (IPL), bilateral cuneus, and bilateral anterior cingulate cortex (ACC). Specifically, increased FC of right caudate to left IPL was found in CN smokers compared with non‐smokers. The MCI smokers showed decreased FC of right caudate to left IPL and of right putamen to bilateral cuneus and increased FC of bilateral NAc to bilateral ACC compared with CN smokers and MCI non‐smokers. Furthermore, a positive correlation between FC of the NAc to ACC with language and memory was detected in MCI smokers. Conclusions Cigarette smoking could affect the function of cortico‐striatal circuits in patients with MCI. Our findings suggest that quitting smoking in the prodromal stage of AD may have the potential to prevent disease progression.
Collapse
Affiliation(s)
- Tiantian Qiu
- Department of Radiology, Linyi People's Hospital, Linyi, China
| | - Fei Xie
- Department of Equipment and Medical Engineering, Linyi People's Hospital, Linyi, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhujing Shen
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Guijin Du
- Department of Radiology, Linyi People's Hospital, Linyi, China
| | - Xiaopei Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Wang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaodong Li
- Department of Radiology, Linyi People's Hospital, Linyi, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Tianyi Zhang
- Department of Neurology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Jinling Zhang
- Cancer Center, Linyi People's Hospital, Linyi, China
| | - Shouping Dai
- Department of Radiology, Linyi People's Hospital, Linyi, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | | |
Collapse
|
7
|
Abstract
Despite the evidence that the muscarinic agonist arecoline is a drug of abuse throughout Southeast Asia, its stimulus characteristics have not been well studied. The goal of this work was to understand more about the mediation of discriminative stimulus effects of arecoline. Arecoline (1.0 mg/kg s.c.) was trained as a discriminative stimulus in a group of eight rats. The ability of various cholinergic agonists and antagonists to mimic or antagonize the discriminative stimulus effects of arecoline and to modify its rate-suppressing effects was evaluated. A muscarinic antagonist, but neither of two nicotinic antagonists, was able to modify the discriminative stimulus effects of arecoline, suggesting a predominant muscarinic basis of arecoline's discriminative stimulus effects in this assay. However, both nicotine itself and two nicotine agonists with selective affinity for the α4β2* receptor (ispronicline and metanicotine) produced full arecoline-like discriminative stimulus effects in these rats. The discriminative stimulus effects of the selective nicotine agonists were blocked by both the general nicotine antagonist mecamylamine and by the selective α4β2* antagonist, dihydro-beta-erythroidine (DHβE). Surprisingly, only DHβE antagonized the rate-suppressing effects of the selective nicotine agonists. These data indicate a selective α4β2* nicotine receptor component to the behavioral effects of arecoline. Although the nicotinic aspects of arecoline's behavior effects could suggest that abuse of arecoline-containing material (e.g. betel nut chewing) is mediated through nicotinic rather than muscarinic actions, further research, specifically on the reinforcing effects of arecoline, is necessary before this conclusion can be supported.
Collapse
Affiliation(s)
- Gail Winger
- Department of Pharmacology, University of Texas Health, San Antonio, Texas, USA
| |
Collapse
|
8
|
Wang W, Zhao T, Geng K, Yuan G, Chen Y, Xu Y. Smoking and the Pathophysiology of Peripheral Artery Disease. Front Cardiovasc Med 2021; 8:704106. [PMID: 34513948 PMCID: PMC8429807 DOI: 10.3389/fcvm.2021.704106] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022] Open
Abstract
Smoking is one of the most important preventable factors causing peripheral artery disease (PAD). The purpose of this review is to comprehensively analyze and summarize the pathogenesis and clinical characteristics of smoking in PAD based on existing clinical, in vivo, and in vitro studies. Extensive searches and literature reviews have shown that a large amount of data exists on the pathological process underlying the effects of cigarette smoke and its components on PAD through various mechanisms. Cigarette smoke extracts (CSE) induce endothelial cell dysfunction, smooth muscle cell remodeling and macrophage phenotypic transformation through multiple molecular mechanisms. These pathological changes are the molecular basis for the occurrence and development of peripheral vascular diseases. With few discussions on the topic, we will summarize recent insights into the effect of smoking on regulating PAD through multiple pathways and its possible pathogenic mechanism.
