1
|
Jia F(F, Brew BJ. Neuropathogenesis of acute HIV: mechanisms, biomarkers, and therapeutic approaches. Curr Opin HIV AIDS 2025; 20:199-208. [PMID: 40110851 PMCID: PMC11970608 DOI: 10.1097/coh.0000000000000923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
PURPOSE OF REVIEW The neuropathogenesis of acute HIV leads to rapid central nervous system (CNS) involvement, characterized by early viral entry, immune activation, and the formation of viral reservoirs. Despite effective antiretroviral therapy (ART), these reservoirs persist, drive neuroinflammation and injury and lead to HIV-associated neurodegenerative disorders (HAND). This review provides an updated synthesis of the mechanisms in acute HIV neuropathogenesis, biomarkers of CNS injury and emerging therapeutic approaches. A deeper understanding of these mechanisms is critical for addressing persistent HAND in ART-treated individuals. RECENT FINDINGS Growing evidence now supports the principal role of infected CD4 + T cells in mediating HIV neuroinvasion alongside monocytes, resulting in seeding in perivascular macrophages, pericytes, and adjacent microglia and astrocytes. These reservoirs contribute to ongoing transcriptional activity and viral persistence despite antiretroviral therapy. Neuroinflammation, driven by activated microglia, astrocytes, inflammasomes, and neurotoxic viral proteins, disrupts neuronal homeostasis. Emerging therapies, including latency-reversing agents and transcription inhibitors, show promise in reducing neuroinflammation and reservoir activity. SUMMARY Understanding the mechanisms of HIV neuropathogenesis and reservoir persistence has significant implications for developing targeted therapies to mitigate HAND. Strategies to eliminate CNS reservoirs and reduce neuroinflammation should be prioritized to improve long-term cognitive outcomes in people with HIV.
Collapse
Affiliation(s)
- Fangzhi (Frank) Jia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney RingGold 7800
- Department of Neurology, St Vincent's Hospital, Darlinghurst
- Department of Neurology, Royal North Shore Hospital, St Leonards
| | - Bruce J. Brew
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney RingGold 7800
- Departments of Neurology and Immunology, Peter Duncan Neuroscience Unit, St Vincent's Hospital, University of New South Wales and University of Notre Dame, Darlinghurst, Sydney NSW, Australia
| |
Collapse
|
2
|
Vines L, Sotelo D, Giddens N, Manza P, Volkow ND, Wang GJ. Neurological, Behavioral, and Pathophysiological Characterization of the Co-Occurrence of Substance Use and HIV: A Narrative Review. Brain Sci 2023; 13:1480. [PMID: 37891847 PMCID: PMC10605099 DOI: 10.3390/brainsci13101480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Combined antiretroviral therapy (cART) has greatly reduced the severity of HIV-associated neurocognitive disorders in people living with HIV (PLWH); however, PLWH are more likely than the general population to use drugs and suffer from substance use disorders (SUDs) and to exhibit risky behaviors that promote HIV transmission and other infections. Dopamine-boosting psychostimulants such as cocaine and methamphetamine are some of the most widely used substances among PLWH. Chronic use of these substances disrupts brain function, structure, and cognition. PLWH with SUD have poor health outcomes driven by complex interactions between biological, neurocognitive, and social factors. Here we review the effects of comorbid HIV and psychostimulant use disorders by discussing the distinct and common effects of HIV and chronic cocaine and methamphetamine use on behavioral and neurological impairments using evidence from rodent models of HIV-associated neurocognitive impairments (Tat or gp120 protein expression) and clinical studies. We also provide a biopsychosocial perspective by discussing behavioral impairment in differentially impacted social groups and proposing interventions at both patient and population levels.
Collapse
Affiliation(s)
- Leah Vines
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.V.); (D.S.); (P.M.); (N.D.V.)
| | - Diana Sotelo
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.V.); (D.S.); (P.M.); (N.D.V.)
| | - Natasha Giddens
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA;
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.V.); (D.S.); (P.M.); (N.D.V.)
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.V.); (D.S.); (P.M.); (N.D.V.)
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.V.); (D.S.); (P.M.); (N.D.V.)
| |
Collapse
|
3
|
Davis SE, Cirincione AB, Jimenez-Torres AC, Zhu J. The Impact of Neurotransmitters on the Neurobiology of Neurodegenerative Diseases. Int J Mol Sci 2023; 24:15340. [PMID: 37895020 PMCID: PMC10607327 DOI: 10.3390/ijms242015340] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Neurodegenerative diseases affect millions of people worldwide. Neurodegenerative diseases result from progressive damage to nerve cells in the brain or peripheral nervous system connections that are essential for cognition, coordination, strength, sensation, and mobility. Dysfunction of these brain and nerve functions is associated with Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, and motor neuron disease. In addition to these, 50% of people living with HIV develop a spectrum of cognitive, motor, and/or mood problems collectively referred to as HIV-Associated Neurocognitive Disorders (HAND) despite the widespread use of a combination of antiretroviral therapies. Neuroinflammation and neurotransmitter systems have a pathological correlation and play a critical role in developing neurodegenerative diseases. Each of these diseases has a unique pattern of dysregulation of the neurotransmitter system, which has been attributed to different forms of cell-specific neuronal loss. In this review, we will focus on a discussion of the regulation of dopaminergic and cholinergic systems, which are more commonly disturbed in neurodegenerative disorders. Additionally, we will provide evidence for the hypothesis that disturbances in neurotransmission contribute to the neuronal loss observed in neurodegenerative disorders. Further, we will highlight the critical role of dopamine as a mediator of neuronal injury and loss in the context of NeuroHIV. This review will highlight the need to further investigate neurotransmission systems for their role in the etiology of neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA; (S.E.D.); (A.B.C.); (A.C.J.-T.)
