1
|
Kopalli SR, Behl T, Kyada A, Rekha MM, Kundlas M, Rani P, Nathiya D, Satyam Naidu K, Gulati M, Bhise M, Gupta P, Wal P, Fareed M, Ramniwas S, Koppula S, Gasmi A. Synaptic plasticity and neuroprotection: The molecular impact of flavonoids on neurodegenerative disease progression. Neuroscience 2025; 569:161-183. [PMID: 39922366 DOI: 10.1016/j.neuroscience.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/11/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Flavonoids are a broad family of polyphenolic chemicals that are present in a wide variety of fruits, vegetables, and medicinal plants. Because of their neuroprotective qualities, flavonoids have attracted a lot of interest. The potential of flavonoids to control synaptic plasticity-a crucial process underlying memory, learning, and cognitive function-is becoming more and more clear. Dysregulation of synaptic plasticity is a feature of neurodegenerative diseases such as amyotrophic lateral sclerosis (0.4 %), Parkinson's (1-2 %), Alzheimer's (5-7 %), and Huntington's ((0.2 %)). This review discusses the molecular mechanisms via which flavonoids influence synaptic plasticity as well as their therapeutic potential in neurodegenerative diseases. Flavonoids modulate key signaling pathways such as MAPK/ERK and PI3K/Akt/mTOR to support neuroprotection, synaptic plasticity, and neuronal health, while also influencing neurotrophic factors (BDNF, NGF) and their receptors (TrkB, TrkA). They regulate neurotransmitter receptors like GABA, AMPA, and NMDA to balance excitatory and inhibitory transmission, and exert antioxidant effects via the Nrf2-ARE pathway and anti-inflammatory actions by inhibiting NF-κB signaling, highlighting their potential for treating neurodegenerative diseases. These varied reactions support the preservation of synapse function and neuronal integrity in the face of neurodegenerative insults. Flavonoids can reduce the symptoms of neurodegeneration, prevent synaptic loss, and enhance cognitive function, according to experimental studies. However, there are still obstacles to using these findings in clinical settings, such as limited bioavailability and the need for consistent dose. The focus of future research should be on improving flavonoid delivery systems and combining them with conventional medications.
Collapse
Affiliation(s)
- Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006 Republic of Korea
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab 140306, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot 360003 Gujarat, India
| | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401 Punjab, India
| | - Pooja Rani
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307 Punjab, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | | | | | - Pranay Wal
- PSIT- Pranveer Singh Institute of Technology, Pharmacy Kanpur UP, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 13713, Saudi Arabia
| | - Seema Ramniwas
- University Centre for Research and Development, Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413 Punjab, India
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| | - Amin Gasmi
- Societe Francophone de Nutritherapie et de Nutrigenetique Appliquee, Villeurbanne, France; International Institute of Nutrition and Micronutrient Sciences, Saint-Etienne, France
| |
Collapse
|
2
|
Forouzanfar F, Sahranavard T, Tsatsakis A, Iranshahi M, Rezaee R. Rutin: a pain-relieving flavonoid. Inflammopharmacology 2025; 33:1289-1301. [PMID: 39961908 DOI: 10.1007/s10787-025-01671-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 01/24/2025] [Indexed: 03/19/2025]
Abstract
Rutin (vitamin P or rutoside) is a citrus flavonoid glycoside that has shown beneficial health effects in different organs against various conditions including inflammation and pain. The majority of rutin therapeutic benefits are ascribed to its antioxidant and anti-inflammatory properties. This review article discusses studies that investigated pain-relieving activity of rutin and summarizes the reported mechanisms of action. Rutin pain-relieving effect has been studied in streptozotocin-induced diabetes, chronic constriction injury, and oxaliplatin-, formalin-, acetic acid- and glutamate-induced nociception in mice or rats. Based on the literature, rutin analgesic effects are induced through potentiation of antioxidant arsenal, reduction of inflammatory cytokines (e.g., Tumor necrosis factor alpha (TNF-α) and interleukin-1β) levels, suppression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions and modulation of MAPK, NF-κB and Nrf-2/HO-1 signaling. Preclinical findings on rutin pain-relieving activity are promising, however, its safety profile needs to be more thoroughly investigated and clinical trials should be conducted to assess its analgesic effects in humans.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Toktam Sahranavard
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aristidis Tsatsakis
- Center of Toxicology Science & Research, Division of Morphology, Medical School, University of Crete, Voutes Campus, 71003, Heraklion, Greece
| | - Mehrdad Iranshahi
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ramin Rezaee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Center of Toxicology Science & Research, Division of Morphology, Medical School, University of Crete, Voutes Campus, 71003, Heraklion, Greece.