Collapse
Affiliation(s)
- Weiming Wang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Tingting Zhao
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Kang Geng
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Gang Yuan
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Youhua Xu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
9
|
Kao WY, Hsiang CY, Ho SC, Ho TY, Lee KT. Novel serotonin-boosting effect of incense smoke from Kynam agarwood in mice: The involvement of multiple neuroactive pathways. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114069. [PMID: 33794334 DOI: 10.1016/j.jep.2021.114069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Stress is a state of feeling that inhibits one from responding properly in the face of a threat. Agarwood smoke has been used in traditional medicine as a sedative anti-anxious, and anti-restless therapy. Its scent emitted from heat induces people to enter a stable state; however, the underlying molecular effect is still unclear. AIM OF THE STUDY This study analyzed novel biological events and gene expression signatures induced by agarwood incense smoke in mice. MATERIALS AND METHODS Incense smoke was produced by heating at 150 °C for 30 min in a headspace autosampler oven. We treated mice with exposure to incense smoke from Kynam agarwood for 45 min/day for 7 consecutive days. After a 7-day inhalation period, the potent agarwood smoke affected-indicators in serum were measured, and the RNA profiles of the mouse brains were analyzed by microarray to elucidate the biological events induced by agarwood incense smoke. RESULTS Chemical profile analysis showed that the major component in the incense smoke of Kynam was 2-(2-phenylethyl) chromone (26.82%). Incense smoke from Kynam induced mice to enter a stable state and increased the levels of serotonin in sera. The emotion-related pathways, including dopaminergic synapse, serotonergic synapse, GABAergic synapse, long-term depression and neuroactive ligand-receptor interaction, were significantly affected by incense smoke. Moreover, the expression of Crhr2 and Chrnd genes, involved with neuroactive ligand-receptor interaction pathway, was upregulated by incense smoke. CONCLUSIONS By a newly-established incense smoke exposure system, we first identified that anti-anxious and anti-depressant effects of agarwood incense smoke were likely associated with the increase of serotonin levels and multiple neuroactive pathways in mice.
Collapse
Affiliation(s)
- Wen-Yi Kao
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan; Development Center for Biotechnology, Taipei, 11571, Taiwan
| | - Chien-Yun Hsiang
- Department of Microbiology and Immunology, China Medical University, Taichung, 40402, Taiwan
| | - Shih-Ching Ho
- Development Center for Biotechnology, Taipei, 11571, Taiwan
| | - Tin-Yun Ho
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.
| | - Kung-Ta Lee
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
10
|
Kara HG, Erdal ME, Yılmaz SG, Şengül C, Şengül CB, Karakülah K. Association of NRG3 and ERBB4 gene polymorphism with nicotine dependence in Turkish population. Mol Biol Rep 2021; 48:5319-5326. [PMID: 34247340 DOI: 10.1007/s11033-021-06548-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/06/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Nicotine dependence (ND) is characterized by regular smoking, anxiety, irritation, difficulty concentrating, impatience, restlessness, tremor, dizziness, hunger, nicotine demand, and the individual's reluctance to quit despite knowing the health risks of smoking. Recently, it has been reported that the Neuregulin 3 (NRG3)/Erb-B2 receptor tyrosine kinase 4 (ERBB4) signaling pathway plays a role in ND. NRG3, which is activated after nicotine intake, binds to ERBB4 and causes GABA release. GABA reduces anxiety and tension, which are one of the nicotine withdrawal symptoms. Therefore we aimed to investigate the relationship between NRG3 and ERBB4 gene polymorphisms and ND. MATERIALS AND METHODS The study population was comprised of patients with ND (n = 200) and healthy non-smoker control subjects (n = 200) who were matched for age, sex, and compared for comorbidity factors such as alcohol, smoking, duration, and education (age range 18-60). Genotypes were detected by Real-Time PCR using TaqMan technology. The Fagerström Nicotine Dependence Test (FTND) score was 5 and above for the patient group and 0 for the control group. DNA was obtained from whole peripheral blood and six polymorphisms of Neuregulin 3 (NRG3) (rs1836724, rs7562566, and rs10048757) and Erb-B2 Receptor Tyrosine Kinase 4 (ERBB4) (rs1764072, rs6584400, and rs10883934) genes were analyzed by real-time PCR method. RESULTS Our findings show that the six selected SNPs are not significantly associated with ND in the Turkish population and no correlation with dependence levels (p > 0.05). CONCLUSION Although our findings do not show a relationship between ND and these polymorphisms, it is the first study to investigate these single nucleotide polymorphisms (SNPs) for the first time in ND and to find some genotypes in the Turkish population when compared to other populations. Also, our findings are important in terms of their contribution to the literature and forensic genetics.