| |
Collapse
|
4
|
Aptamer-linked photonic crystal hydrogel sensor for rapid point-of-care detection of human immuno-deficiency virus-1 (HIV-1). J Pharm Biomed Anal 2023; 227:115104. [PMID: 36827736 DOI: 10.1016/j.jpba.2022.115104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/22/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
Abstract
The detection of the human immunodeficiency virus-1 (HIV) at an early stage is vital and could be realized through its cell surface glycoprotein-120 (gp120) without virus preprocessing. Here, we present an ssDNA-aptamer-linked photonic crystal (APC) hydrogel sensor for HIV detection which is comprised of photonic crystals (PCs) made of polystyrene nanoparticles embedded in the polyacrylamide hydrogel. ssDNA aptamers specific for gp120 are crosslinked in the hydrogel which can selectively bind to gp120 by hydrogen bonding increasing the PCs particle spacing and swelling of the hydrogel. The binding response can be visually monitored as a color change due to the diffraction of light from PCs and can eventually be measured (1-1000 ng mL-1 of gp120) and 100 to 108 VP mL-1 of HIV by the Debye's ring diameter or a UV/Vis spectrometer. APC-hydrogel can be regenerated by Tris-HCl and EDTA washing buffer system. The sensor demonstrates LOD of 7.1 ± 1.55 ng mL-1 for gp120 and 4 VP mL-1 for the whole HIV, a rapid response of 5 min, reusability up to 70 % (in fifth use), and recovery of 95.4 ± 0.1 % to 99.0 ± 0.2 % in plasma samples. The sensor is cost-effect and stable compared to antibody-based sensors and can be utilized to develop point-of-care testing (POCT) devices for HIV diagnosis.
Collapse
|
5
|
Young JW, Kenton JA, Milienne-Petiot M, Deben D, Achim C, Geyer MA, Perry W, Grant IE, Minassian A. Chronic methamphetamine exposure exerts few effects on the iTat mouse model of HIV, but blocks Tat expression-induced slowed reward retrieval. Behav Brain Res 2023; 437:114109. [PMID: 36108778 PMCID: PMC10878174 DOI: 10.1016/j.bbr.2022.114109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 10/14/2022]
Abstract
Human immunodeficiency virus (HIV) continues to infect millions worldwide, negatively impacting neurobehavioral function. Further understanding of the combined effects of HIV and methamphetamine use is crucial, as methamphetamine use is prevalent in people with HIV. The HIV-associated protein Tat may contribute to cognitive dysfunction, modeled preclinically in mice using doxycycline (DOX)-inducible Tat expression (iTat). Tat may exert its effects on cognitive function via disruption of the dopamine transporter, similar to the action of methamphetamine. Additionally, Tat and methamphetamine both decrease interneuron populations, including those expressing calbindin. It is important to understand the combined effects of Tat and methamphetamine in preclinical models of HIV infection. Here, we used iTat transgenic mice and a chronic binge regimen of methamphetamine exposure to determine their combined impact on reward learning and motivation. We also measured calbindin expression in behavior-relevant brain regions. Before induction with DOX, iTat mice exhibited no differences in behavior. Chronic methamphetamine exposure before Tat induction impaired initial reward learning but did not affect motivation. Furthermore, DOX-induced Tat expression did not alter behavior, but slowed latencies to retrieve rewards. This effect of Tat, however, was not observed in methamphetamine-treated mice, indicative of a potential protective effect. Finally, Tat expression was associated with an increase in calbindin-expressing cells in the VTA, while methamphetamine exposure did not alter calbindin numbers. These findings may indicate a protective role of methamphetamine in HIV neuropathology, which in turn may help in our understanding of why people with HIV use methamphetamine at disproportionately higher rates.