| |
Collapse
|
3
|
Liu L, Song FH, Gao SJ, Wu JY, Li DY, Zhang LQ, Zhou YQ, Liu DQ, Mei W. Peroxisome proliferator-activated receptor gamma: A promising therapeutic target for the treatment of chronic pain. Brain Res 2025; 1850:149366. [PMID: 39617285 DOI: 10.1016/j.brainres.2024.149366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/13/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
Chronic pain represents an incapacitating medical condition that profoundly impacts the patients' quality of life. Managing chronic pain poses a significant challenge for healthcare professionals due to its multifaceted nature and the limited effectiveness of current treatment options. Therefore, novel therapeutic interventions are crucially required for the management of chronic pain. Peroxisome proliferator-activated receptor gamma (PPARγ), a nuclear receptor, exerts regulatory effects on physiological processes such as glucose and lipid metabolism. Emerging studies demonstrate that PPARγ is a critical regulator of the expression of various genes, including those of anti-inflammatory cytokines and antioxidant enzymes. Substantial evidence indicates decreased expression of PPARγ in the sciatic nerve, dorsal root ganglia, and spinal cord dorsal horn in animal models of chronic pain. Furthermore, natural or synthetic PPARγ agonists had inhibitory effects on nociceptive hypersensitivity in various animal models of chronic pain. This review summarizes and discusses preclinical evidence demonstrating the therapeutic potential of PPARγ agonists in chronic pain management. The available evidence indicates that PPARγ activation reduces chronic pain by inhibiting neuroinflammation and oxidative stress as well as modulation of opioidergic system. Overall, the use of PPARγ agonists is a promising therapeutic approach for treating chronic pain; however, further research regarding its detailed mechanisms is warranted.
Collapse
Affiliation(s)
- Lin Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Fan-He Song
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Shao-Jie Gao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jia-Yi Wu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Dan-Yang Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Long-Qing Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Dai-Qiang Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
4
|
Patel M, Wahezi S, Mavrocordatos P, Abd-Elsayed A. The Effects and Mechanisms of Phytochemicals on Pain Management and Analgesic. Nutrients 2025; 17:633. [PMID: 40004962 PMCID: PMC11858770 DOI: 10.3390/nu17040633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Phytochemicals can be an essential treatment for chronic pain. This narrative review will summarize and critically analyze the evidence surrounding these substances in pain management. We will introduce phytochemicals, discuss their associated mechanisms, and comment on their viability for potential treatment. There have been decades of research on phytochemical therapies for pain management, but the authors limited the scope of the investigation to the last 25 years. This literature review will serve as a foundation for the pain practitioner to understand where these treatments fit in the paradigm for chronic pain treatment. Assess the integration of phytochemicals within pain management fully.