Collapse
Affiliation(s)
- Hale Güler Kara
- Department of Medical Biology, Faculty of Medicine, Ege University, 35100, Izmir, Turkey.
- Unye State Hospital, Ordu, Turkey.
| | - Mehmet Emin Erdal
- Department of Medical Biology, Faculty of Medicine, Mersin University, 33343, Mersin, Turkey
- Unye State Hospital, Ordu, Turkey
| | - Senay Görücü Yılmaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gaziantep University, Gaziantep, Turkey
- Unye State Hospital, Ordu, Turkey
| | - Cem Şengül
- Psychiatry Clinic, Denizli, Turkey
- Unye State Hospital, Ordu, Turkey
| | | | | |
Collapse
|
11
|
Ning H, Huang B, Tae HS, Liu Z, Yu S, Li L, Zhang L, Adams DJ, Guo C, Dai Q. α-Conotoxin Bt1.8 from Conus betulinus selectively inhibits α6/α3β2β3 and α3β2 nicotinic acetylcholine receptor subtypes. J Neurochem 2021; 159:90-100. [PMID: 34008858 DOI: 10.1111/jnc.15434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 12/01/2022]
Abstract
α-Conotoxins are small disulfide-rich peptides found in the venom of marine cone snails and are potent antagonists of nicotinic acetylcholine receptors (nAChRs). They are valuable pharmacological tools and have potential therapeutic applications for the treatment of chronic pain or neurological diseases and disorders. In the present study, we synthesized and functionally characterized a novel α-conotoxin Bt1.8, which was cloned from Conus betulinus. Bt1.8 selectively inhibited ACh-evoked currents in Xenopus oocytes expressing rat(r) α6/α3β2β3 and rα3β2 nAChRs with an IC50 of 2.1 nM and 9.4 nM, respectively, and similar potency for human (h) α6/α3β2β3 and hα3β2 nAChRs. Additionally, Bt1.8 had higher binding affinity with a slower dissociation rate for the rα6/α3β2β3 subtype compared to rα3β2. The amino acid sequence of Bt1.8 is significantly different from other reported α-conotoxins targeting the two nAChR subtypes. Further Alanine scanning analyses demonstrated that residues Ile9, Leu10, Asn11, Asn12 and Asn14 are critical for its inhibitory activity at the α6/α3β2β3 and α3β2 subtypes. Moreover, the NMR structure of Bt1.8 indicated the presence of a relatively larger hydrophobic zone than other α4/7-conotoxins which may explain its potent inhibition at α6/α3β2β3 nAChRs.