Collapse
Affiliation(s)
- Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States.
| | - Johnny A Kenton
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | | | - Debbie Deben
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Cristian Achim
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States
| | - William Perry
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Igor E Grant
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; VA Center of Excellence for Stress and Mental Health, Veterans Administration San Diego HealthCare System, 3350 La Jolla Village Drive, San Diego, CA, United States
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; VA Center of Excellence for Stress and Mental Health, Veterans Administration San Diego HealthCare System, 3350 La Jolla Village Drive, San Diego, CA, United States
| |
Collapse
|
6
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
7
|
Saro A, Gao Z, Kambey PA, Pielnaa P, Marcellin DFH, Luo A, Zheng R, Huang Z, Liao L, Zhao M, Suo L, Lu S, Li M, Cai D, Chen D, Yu H, Huang J. HIV-Proteins-Associated CNS Neurotoxicity, Their Mediators, and Alternative Treatments. Cell Mol Neurobiol 2022; 42:2553-2569. [PMID: 34562223 PMCID: PMC11421612 DOI: 10.1007/s10571-021-01151-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/19/2021] [Indexed: 02/08/2023]
Abstract
Human immunodeficiency virus (HIV)-infected people's livelihoods are gradually being prolonged with the use of combined antiretroviral therapy (ART). Conversely, despite viral suppression by ART, the symptoms of HIV-associated neurocognitive disorder (HAND) endure. HAND persists because ART cannot really permanently confiscate the virus from the body. HAND encompasses a variety of conditions based on clinical presentation and severity level, comprising asymptomatic neurocognitive impairment, moderate neurocognitive disorder, and HIV-associated dementia. During the early stages of HIV infection, inflammation compromises the blood-brain barrier, allowing toxic virus, infected monocytes, macrophages, T-lymphocytes, and cellular products from the bloodstream to enter the brain and eventually the entire central nervous system. Since there are no resident T-lymphocytes in the brain, the virus will live for decades in macrophages and astrocytes, establishing a reservoir of infection. The HIV proteins then inflame neurons both directly and indirectly. The purpose of this review is to provide a synopsis of the effects of these proteins on the central nervous system and conceptualize avenues to be considered in mitigating HAND. We used bioinformatics repositories extensively to simulate the transcription factors that bind to the promoter of the HIV-1 protein and possibly could be used as a target to circumvent HIV-associated neurocognitive disorders. In the same vein, a protein-protein interaction complex was also deduced from a Search Tool for the Retrieval of Interacting Genes. In conclusion, this provides an alternative strategy that could be used to avert HAND.
Collapse
Affiliation(s)
- Adonira Saro
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Zhaolin Gao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Piniel Alphayo Kambey
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Paul Pielnaa
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | | | - Aixiang Luo
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Ruping Zheng
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Zhongjun Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Lvshuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Mingxuan Zhao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Liangpeng Suo
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Shuang Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Min Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Deyang Cai
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Haiyang Yu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China.
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China.
- School of Life Sciences, Central South University, Changsha, 410013, China.
| |
Collapse
|
8
|
Targeting tight junctions to fight against viral neuroinvasion. Trends Mol Med 2021; 28:12-24. [PMID: 34810086 DOI: 10.1016/j.molmed.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022]
Abstract
The clinical impact of viral neuroinvasion on the central nervous system (CNS) ranges from barely detectable to deadly, including acute and chronic outcomes. Developing innovative therapeutic strategies is important to mitigate virus-induced neurological and psychiatric disorders. A key gatekeeper to the CNS is the neurovascular unit (NVU), a major obstacle to viral neuroinvasion and antiviral therapies. The NVU isolates the brain from the blood through firm sealing operated by the tight junctions (TJs) of endothelial cells. Here, we make the thought-provoking assumption that TJs can be targets to prevent or treat viral neuroinvasion and resulting disorders. This review aims at defining the conceptual diverse mode of actions of such approaches, evaluates their feasibility, and discusses future challenges in the field.
Collapse
|
9
|
Denton AR, Mactutus CF, Lateef AU, Harrod SB, Booze RM. Chronic SSRI treatment reverses HIV-1 protein-mediated synaptodendritic damage. J Neurovirol 2021; 27:403-421. [PMID: 34003469 PMCID: PMC8504184 DOI: 10.1007/s13365-021-00960-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/11/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
HIV-1 infection affects approximately 37 million individuals, and approximately 50% of seropositive individuals will develop symptoms of clinical depression and/or apathy. Dysfunctions of both serotonergic and dopaminergic neurotransmission have been implicated in the pathogenesis of motivational alterations. The present study evaluated the efficacy of a SSRI (escitalopram) in the HIV-1 transgenic (Tg) rat. Behavioral, neurochemical, and neuroanatomical outcomes with respect to HIV-1 and sex were evaluated to determine the efficacy of chronic escitalopram treatment. Escitalopram treatment restored function in each of the behavioral tasks that were sensitive to HIV-1-induced impairments. Further, escitalopram treatment restored HIV-1-mediated synaptodendritic damage in the nucleus accumbens; treatment with escitalopram significantly increased dendritic proliferation in HIV-1 Tg rats. However, restoration did not consistently occur with the neurochemical analysis in the HIV-1 rat. Taken together, these results suggest a role for SSRI therapies in repairing long-term HIV-1 protein-mediated neuronal damage and restoring function.