Collapse
Affiliation(s)
- Milan Patel
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA;
| | - Sayed Wahezi
- Department of Pain Managment, Montefiore Medical Center, Bronx, NY 10461, USA
| | | | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA;
| |
Collapse
|
5
|
Jabbari S, Zakaria ZA, Mohammadi S. Antinociceptive and antineuropathic effects of Trifolium resupinatum L. on formalin-induced nociception and cervical spinal cord hemi-contusion: Underlying Mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118913. [PMID: 39369921 DOI: 10.1016/j.jep.2024.118913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Trifolium resupinatum L. (Fabaceae), known as Persian clover, ethnomedicinally used in Persian folk medicine to treat peritoneal inflammation, rheumatism, and back pain. AIM OF THE STUDY To investigate the antineuropathic and antinociceptive activities of Trifolium resupinatum leaves essential oil (TREO) in male Wistar rats, as well as to explore the potential mechanisms of action. MATERIALS AND METHODS The antinociceptive activity of TREO and its main constituents, quercetin (Qc) was assessed using the formalin-induced paw licking test. Moreover, the potential mechanisms of antinociception were evaluated through various competitive and non-competitive antagonisms. Additionally, the antineuropathic potential was investigated using the cervical spinal cord hemi-contusion (CCS) model, and the role of phosphorylated Stat-3 was analyzed using Western blotting. RESULTS TREO exerted significant antinociceptive activity (P < 0.01) in both phases of the formalin-induced test; however, its effects were more pronounced in the second phase. Modulators of the NO-cGMP-K+ channel pathway significantly reversed the antinociceptive activity of TREO (P < 0.05). Additionally, antagonists of TRPV1 and TRPV2, as well as CB1 and GABAA receptors, significantly reversed the antinociceptive effects of TREO (P < 0.05). In another study, both TREO and Qc significantly attenuated hyperalgesia and mechanical allodynia (P < 0.01) when evaluated using the CCS-induced nociception model. Notably, TREO also reduced the expression levels of interleukin-1 beta, interleukin-2, and tumor necrosis factor alpha in CCS-induced rats (P < 0.05). CONCLUSION TREO and Qc exhibit both antinociceptive and anti-neuropathic activities. The antinociceptive effects are partially mediated through the NO-cGMP-K+ channel pathways, along with the activation of TRPV, GABA, and cannabinoid receptors. Furthermore, the anti-neuropathic activity of TREO may be partially regulated through the inhibition of cytokines.
Collapse
Affiliation(s)
- Sajjad Jabbari
- Department of Biology, Faculty of Sciences, Islamic Azad University, Tehran North Branch, Tehran, Iran.
| | - Zainul Amiruddin Zakaria
- Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400, Sabah, Malaysia; Department of Environmental Health, Faculty of Public Health, Campus C Universitas Airlangga, Jalan Mulyorejo, Surabaya, 60115 East Java, Indonesia.
| | - Saeed Mohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
6
|
Micheli L, Muraglia M, Corbo F, Venturi D, Clodoveo ML, Tardugno R, Santoro V, Piccinelli AL, Di Cesare Mannelli L, Nobili S, Ghelardini C. The Unripe Carob Extract ( Ceratonia siliqua L.) as a Potential Therapeutic Strategy to Fight Oxaliplatin-Induced Neuropathy. Nutrients 2024; 17:121. [PMID: 39796555 PMCID: PMC11723348 DOI: 10.3390/nu17010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/21/2024] [Accepted: 12/28/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Oxaliplatin-induced neuropathy (OIN) is a severe painful condition that strongly affects the patient's quality of life and cannot be counteracted by the available drugs or adjuvants. Thus, several efforts are devoted to discovering substances that can revert or reduce OIN, including natural compounds. The carob tree, Ceratonia siliqua L., possesses several beneficial properties. However, its antalgic properties have not been substantially investigated and only a few investigations have been conducted on the unripe carob (up-CS) pods. Thus, the aims of this study were to evaluate for the first time the unripe variety of Apulian carob, chemically characterized and profiled as antioxidant potential of polyphenolic compounds as well as to investigate the ability of up-CS to reduce the neurotoxicity in a mouse model of oxaliplatin-induced neuropathic pain. METHODS By UHPLC-HRMS/MS analyses, 50 phenolic compounds, belonging mainly to n-galloylated glucoses and flavonoids were detected. RESULTS In a mouse model of oxaliplatin-induced neurotoxicity (2.4 mg/kg, 10 injections over two weeks), acute per os treatment with up-CS provoked a dose-dependent pain-relieving effect that completely counteracted oxaliplatin hypersensitivity at the dose of 200 mg/kg. Repeated oral administration of up-CS (100 mg/kg), concomitantly with oxaliplatin injection, exerted a protective effect against the development of thermal and mechanical allodynia. In addition, up-CS exerted a neuroprotective role against oxaliplatin-induced astrocytes activation in the spinal cord measured as GFAP-fluorescence intensity. CONCLUSIONS Overall, our study contributes to the knowledge on up-CS properties by highlighting its protective activity in the painful condition related to the administration of oxaliplatin.
Collapse
Affiliation(s)
- Laura Micheli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (D.V.); (L.D.C.M.); (S.N.); (C.G.)
| | - Marilena Muraglia
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (F.C.); (R.T.)