Collapse
Affiliation(s)
- Huying Ning
- Beijing Institute of Biotechnology, Beijing, China
| | - Biling Huang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Zhuguo Liu
- Beijing Institute of Biotechnology, Beijing, China
| | - Shuo Yu
- Beijing Institute of Biotechnology, Beijing, China
| | - Liang Li
- Beijing Institute of Biotechnology, Beijing, China
| | | | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Chenyun Guo
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Qiuyun Dai
- Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
12
|
Weltzin MM, George AA, Lukas RJ, Whiteaker P. Sleep-related hypermotor epilepsy associated mutations uncover important kinetic roles of α4β2- nicotinic acetylcholine receptor intracellular structures. PLoS One 2021; 16:e0247825. [PMID: 33657187 PMCID: PMC7928491 DOI: 10.1371/journal.pone.0247825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Sleep-related hypermotor epilepsy (SHE) is a group of seizure disorders prominently associated with mutations in nicotinic acetylcholine receptors (nAChR). The most prevalent central nervous system nAChR subtype contains α4 and β2 subunits, in two ratios. (α4β2)2β2-nAChR have high agonist sensitivity (HS-isoform), whereas (α4β2)2α4-nAChR agonist responses exhibit a small high-sensitivity, and a predominant low-sensitivity, phase of function (LS-isoform). Multiple non-synonymous mutations in the second and third transmembrane domains of α4 and β2 subunits are associated with SHE. We recently demonstrated that two additional, SHE-associated, missense mutations in the major cytoplasmic loops of these subunits [α4(R336H) and β2(V337G)] cause increased macroscopic function-per receptor. Here, we use single-channel patch-clamp electrophysiology to show that these mutations influence single-channel amplitudes and open- and closed-state kinetics. Pure populations of HS- or LS-isoform α4β2-nAChR were expressed by injecting either 1:10 or 30:1 α4:β2 cRNA ratios, respectively, into Xenopus laevis oocytes. Functional properties of the resulting mutant α4β2-nAChR isoforms were compared to their wildtype counterparts. α4(R336H) subunit incorporation minimally affected single-channel amplitudes, whereas β2(V337G) subunit incorporation reduced them significantly in both isoforms. However, for both mutant subunits, increased function-per-receptor was predominantly caused by altered single channel kinetics. The α4(R336H) mutation primarily destabilizes desensitized states between openings. By contrast, the β2(V337G) mutation principally stabilizes receptor open states. The use of naturally-occurring and physiologically-impactful mutations has allowed us to define valuable new insights regarding the functional roles of nAChR intracellular domains. Further mechanistic context is provided by intracellular-domain structures recently published for other members of the Cys-loop receptor superfamily (α3β4-nAChR and 5-HT3AR).
Collapse
Affiliation(s)
- Maegan M. Weltzin
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, United States of America
| | - Andrew A. George
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, United States of America
| | - Ronald J. Lukas
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, United States of America
| | - Paul Whiteaker
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona, United States of America
| |
Collapse
|
13
|
Stojanovic T, Benes H, Awad A, Bormann D, Monje FJ. Nicotine abolishes memory-related synaptic strengthening and promotes synaptic depression in the neurogenic dentate gyrus of miR-132/212 knockout mice. Addict Biol 2021; 26:e12905. [PMID: 32293776 PMCID: PMC7988623 DOI: 10.1111/adb.12905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/21/2020] [Accepted: 03/30/2020] [Indexed: 12/25/2022]
Abstract
Micro-RNAs (miRNAs) are highly evolutionarily conserved short-length/noncoding RNA molecules that modulate a wide range of cellular functions in many cell types by regulating the expression of a variety of targeted genes. miRNAs have also recently emerged as key regulators of neuronal genes mediating the effects of psychostimulant drugs and memory-related neuroplasticity processes. Smoking is a predominant addictive behaviour associated with millions of deaths worldwide, and nicotine is a potent natural psychoactive agonist of cholinergic receptors, highly abundant in cigarettes. The influence of miRNAs modulation on cholinergic signalling in the nervous system remains however poorly explored. Using miRNA knockout mice and biochemical, electrophysiological and pharmacological approaches, we examined the effects of miR-132/212 gene disruption on the levels of hippocampal nicotinic acetylcholine receptors, total ERK and phosphorylated ERK (pERK) and MeCP2 protein levels, and studied the impact of nicotine stimulation on hippocampal synaptic transmission and synaptic depression and strengthening. miR-132/212 deletion significantly altered α7-nAChR and pERK protein levels, but not total ERK or MeCP2, and resulted in both exacerbated synaptic depression and virtually abolished memory-related synaptic strengthening upon nicotine stimulation. These observations reveal a functional miRNAs/nicotinergic signalling interplay critical for nicotinic-receptor expression and neuroplasticity in brain structures relevant for drug addiction and learning and memory functions.