Collapse
Affiliation(s)
- Adam R Denton
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, South Carolina, USA
| | - Charles F Mactutus
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, South Carolina, USA
| | - Almeera U Lateef
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, South Carolina, USA
| | - Steven B Harrod
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, South Carolina, USA
| | - Rosemarie M Booze
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, South Carolina, USA.
| |
Collapse
|
10
|
Kirchner KN, Li H, Denton AR, Harrod SB, Mactutus CF, Booze RM. A Hydrophobic Tissue Clearing Method for Rat Brain Tissue. J Vis Exp 2020. [PMID: 33427244 DOI: 10.3791/61821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hydrophobic tissue clearing methods are easily adjustable, fast, and low-cost procedures that allows for the study of a molecule of interest in unaltered tissue samples. Traditional immunolabeling procedures require cutting the sample into thin sections, which restricts the ability to label and examine intact structures. However, if brain tissue can remain intact during processing, structures and circuits can remain intact for the analysis. Previously established clearing methods take significant time to completely clear the tissue, and the harsh chemicals can often damage sensitive antibodies. The iDISCO method quickly and completely clears tissue, is compatible with many antibodies, and requires no special lab equipment. This technique was initially validated for the use in mice tissue, but the current protocol adapts this method to image hemispheres of control and transgenic rat brains. In addition to this, the present protocol also makes several adjustments to preexisting protocol to provide clearer images with less background staining. Antibodies for Iba-1 and tyrosine hydroxylase were validated in the HIV-1 transgenic rat and in F344/N control rats using the present hydrophobic tissue clearing method. The brain is an interwoven network, where structures work together more often than separately of one another. Analyzing the brain as a whole system as opposed to a combination of individual pieces is the greatest benefit of this whole brain clearing method.
Collapse
Affiliation(s)
- Kristin N Kirchner
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina
| | - Hailong Li
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina
| | - Adam R Denton
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina
| | - Steven B Harrod
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina
| | - Charles F Mactutus
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina
| | - Rosemarie M Booze
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina;
| |
Collapse
|
11
|
Almajali M, Almajali F, Kafaie J, Chand P. Successful Utilization of Levodopa in HIV-Induced Parkinsonism. Cureus 2020; 12:e11825. [PMID: 33409067 PMCID: PMC7781492 DOI: 10.7759/cureus.11825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
12
|
HIV Infection and Neurocognitive Disorders in the Context of Chronic Drug Abuse: Evidence for Divergent Findings Dependent upon Prior Drug History. J Neuroimmune Pharmacol 2020; 15:715-728. [PMID: 32533296 DOI: 10.1007/s11481-020-09928-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
The fronto-striatal circuitry, involving the nucleus accumbens, ventral tegmental area, and prefrontal cortex, mediates goal-directed behavior and is targeted by both drugs of abuse and HIV-1 infection. Acutely, both drugs and HIV-1 provoke increased dopamine activity within the circuit. However, chronic exposure to drugs or HIV-1 leads to dysregulation of the dopamine system as a result of fronto-striatal adaptations to oppose the effects of repeated instances of transiently increased dopamine. Specifically, chronic drug use leads to reduced dopaminergic tone, upregulation of dopamine transporters, and altered circuit connectivity, sending users into an allosteric state in which goal-directed behaviors are dysregulated (i.e., addiction). Similarly, chronic exposure to HIV-1, even with combination antiretroviral therapy (cART), dysregulates dopamine and dopamine transporter function and alters connectivity of the fronto-striatal circuit, contributing to apathy and clinical symptoms of HIV-1 associated neurocognitive disorders (HAND). Thus, in a drug user also exposed to HIV-1, dysregulation of the fronto-striatal dopamine circuit advances at an exacerbated rate and appears to be driven by mechanisms unique from those seen with chronic drug use or HIV-1 exposure alone. We posit that the effects of drug use and HIV-1 infection on microglia interact to drive the progression of motivational dysfunction at an accelerated rate. The current review will therefore explore how the fronto-striatal circuit adapts to drug use (using cocaine as an example), HIV-1 infection, and both together; emphasizing proper methods and providing future directions to develop treatments for pathologies disrupting goal-directed behaviors and improve clinical outcomes for affected patients. Graphical Abstract Drug use and HIV-1 in the fronto-striatal circuit. Drugs of abuse and HIV-1 infection both target the fronto-striatal circuit which mediates goal-directed behavior. Acutely, drugs and HIV-1 increase dopamine activity; in contrast chronic exposure produces circuit adaptions leading to dysregulation, addiction and/or apathy. Comorbid drug use and HIV-1 infection may interact with microglia to exacerbate motivational dysregulation.
Collapse
|
13
|
Devine MF, Herrin C, Warnack W, Dubey D. Novel use of levodopa in human immunodeficiency virus encephalopathy-mediated parkinsonism in an adult. J Postgrad Med 2019; 64:53-55. [PMID: 28862245 PMCID: PMC5820817 DOI: 10.4103/jpgm.jpgm_674_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report a case of a 36-year-old man with a medical history of human immunodeficiency virus (HIV) infection who presented with hypomimia, hypophonia, bradykinesia, rigidity, and freezing of gait. His clinical presentation and magnetic resonance imaging were consistent with HIV encephalopathy with involvement of the bilateral basal ganglia and diffuse leukoencephalopathy. We initiated a trial of carbidopa-levodopa. The dose was escalated to 1050 mg levodopa daily. Amantadine was also started. The patient was closely monitored for behavioral, neurological, or systemic side effects. He tolerated therapy well without adverse effects. The patient's neurological status significantly improved with levodopa, including hypomimia, hypophonia, bradykinesia, and fluidity of gait. This case demonstrates that carbidopa-levodopa can be safely utilized to manage parkinsonism in an adult patient with HIV encephalopathy.