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (F.C.); (R.T.)
| | - Daniel Venturi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (D.V.); (L.D.C.M.); (S.N.); (C.G.)
| | - Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Roberta Tardugno
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (F.C.); (R.T.)
| | - Valentina Santoro
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (V.S.); (A.L.P.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Anna Lisa Piccinelli
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (V.S.); (A.L.P.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (D.V.); (L.D.C.M.); (S.N.); (C.G.)
| | - Stefania Nobili
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (D.V.); (L.D.C.M.); (S.N.); (C.G.)
| | - Carla Ghelardini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy; (D.V.); (L.D.C.M.); (S.N.); (C.G.)
| |
Collapse
|
7
|
Ciupei D, Colişar A, Leopold L, Stănilă A, Diaconeasa ZM. Polyphenols: From Classification to Therapeutic Potential and Bioavailability. Foods 2024; 13:4131. [PMID: 39767073 PMCID: PMC11675957 DOI: 10.3390/foods13244131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Though ubiquitous in nature, polyphenols gained scientific prominence only after the pioneering work of researchers like E. Fischer and K. Freudenberg, who demonstrated their potential beyond traditional applications, such as in the leather industry. Today, these bioactive compounds are recognized for their diverse therapeutic roles, including their use as adjuvants in cancer treatment, cancer prevention, and their anti-inflammatory and antioxidant properties. Additionally, polyphenols have demonstrated benefits in managing obesity, cardiovascular diseases, and neuromodulation. Their synthesis is influenced by environmental and genetic factors, with their concentrations varying based on the intensity of these variables, as well as the stage of ripening. This review provides a comprehensive overview of polyphenols, covering their classification, chemical structures, and bioavailability. The mechanisms influencing bioavailability, bioaccessibility, and bioactivity are explored in detail, alongside an introduction to their bioactive effects and associated metabolic pathways. Specific examples, such as the bioavailability of polyphenols in coffee and various types of onions, are analyzed. Despite their promising biological activities, a significant limitation of polyphenols lies in their inherently low oral bioavailability. However, their systemic circulation and the bioactive by-products formed during digestion present exciting opportunities for further research and application.
Collapse
Affiliation(s)
- Daria Ciupei
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania;
| | - Alexandru Colişar
- Faculty of Forestry and Cadastre, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania;
| | - Loredana Leopold
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania; (L.L.); (A.S.)
| | - Andreea Stănilă
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania; (L.L.); (A.S.)
| | - Zorița M. Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania; (L.L.); (A.S.)
| |
Collapse
|
8
|
Liu G, Jia D, Li W, Huang Z, Shan R, Huang C. Trifluoro-Icaritin Ameliorates Neuroinflammation Against Complete Freund's Adjuvant-Induced Microglial Activation by Improving CB2 Receptor-Mediated IL-10/β-endorphin Signaling in the Spinal Cord of Rats. J Neuroimmune Pharmacol 2024; 19:53. [PMID: 39387998 DOI: 10.1007/s11481-024-10152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
The underlying pathogenesis of chronic inflammatory pain is greatly complex, but the relevant therapies are still unavailable. Development of effective candidates for chronic inflammatory pain is highly urgent. We previously identified that trifluoro-icaritin (ICTF) exhibited a significant therapeutic activity against complete Freund's adjuvant (CFA)-induced chronic inflammatory pain, however, the precise mechanisms remain elusive. Here, the paw withdrawal threshold (PWT), paw withdrawal latency (PWL), and CatWalk gait analysis were used to determine the pain-related behaviors. The expression and co-localization of pain-related signaling molecules were detected by Western blot and immunofluorescence staining. Our results demonstrated that ICTF (3.0 mg/kg, i.p.) effectively attenuated mechanical allodynia, thermal hyperalgesia and improved motor dysfunction induced by CFA, and the molecular docking displayed that CB2 receptor may be the therapeutic target of ICTF. Furthermore, ICTF not only up-regulated the levels of CB2 receptor, IL-10, β-endorphin and CD206, but also reduced the expression of P2Y12 receptor, NLRP3, ASC, Caspase-1, IL-1β, CD11b, and iNOS in the spinal cord of CFA rats. Additionally, the immunofluorescence staining from the spinal cord showed that ICTF significantly increased the co-expression between the microglial marker Iba-1 and CB2 receptor, IL-10, β-endorphin, respectively, but markedly decreased the co-localization between Iba-1 and P2Y12 receptor. Conversely, intrathecal administration of CB2 receptor antagonist AM630 dramatically reversed the inhibitory effects of ICTF on CFA-induced chronic inflammatory pain, leading to a promotion of pain hypersensitivity, abnormal gait parameters, microglial activation, and up-regulation of P2Y12 receptor and NLRP3 inflammasome, as well as the inhibition of CB2 receptor and IL-10/β-endorphin cascade. Taken together, these findings highlighted that ICTF alleviated CFA-induced neuroinflammation by enhancing CB2 receptor-mediated IL-10/β-endorphin signaling and suppressing microglial activation in the spinal cord, and uncovered that CB2 receptor may be exploited as a novel and promising target for ICTF treatment of chronic inflammatory pain.