Collapse
Affiliation(s)
- Tamara Stojanovic
- Center for Physiology and Pharmacology, Department of Neurophysiology and NeuropharmacologyMedical University of ViennaViennaAustria
| | - Hannah Benes
- Center for Physiology and Pharmacology, Department of Neurophysiology and NeuropharmacologyMedical University of ViennaViennaAustria
| | - Amena Awad
- Center for Physiology and Pharmacology, Department of Neurophysiology and NeuropharmacologyMedical University of ViennaViennaAustria
| | - Daniel Bormann
- Center for Physiology and Pharmacology, Department of Neurophysiology and NeuropharmacologyMedical University of ViennaViennaAustria
| | - Francisco J. Monje
- Center for Physiology and Pharmacology, Department of Neurophysiology and NeuropharmacologyMedical University of ViennaViennaAustria
| |
Collapse
|
14
|
Zhang T, Luo X, Zeng Q, Fu Y, Li Z, Li K, Liu X, Huang P, Chen Y, Zhang M, Liu Z. Effects of Smoking on Regional Homogeneity in Mild Cognitive Impairment: A Resting-State Functional MRI Study. Front Aging Neurosci 2020; 12:572732. [PMID: 33328955 PMCID: PMC7717978 DOI: 10.3389/fnagi.2020.572732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/13/2020] [Indexed: 01/06/2023] Open
Abstract
Background Smoking is a modifiable risk factor for Alzheimer’s disease (AD). However, smoking-related effects on intrinsic brain activity in high-risk AD population are still unclear. Objective We aimed to explore differences in smoking effects on brain function between healthy elderly and amnestic mild cognitive impairment (aMCI) patients using ReHo mapping. Methods We identified 64 healthy elderly controls and 116 aMCI patients, including 98 non-smoking and 18 smoking aMCI. Each subject underwent structural and resting-state functional MRI scanning and neuropsychological evaluations. Regional homogeneity (ReHo) mapping was used to assess regional brain synchronization. After correction for age, gender, education, and gray matter volume, we explored the difference of ReHo among groups in a voxel-wise way based on analysis of covariance (ANCOVA), followed by post hoc two-sample analyses (p < 0.05, corrected). Further, we correlated the mean ReHo with neuropsychological scales. Results Three groups were well-matched in age, gender, and education. Significant ReHo differences were found among three groups, located in the left supramarginal gyrus (SMG) and left angular gyrus (AG). Specifically, non-smoking aMCI had lower ReHo in SMG and AG than smoking aMCI and controls. By contrast, smoking aMCI had greater AG ReHo than healthy controls (p < 0.05). Across groups, correlation analyses showed that left AG ReHo correlated with MMSE (r = 0.18, p = 0.015), clock drawing test (r = 0.20, p = 0.007), immediate recall (r = 0.36, p < 0.001), delayed recall (r = 0.34, p < 0.001), and auditory verbal learning test (r = 0.20, p = 0.007). Conclusion Smoking might pose compensatory or protective effects on intrinsic brain activity in aMCI patients.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yanv Fu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zheyu Li
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yanxing Chen
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhirong Liu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | | |
Collapse
|
15
|
Getachew B, Csoka AB, Aschner M, Tizabi Y. Nicotine protects against manganese and iron-induced toxicity in SH-SY5Y cells: Implication for Parkinson's disease. Neurochem Int 2019; 124:19-24. [PMID: 30557592 PMCID: PMC6369010 DOI: 10.1016/j.neuint.2018.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/29/2018] [Accepted: 12/13/2018] [Indexed: 11/23/2022]
Abstract