Collapse
Affiliation(s)
- M F Devine
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - C Herrin
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - W Warnack
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - D Dubey
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
14
|
Denton AR, Samaranayake SA, Kirchner KN, Roscoe RF, Berger SN, Harrod SB, Mactutus CF, Hashemi P, Booze RM. Selective monoaminergic and histaminergic circuit dysregulation following long-term HIV-1 protein exposure. J Neurovirol 2019; 25:540-550. [PMID: 31102184 PMCID: PMC6750960 DOI: 10.1007/s13365-019-00754-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/06/2019] [Accepted: 04/15/2019] [Indexed: 12/21/2022]
Abstract
Between 30 and 60% of HIV-seropositive individuals develop symptoms of clinical depression and/or apathy. Dopamine and serotonin are associated with motivational alterations; however, histamine is less well studied. In the present study, we used fast-scan cyclic voltammetry in HIV-1 transgenic (Tg) rats to simultaneously analyze the kinetics of nucleus accumbens dopamine (DA), prefrontal cortical serotonin (5-HT), and hypothalamic histamine (HA). For voltammetry, subjects were 15 HIV-1 Tg (7 male, 8 female) and 20 F344/N (11 male, 9 female) adult rats. Both serotonergic and dopaminergic release and reuptake kinetics were decreased in HIV-1 Tg animals relative to controls. In contrast, rates of histamine release and reuptake increased in HIV-1 Tg rats. Additionally, we used immunohistochemical (IHC) methods to identify histaminergic neurons in the tuberomammillary nucleus (TMN) of the hypothalamus. For IHC, subjects were 9 HIV-1 Tg (5 male, 4 female) and 9 F344/N (5 male, 4 female) adult rats. Although the total number of TMN histaminergic cells did not differ between HIV-1 Tg rats and F344/N controls, a significant sex effect was found, with females having an increased number of histaminergic neurons, relative to males. Collectively, these findings illustrate neurochemical alterations that potentially underlie or exacerbate the pathogenesis of clinical depression and/or apathy in HIV-1.
Collapse
Affiliation(s)
- Adam R Denton
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, SC, USA
| | | | - Kristin N Kirchner
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Robert F Roscoe
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Shane N Berger
- Department of Chemistry, University of South Carolina, Columbia, SC, USA
| | - Steven B Harrod
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Charles F Mactutus
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Parastoo Hashemi
- Department of Chemistry, University of South Carolina, Columbia, SC, USA
| | - Rosemarie M Booze
- Behavioral Neuroscience Laboratory, Department of Psychology, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
15
|
Nolan RA, Muir R, Runner K, Haddad EK, Gaskill PJ. Role of Macrophage Dopamine Receptors in Mediating Cytokine Production: Implications for Neuroinflammation in the Context of HIV-Associated Neurocognitive Disorders. J Neuroimmune Pharmacol 2018; 14:134-156. [PMID: 30519866 DOI: 10.1007/s11481-018-9825-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
Despite the success of combination anti-retroviral therapy (cART), around 50% of HIV-infected individuals still display a variety of neuropathological and neurocognitive sequelae known as NeuroHIV. Current research suggests these effects are mediated by long-term changes in CNS function in response to chronic infection and inflammation, and not solely due to active viral replication. In the post-cART era, drug abuse is a major risk-factor for the development of NeuroHIV, and increases extracellular dopamine in the CNS. Our lab has previously shown that dopamine can increase HIV infection of primary human macrophages and increase the production of inflammatory cytokines, suggesting that elevated dopamine could enhance the development of HIV-associated neuropathology. However, the precise mechanism(s) by which elevated dopamine could exacerbate NeuroHIV, particularly in chronically-infected, virally suppressed individuals remain unclear. To determine the connection between dopaminergic alterations and HIV-associated neuroinflammation, we have examined the impact of dopamine exposure on macrophages from healthy and virally suppressed, chronically infected HIV patients. Our data show that dopamine treatment of human macrophages isolated from healthy and cART-treated donors promotes production of inflammatory mediators including IL-1β, IL-6, IL-18, CCL2, CXCL8, CXCL9, and CXCL10. Furthermore, in healthy individuals, dopamine-mediated modulation of specific cytokines is correlated with macrophage expression of dopamine-receptor transcripts, particularly DRD5, the most highly-expressed dopamine-receptor subtype. Overall, these data will provide more understanding of the role of dopamine in the development of NeuroHIV, and may suggest new molecules or pathways that can be useful as therapeutic targets during HIV infection.