Collapse
Grants
- NO. 2021B614 Science and Technology Project of Administration of Chinese Medicine, Jiangxi Province, China
- NO. HX202207 Horizontal Project of Gannan Medical University, Jiangxi Province, China
- No.ZD201904 University-level Key Project of Gannan Medical University, Jiangxi Province, China
- No. 20204469 Health Commission General Science and Technology Program, Jiangxi Province, China
- No. 31160213 National Natural Science Foundation of China
- No. 20142BCBC22008 Talent Project of Department of Scientific and Technology, Jiangxi Province, China
Collapse
Affiliation(s)
- Guangsen Liu
- First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Dandan Jia
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Weiwei Li
- School of Public Health and Health management, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Zhihua Huang
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Reai Shan
- First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, P. R. China.
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Jiangxi, 341000, P. R. China.
- Ganzhou Key Laboratory of Anesthesiology, Ganzhou, 341000, P. R. China.
| | - Cheng Huang
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, P. R. China.
- School of Public Health and Health management, Gannan Medical University, Ganzhou, 341000, P. R. China.
| |
Collapse
|
9
|
Zhou H, Xi Y, Gao S, Zhou Y. Association between dietary intake of flavonoids and chronic low back pain: a cross-sectional study. Front Nutr 2024; 11:1436461. [PMID: 39421624 PMCID: PMC11484401 DOI: 10.3389/fnut.2024.1436461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Aim The purpose of this study was to explore the association between flavonoids intake and chronic low back pain (CLBP). Methods This cross-sectional study analyzed data from the National Health and Nutrition Examination Survey. Dietary flavonoids intake was assessed using a two-day recall questionnaire on dietary intake. CLBP was defined based of self-reported question. Weighted univariate and multivariate logistic regression models were performed to evaluate the relationship between flavonoids intake and CLBP. Additionally, subgroup analyses were conducted based on age, sedentary behavior time, arthritis, depression, and sleep disorder. Results A total of 3,136 adults were included, and 460 participants developed CLBP. After adjusting confounders, compared with the lowest total flavonoids intake tertile (reference group), flavonoids intake with highest tertile (>170 mg) was associated with reduced odds of CLBP [odds ratio (OR) =0.74, 95% confidence interval (CI): 0.57-0.95]. This relationship of flavonoids intake with CLBP remained statistically significant among participants aged ≥45 years (OR = 0.52, 95%CI: 0.35-0.76), with sedentary behavior time of >3 h (OR = 0.60, 95%CI: 0.41-0.86), with arthritis (OR = 0.51, 95%CI: 0.29-0.90), depression (OR = 0.48, 95%CI: 0.24-0.98), and sleep disorder (OR = 0.27, 95%CI: 0.12-0.60). Conclusion Higher flavonoids intake was found to be negatively associated with the likelihood of CLBP. For the general adult population, consuming foods rich in flavonoids may be linked to a reduced risk of CLBP.