Manganese (Mn) and iron (Fe) are trace elements that are essential for proper growth and physiological functions as both play critical role in a variety of enzymatic reactions. At high concentrations, however, they can be toxic and cause neurodegenerative disorders, particularly Parkinson-like syndromes. Nicotine, on the other hand, has been shown to have neuroprotective effects against various endogenous or exogenous toxins that selectively damage the dopaminergic cells. These cells include neuroblastoma-derived SH-SY5Y cells which express significant dopaminergic activity. However, practically no information on possible neuroprotective effects of nicotine against toxicity induced by trace elements is available. Therefore, in this study we investigated the effects of nicotine on toxicity induced by manganese or iron in these cells. Exposure of SH-SY5Y cells for 24 h to manganese (20 μM) or iron (20 μM) resulted in approximately 30% and 35% toxicity, respectively. Pretreatment with nicotine (1 μM) completely blocked the toxicities of Mn and Fe. The effects of nicotine, in turn, were blocked by selective nicotinic receptor antagonists. Thus, dihydro-beta erythroidine (DHBE), a selective alpha 4-beta 2 subtype antagonist and methyllycaconitine (MLA), a selective alpha7 antagonist, as well as mecamylamine, a non-selective nicotinic antagonist all dose-dependently blocked the protective effects of nicotine against both Mn and Fe. These findings provide further support for the potential utility of nicotine or nicotinic agonists in Parkinson's disease-like neurodegenerative disorders, including those that might be precipitated by trace elements, such as Fe and Mn. Moreover, both alpha4-beta2 and alpha7 nicotinic receptor subtypes appear to mediate the neuroprotective effects of nicotine against toxicity induced by these two trace metals.
Collapse
Affiliation(s)
- Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Antonei B Csoka
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA.
| |
Collapse
|
16
|
Turner MW, Marquart LA, Phillips PD, McDougal OM. Mutagenesis of α-Conotoxins for Enhancing Activity and Selectivity for Nicotinic Acetylcholine Receptors. Toxins (Basel) 2019; 11:E113. [PMID: 30781866 PMCID: PMC6409848 DOI: 10.3390/toxins11020113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 02/04/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are found throughout the mammalian body and have been studied extensively because of their implication in a myriad of diseases. α-Conotoxins (α-CTxs) are peptide neurotoxins found in the venom of marine snails of genus Conus. α-CTxs are potent and selective antagonists for a variety of nAChR isoforms. Over the past 40 years, α-CTxs have proven to be valuable molecular probes capable of differentiating between closely related nAChR subtypes and have contributed greatly to understanding the physiological role of nAChRs in the mammalian nervous system. Here, we review the amino acid composition and structure of several α-CTxs that selectively target nAChR isoforms and explore strategies and outcomes for introducing mutations in native α-CTxs to direct selectivity and enhance binding affinity for specific nAChRs. This review will focus on structure-activity relationship studies involving native α-CTxs that have been rationally mutated and molecular interactions that underlie binding between ligand and nAChR isoform.
Collapse
Affiliation(s)
- Matthew W Turner
- Biomolecular Sciences Graduate Programs, Boise State University; Boise, ID 83725, USA.
| | - Leanna A Marquart
- Department of Chemistry and Biochemistry, Boise State University; Boise, ID 83725, USA.
| | - Paul D Phillips
- Department of Chemistry and Biochemistry, Boise State University; Boise, ID 83725, USA.
| | - Owen M McDougal
- Department of Chemistry and Biochemistry, Boise State University; Boise, ID 83725, USA.
| |
Collapse
|
17
|
Pogun S. Editorial: Nicotine and the Nicotinic Cholinergic System in Health and Disease. Curr Neuropharmacol 2018; 16:336-337. [PMID: 29734939 PMCID: PMC6018189 DOI: 10.2174/1570159x1604180501124517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Sakire Pogun
- Ege University Center for Brain Research Bornova, Izmir, Turkey
| |
Collapse
|