Collapse
Affiliation(s)
- R A Nolan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - R Muir
- Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - K Runner
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - E K Haddad
- Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
16
|
HIV-1 proteins dysregulate motivational processes and dopamine circuitry. Sci Rep 2018; 8:7869. [PMID: 29777165 PMCID: PMC5959859 DOI: 10.1038/s41598-018-25109-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/16/2018] [Indexed: 12/22/2022] Open
Abstract
Motivational alterations, such as apathy, in HIV-1+ individuals are associated with decreased performance on tasks involving frontal-subcortical circuitry. We used the HIV-1 transgenic (Tg) rat to assess effect of long-term HIV-1 protein exposure on motivated behavior using sucrose (1–30%, w/v) and cocaine (0.01–1.0 mg/kg/infusion) maintained responding with fixed-ratio (FR) and progressive-ratio (PR) schedules of reinforcement. For sucrose-reinforced responding, HIV-1 Tg rats displayed no change in EC50 relative to controls, suggesting no change in sucrose reinforcement but had a downward shifted concentration-response curves, suggesting a decrease in response vigor. Cocaine-maintained responding was attenuated in HIV-1 Tg rats (FR1 0.33 mg/kg/infusion and PR 1.0 mg/kg/infusion). Dose-response tests (PR) revealed that HIV-1 Tg animals responded significantly less than F344 control rats and failed to earn significantly more infusions of cocaine as the unit dose increased. When choosing between cocaine and sucrose, control rats initially chose sucrose but with time shifted to a cocaine preference. In contrast, HIV-1 disrupted choice behaviors. DAT function was altered in the striatum of HIV-1 Tg rats; however, prior cocaine self-administration produced a unique effect on dopamine homeostasis in the HIV-1 Tg striatum. These findings of altered goal directed behaviors may determine neurobiological mechanisms of apathy in HIV-1+ patients.
Collapse
|
17
|
The role of catecholamines in HIV neuropathogenesis. Brain Res 2018; 1702:54-73. [PMID: 29705605 DOI: 10.1016/j.brainres.2018.04.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 12/21/2022]
Abstract
The success of anti-retroviral therapy has improved the quality of life and lifespan of HIV + individuals, transforming HIV infection into a chronic condition. These improvements have come with a cost, as chronic HIV infection and long-term therapy have resulted in the emergence of a number of new pathologies. This includes a variety of the neuropathological and neurocognitive effects collectively known as HIVassociated neurocognitive disorders (HAND) or NeuroHIV. These effects persist even in the absence of viral replication, suggesting that they are mediated the long-term changes in the CNS induced by HIV infection rather than by active replication. Among these effects are significant changes in catecholaminergic neurotransmission, especially in dopaminergic brain regions. In HIV-infected individuals not treated with ARV show prominent neuropathology is common in dopamine-rich brain regions and altered autonomic nervous system activity. Even infected individuals on therapy, there is significant dopaminergic neuropathology, and elevated stress and norepinephrine levels correlate with a decreased effectiveness of antiretroviral drugs. As catecholamines function as immunomodulatory factors, the resultant dysregulation of catecholaminergic tone could substantially alter the development of HIVassociated neuroinflammation and neuropathology. In this review, we discuss the role of catecholamines in the etiology of HIV neuropathogenesis. Providing a comprehensive examination of what is known about these molecules in the context of HIV-associated disease demonstrates the importance of further studies in this area, and may open the door to new therapeutic strategies that specifically ameliorate the effects of catecholaminergic dysregulation on NeuroHIV.
Collapse
|
18
|
Fitting S, McLaurin KA, Booze RM, Mactutus CF. Dose-dependent neurocognitive deficits following postnatal day 10 HIV-1 viral protein exposure: Relationship to hippocampal anatomy parameters. Int J Dev Neurosci 2018; 65:66-82. [PMID: 29111178 PMCID: PMC5889695 DOI: 10.1016/j.ijdevneu.2017.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 11/25/2022] Open
Abstract
Despite the availability of antiretroviral prophylactic treatment, pediatric human immunodeficiency virus type 1 (HIV-1) continues to be a significant risk factor in the post-cART era. The time of infection (i.e., during pregnancy, delivery or breastfeeding) may play a role in the development of neurocognitive deficits in pediatric HIV-1. HIV-1 viral protein exposure on postnatal day (P)1, preceding the postnatal brain growth spurt in rats, had deleterious effects on neurocognitive development and anatomical parameters of the hippocampus (Fitting et al., 2008a,b). In the present study, rats were stereotaxically injected with HIV-1 viral proteins, including Tat1-86 and gp120, on P10 to further examine the role of timing on neurocognitive development and anatomical parameters of the hippocampus (Fitting et al., 2010). The dose-dependent virotoxin effects observed across development following P10 Tat1-86 exposure were specific to spatial learning and absent from prepulse inhibition and locomotor activity. A relationship between alterations in spatial learning and/or memory and hippocampal anatomical parameters was noted. Specifically, the estimated number of neurons and astrocytes in the hilus of the dentate gyrus explained 70% of the variance of search behavior in Morris water maze acquisition training for adolescents and 65% of the variance for adults; a brain-behavior relationship consistent with observations following P1 viral protein exposure. Collectively, late viral protein exposure (P10) results in selective alterations in neurocognitive development without modifying measures of somatic growth, preattentive processing, or locomotor activity, as characterized by early viral protein exposure (P1). Thus, timing may be a critical factor in disease progression, with children infected with HIV earlier in life being more vulnerable to CNS disease.