Collapse
Affiliation(s)
| | | | | | - Yan Zhou
- Department of Pain Management, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Chai Y, He S, Liang D, Gu C, Gong Q, Long L, Chen P, Wang L. Mahuang Fuzi Xixin decoction: A potent analgesic for neuropathic pain targeting the NMDAR2B/CaMKIIα/ERK/CREB pathway. Heliyon 2024; 10:e35970. [PMID: 39211918 PMCID: PMC11357756 DOI: 10.1016/j.heliyon.2024.e35970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Neuropathic pain (NeP) is a condition charactesized by nervous system injury or dysfunction that affects a significant portion of the population. Current treatments are ineffective, highlighting the need for novel therapeutic approaches. Mahuang Fuzi Xixin decoction (MFXD) has shown promise for treating pain conditions in clinical practice; however, its potential against NeP and the underlying mechanisms remain unclear. This study identified 35 compounds in MFXD using ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS). The analgesic effects of MFXD on chronic constriction injury (CCI) rats were evaluated through the detection of mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL). The analgesic effects of MFXD in rats with chronic constriction injury (CCI) were evaluated by measuring the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL). Low-dose MFXD (L-MFXD) group (4.8 g/kg) and high-dose MFXD (H-MFXD) group (9.6 g/kg) exhibited significantly higher MWT and TWL values than the CCI group on days 11 and 15 post-CCI surgery, substantiating the remarkable analgesic efficacy of MFXD. Network pharmacology analysis identified 58 key targets enriched in pathways such as long-term potentiation (LTP) and glutamatergic synapse. The MCODE algorithm further identified core targets with significant enrichment in LTP. Molecular docking revealed that mesaconitine, rosmarinic acid, and delgrandine from MFXD exhibited high binding affinity with NMDAR2B (-11 kcal/mol), CaMKIIα (-14.3 kcal/mol), and ERK (-10.8 kcal/mol). Western blot and immunofluorescence confirmed that H-MFXD significantly suppressed the phosphorylation levels of NMDAR2B, CaMKIIα, ERK, and CREB in the spinal cord tissue of CCI rats. In conclusion, this study demonstrates that MFXD possesses potent analgesic effects on NeP by suppressing the NMDAR2B/CaMKIIα/ERK/CREB signalling pathway. This study unlocks a path toward potentially revolutionising NeP treatment with MFXD, encouraging further research and clinical development.
Collapse
Affiliation(s)
- Yihui Chai
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Siyu He
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Dayi Liang
- Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Haerbin, 150000, China
| | - Chunsong Gu
- Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Qian Gong
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Ling Long
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
11
|
Palomino-Pacheco M, Rojas-Armas JP, Ortiz-Sánchez JM, Arroyo-Acevedo JL, Justil-Guerrero HJ, Martínez-Heredia JT. Assessment of oral toxicity of Moringa oleifera Lam aqueous extract and its effect on gout induced in a murine model. Vet World 2024; 17:1449-1458. [PMID: 39185060 PMCID: PMC11344109 DOI: 10.14202/vetworld.2024.1449-1458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/07/2024] [Indexed: 08/27/2024] Open
Abstract
Background and Aim Although widely employed in traditional remedies globally, the safety and efficacy of Moringa oleifera remain inadequately documented through scientific research. This study evaluated the oral toxicity of M. oleifera leaf aqueous extract (MoAE) and its impact on gout-induced rats. Materials and Methods 2000 mg/kg was given in a single dose during the acute oral toxicity test, while 100 mg/kg, 250 mg/kg, and 500 mg/kg were given daily for 28 days in the repeated dose toxicity test. 100 mg/kg, 250 mg/kg, and 500 mg/kg MoAE doses were administered during the assessment of its impact on gout caused by monosodium urate. In the hyperuricemia model induced by oxonic acid, serum uric acid levels were assessed and pain response was measured through acetic acid-induced writhing. Results In acute oral and 28-day repeated dose tests, no indications of toxicity were detected, while MoAE alleviated ankle joint swelling and reduced serum uric acid concentrations in arthritic rats, causing a significant reduction in acetic acid-induced contortions. Conclusion No acute oral toxicity or toxicity in 28-day repeated doses was found for MoAE, while it exhibited antiarthritic, antihyperuricemic, and pain-relieving effects in the murine model.