Collapse
Affiliation(s)
- Sylvia Fitting
- University of South Carolina, Behavioral Neuroscience Program, Department of Psychology, Columbia, SC 29208, USA; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Kristen A McLaurin
- University of South Carolina, Behavioral Neuroscience Program, Department of Psychology, Columbia, SC 29208, USA
| | - Rosemarie M Booze
- University of South Carolina, Behavioral Neuroscience Program, Department of Psychology, Columbia, SC 29208, USA
| | - Charles F Mactutus
- University of South Carolina, Behavioral Neuroscience Program, Department of Psychology, Columbia, SC 29208, USA.
| |
Collapse
|
19
|
HIV-1 and cocaine disrupt dopamine reuptake and medium spiny neurons in female rat striatum. PLoS One 2017; 12:e0188404. [PMID: 29176843 PMCID: PMC5703481 DOI: 10.1371/journal.pone.0188404] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/06/2017] [Indexed: 11/19/2022] Open
Abstract
HIV-1 and addictive drugs, such as cocaine (COC), may act in combination to produce serious neurological complications. In the present experiments, striatal brain slices from HIV-1 transgenic (Tg) and F344 control female rats were studied. First, we examined dopamine (DA) reuptake in control, HIV-1, COC-treated (5µM) and HIV-1+COC-treated, striatal slices using fast scan cyclic voltammetry. COC-treated striatal slices from F344 control animals significantly increased DA reuptake time (T80), relative to untreated control slices. In contrast, in HIV-1 Tg striatal slices, DA reuptake time was extended by HIV-1, which was not further altered by COC treatment. Second, analysis of medium spiny neuronal populations from striatal brain slices found that controls treated with cocaine displayed increases in spine length, whereas cocaine treated HIV-1 slices displayed decreased spine length. Taken together, the current study provides evidence for dysfunction of the dopamine transporter (DAT) in mediating DA reuptake in HIV-1 Tg rats and limited responses to acute COC exposure. Collectively, dysfunction of the DAT reuptake and altered dendritic spine morphology of the MSNs, suggest a functional disruption of the dopamine system within the HIV-1 Tg rat.
Collapse
|
20
|
Gaskill PJ, Miller DR, Gamble-George J, Yano H, Khoshbouei H. HIV, Tat and dopamine transmission. Neurobiol Dis 2017; 105:51-73. [PMID: 28457951 PMCID: PMC5541386 DOI: 10.1016/j.nbd.2017.04.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/04/2017] [Accepted: 04/16/2017] [Indexed: 01/02/2023] Open
Abstract
Human Immunodeficiency Virus (HIV) is a progressive infection that targets the immune system, affecting more than 37 million people around the world. While combinatorial antiretroviral therapy (cART) has lowered mortality rates and improved quality of life in infected individuals, the prevalence of HIV associated neurocognitive disorders is increasing and HIV associated cognitive decline remains prevalent. Recent research has suggested that HIV accessory proteins may be involved in this decline, and several studies have indicated that the HIV protein transactivator of transcription (Tat) can disrupt normal neuronal and glial function. Specifically, data indicate that Tat may directly impact dopaminergic neurotransmission, by modulating the function of the dopamine transporter and specifically damaging dopamine-rich regions of the CNS. HIV infection of the CNS has long been associated with dopaminergic dysfunction, but the mechanisms remain undefined. The specific effect(s) of Tat on dopaminergic neurotransmission may be, at least partially, a mechanism by which HIV infection directly or indirectly induces dopaminergic dysfunction. Therefore, precisely defining the specific effects of Tat on the dopaminergic system will help to elucidate the mechanisms by which HIV infection of the CNS induces neuropsychiatric, neurocognitive and neurological disorders that involve dopaminergic neurotransmission. Further, this will provide a discussion of the experiments needed to further these investigations, and may help to identify or develop new therapeutic approaches for the prevention or treatment of these disorders in HIV-infected individuals.
Collapse
Affiliation(s)
- Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States.
| | - Douglas R Miller
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, United States
| | - Joyonna Gamble-George
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, United States
| | - Hideaki Yano
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, United States
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
21
|
McLaurin KA, Booze RM, Mactutus CF. Progression of temporal processing deficits in the HIV-1 transgenic rat. Sci Rep 2016; 6:32831. [PMID: 27596023 PMCID: PMC5011765 DOI: 10.1038/srep32831] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 08/15/2016] [Indexed: 11/09/2022] Open
Abstract
The HIV-1 transgenic (Tg) rat, which expresses 7 of the 9 HIV-1 genes, was used to investigate the effect(s) of long-term HIV-1 viral protein exposure on chronic neurocognitive deficits observed in pediatric HIV-1 (PHIV). A longitudinal experimental design was used to assess the progression of temporal processing deficits, a potential underlying dimension of neurocognitive impairment in HIV-1. Gap prepulse inhibition (gap-PPI), a translational experimental paradigm, was conducted every thirty days from postnatal day (PD) 30 to PD 180. HIV-1 Tg animals, regardless of sex, displayed profound alterations in the development of temporal processing, assessed using prepulse inhibition. A differential sensitivity to the manipulation of interstimulus interval was observed in HIV-1 Tg animals in comparison to control animals. Moreover, presence of the HIV-1 transgene was diagnosed with 90.8% accuracy using measures of prepulse inhibition and temporal sensitivity. Progression of temporal processing deficits in the HIV-1 Tg rat affords a relatively untapped opportunity to increase our mechanistic understanding of the role of long-term exposure to HIV-1 viral proteins, observed in pediatric HIV-1, in the development of chronic neurological impairment, as well as suggesting an innovative clinical diagnostic screening tool.