Collapse
Affiliation(s)
- Miriam Palomino-Pacheco
- Section of Biochemistry, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Juan Pedro Rojas-Armas
- Section of Pharmacology, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | | | | | | | | |
Collapse
|
12
|
Hwang JH, Jung C. Toxicity Evaluation of a Non-Pain Pharmacopuncture Extract Using a Bacterial Reverse Mutation Test. J Pharmacopuncture 2024; 27:154-161. [PMID: 38948307 PMCID: PMC11194521 DOI: 10.3831/kpi.2024.27.2.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 07/02/2024] Open
Abstract
Objectives The objective of this study was to assess the genotoxicity of a no-pain pharmacopuncture (NPP) extract developed in 2022 using a bacterial reverse mutation assay, aiming to further substantiate the safety profile of NPP. Methods The genotoxicity evaluation involved a bacterial reverse mutation assay to assess the mutagenic potential of NPP extracts with and without metabolic activation. Histidine-requiring Salmonella typhimurium strains (TA98, TA100, TA1535, and TA1537) and tryptophan-requiring Escherichia coli strains (WP2uvrA) were used in the assay. Results The NPP extract did not induce a revertant colony count exceeding two times that of the negative control at any dose level in any of the tested strains, both with and without metabolic activation. Additionally, no growth inhibition or precipitation was observed in the presence of NPP. Conclusion Based on the findings, it can be concluded that the NPP extract exhibited no mutagenic potential in the in vitro genotoxicity tests conducted.
Collapse
Affiliation(s)
- Ji Hye Hwang
- Department of Acupuncture & Moxibustion Medicine, College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - Chul Jung
- Namsangcheon Korean Medicine Clinic, Seoul, Republic of Korea
| |
Collapse
|
13
|
Ettitaou A, Kabdy H, Oubella K, Raoui K, Oubahmane M, Aboufatima R, Elyazouli L, Garzoli S, Chait A. Molecular docking of quercetin: a promising approach for the development of new anti-inflammatory and analgesic drugs. Nat Prod Res 2024:1-10. [PMID: 38520257 DOI: 10.1080/14786419.2024.2333053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024]
Abstract
The aim of this study is to investigate the antinociceptive, anti-inflammatory and antipyretic effects of quercetin. Additionally, molecular docking studies were conducted to evaluate potential interactions between quercetin and various molecular targets. Animal models were used to conduct a comprehensive pharmacological investigation of quercetin. Evaluation of analgesic activity revealed a reduction in the number of abdominal cramps during the twisting test and inhibition of pain during the second phase of the formaldehyde test. Additionally, evaluation of its anti-inflammatory activity showed a reduction in ear oedema. However, it is important to note that quercetin administration has not been shown to significantly reduce yeast-induced hyperthermia. The docking study revealed the high inhibitory potential of quercetin against the COX-2 receptor.
Collapse
Affiliation(s)
- Amina Ettitaou
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakech, Morocco
| | - Hamid Kabdy
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakech, Morocco
| | - Khadija Oubella
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakech, Morocco
| | - Karima Raoui
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakech, Morocco
| | - Mehdi Oubahmane
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Rachida Aboufatima
- Laboratory of Genie Biologic, Faculty of Sciences and Technics, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Loubna Elyazouli
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakech, Morocco
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, Rome, Italy
| | - Abderrahman Chait
- Laboratory of Pharmacology, Neurobiology, Anthropology and Environment, Department of Biology, Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakech, Morocco
| |
Collapse
|
14
|
Guo DD, Huang HY, Liu HE, Liu K, Luo XJ. Orientin Reduces the Effects of Repeated Procedural Neonatal Pain in Adulthood: Network Pharmacology Analysis, Molecular Docking Analysis, and Experimental Validation. Pain Res Manag 2023; 2023:8893932. [PMID: 38047157 PMCID: PMC10691896 DOI: 10.1155/2023/8893932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/08/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023]
Abstract
Background Premature infants often undergo painful procedures and consequently experience repeated procedural neonatal pain. This can elicit hyperalgesia and cognitive impairment in adulthood. Treatments for neonatal pain are limited. Orientin is a flavonoid C-glycoside that has repeatedly been shown to have pharmacological effects in the past decades. The aim of this study was to systematically explore the effect of orientin on repeated procedural neonatal pain using network pharmacology, molecular docking analysis, and experimental validation. Methods Several compound-protein databases and disease-protein databases were employed to identify proteins that were both predicted targets of orientin and involved in neonatal pain. A protein-protein interaction (PPI) network was constructed, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to explore the potential mechanism of action. Molecular docking analysis was employed to calculate the binding energy and visualize the interactions between orientin and potential target proteins. Finally, a mouse model of repeated procedural neonatal pain was established and orientin was administered for 6 days. The mechanical and thermal pain thresholds were assessed in neonates and adult mice. A Morris water maze was employed to investigate cognitive impairment in adult mice. Results A total of 286 proteins that were both predicted targets of orientin and involved in neonatal pain were identified. The hub proteins were SRC, HSP90AA1, MAPK1, RHOA, EGFR, AKT1, PTPN11, ESR1, RXRA, and HRAS. GO analysis indicated that the primary biological process (BP), molecular function (MF), and cellular component (CC) were protein phosphorylation, protein kinase activity, and vesicle lumen, respectively. KEGG analysis revealed that the mitogen-activated protein kinase (MAPK) signaling pathway may be the key to the mechanism of action. Molecular docking analysis showed the high binding affinities of orientin for MAPK1, MAPK8, and MAPK14. In mice, orientin inhibited the hyperalgesia in the pain threshold tests in neonates and adult mice and cognitive impairment in adult mice. Immunofluorescence showed that phosphorylated MAPK1 (p-ERK) protein levels in the hippocampus and spinal dorsal horn were downregulated by orientin. Conclusion The findings suggested that orientin alleviates neonatal pain, and the MAPK signaling pathway is involved.
Collapse
Affiliation(s)
- Dong-Dong Guo
- Department of Anesthesiology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Hai-Yan Huang
- Department of Cardiovascular, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Hai-E. Liu
- Department of Anesthesiology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Kun Liu
- Department of Anesthesiology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xing-Jing Luo
- Department of Anesthesiology, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, China
| |
Collapse
|
15
|
Yang H, Shan Z, Guo W, Wang Y, Cai S, Li F, Huang Q, Liu JA, Cheung CW, Cai S. Reversal of Peripheral Neuropathic Pain by the Small-Molecule Natural Product Narirutin via Block of Na v1.7 Voltage-Gated Sodium Channel. Int J Mol Sci 2022; 23:ijms232314842. [PMID: 36499167 PMCID: PMC9738487 DOI: 10.3390/ijms232314842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/12/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Neuropathic pain is a refractory chronic disease affecting millions of people worldwide. Given that present painkillers have poor efficacy or severe side effects, developing novel analgesics is badly needed. The multiplex structure of active ingredients isolated from natural products provides a new source for phytochemical compound synthesis. Here, we identified a natural product, Narirutin, a flavonoid compound isolated from the Citrus unshiu, showing antinociceptive effects in rodent models of neuropathic pain. Using calcium imaging, whole-cell electrophysiology, western blotting, and immunofluorescence, we uncovered a molecular target for Narirutin's antinociceptive actions. We found that Narirutin (i) inhibits Veratridine-triggered nociceptor activities in L4-L6 rat dorsal root ganglion (DRG) neurons, (ii) blocks voltage-gated sodium (NaV) channels subtype 1.7 in both small-diameter DRG nociceptive neurons and human embryonic kidney (HEK) 293 cell line, (iii) does not affect tetrodotoxin-resistant (TTX-R) NaV channels, and (iv) blunts the upregulation of Nav1.7 in calcitonin gene-related peptide (CGRP)-labeled DRG sensory neurons after spared nerve injury (SNI) surgery. Identifying Nav1.7 as a molecular target of Narirutin may further clarify the analgesic mechanism of natural flavonoid compounds and provide an optimal idea to produce novel selective and efficient analgesic drugs.
Collapse
Affiliation(s)
- Haoyi Yang
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Zhiming Shan
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Department of Anesthesiology, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen 518020, China
- Shenzhen Engineering Research Center of Anesthesiology, Shenzhen 518020, China
| | - Weijie Guo
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Yuwei Wang
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Shuxian Cai
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Fuyi Li
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Qiaojie Huang
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Jessica Aijia Liu
- Department of Neuroscience, City University of Hong Kong, Hong Kong 999077, China
| | - Chi Wai Cheung
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Correspondence: (C.W.C.); (S.C.)
| | - Song Cai
- Department of Anatomy and Histology, Shenzhen University Health Science Center, Shenzhen 518060, China
- Correspondence: (C.W.C.); (S.C.)
| |
Collapse
|