Collapse
Affiliation(s)
- Kristen A McLaurin
- Program in Behavioral Neuroscience Department of Psychology University of South Carolina Columbia, SC 29208, USA
| | - Rosemarie M Booze
- Program in Behavioral Neuroscience Department of Psychology University of South Carolina Columbia, SC 29208, USA
| | - Charles F Mactutus
- Program in Behavioral Neuroscience Department of Psychology University of South Carolina Columbia, SC 29208, USA
| |
Collapse
|
22
|
McLaurin KA, Booze RM, Mactutus CF. Selective developmental alterations in The HIV-1 transgenic rat: Opportunities for diagnosis of pediatric HIV-1. J Neurovirol 2016; 23:87-98. [PMID: 27538996 DOI: 10.1007/s13365-016-0476-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/18/2016] [Accepted: 08/01/2016] [Indexed: 11/25/2022]
Abstract
Since the advent of combination antiretroviral therapy (cART), pediatric HIV-1 (PHIV) has evolved from a fatal disease to a chronic disease as children perinatally infected with HIV-1 survive into adulthood. The HIV-1 transgenic (Tg) rat, which expresses 7 of the 9 HIV-1 genes constitutively throughout development, was used to model the early development of chronic neurological impairment in PHIV. Male and female Fischer HIV-1 Tg and F344 N control rats, sampled from 35 litters, were repeatedly assessed during early development using multiple experimental paradigms, including somatic growth, locomotor activity, cross-modal prepulse inhibition (PPI) and gap-prepulse inhibition (gap-PPI). Later eye opening was observed in HIV-1 Tg animals relative to controls. HIV-1 Tg animals exhibited a shift in the development of locomotor activity implicating alterations in the maturation of the forebrain cholinergic inhibitory system. Alterations in the development of PPI and perceptual sharpening were observed in both auditory and visual PPI as indexed by a relative insensitivity to the dimension of time (msec for ISI; days of age for perceptual sharpening) as a function of the HIV-1 transgene. Presence of the HIV-1 transgene was diagnosed with 97.1 % accuracy using auditory and visual PPI measurements from PD 17 and 21. Early selective developmental alterations observed in the HIV-1 Tg rats provide an opportunity for the development of a point-of-care screening tool, which would permit the early diagnosis of PHIV and improve the long-term outcome for children perinatally infected with HIV-1.
Collapse
Affiliation(s)
- Kristen A McLaurin
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Rosemarie M Booze
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Charles F Mactutus
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA.
| |
Collapse
|
23
|
Reid WC, Ibrahim WG, Kim SJ, Denaro F, Casas R, Lee DE, Maric D, Hammoud DA. Characterization of neuropathology in the HIV-1 transgenic rat at different ages. J Neuroimmunol 2016; 292:116-25. [PMID: 26943969 DOI: 10.1016/j.jneuroim.2016.01.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/27/2016] [Accepted: 01/31/2016] [Indexed: 02/08/2023]
Abstract
The transgenic HIV-1 rat (Tg) is a commonly used neuroHIV model with documented neurologic/behavioral deficits. Using immunofluorescent staining of the Tg brain, we found astrocytic dysfunction/damage, as well as dopaminergic neuronal loss/dysfunction, both of which worsening significantly in the striatum with age. We saw mild microglial activation in young Tg brains, but this decreased with age. There were no differences in neurogenesis potential suggesting a neurodegenerative rather than a neurodevelopmental process. Gp120 CSF levels exceeded serum gp120 levels in some animals, suggesting local viral protein production in the brain. Further probing of the pathophysiology underlying astrocytic injury in this model is warranted.
Collapse
Affiliation(s)
- William C Reid
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Wael G Ibrahim
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Saejeong J Kim
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Frank Denaro
- Department of Biology, Morgan State University, Baltimore, MD, USA
| | - Rafael Casas
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Dianne E Lee
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Dragan Maric
- Division of Intermural Research (DIR), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
24
|
Bertrand SJ, Hu C, Aksenova MV, Mactutus CF, Booze RM. HIV-1 Tat and cocaine mediated synaptopathy in cortical and midbrain neurons is prevented by the isoflavone Equol. Front Microbiol 2015; 6:894. [PMID: 26441850 PMCID: PMC4561964 DOI: 10.3389/fmicb.2015.00894] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/17/2015] [Indexed: 02/05/2023] Open
Abstract
Illicit drugs, such as cocaine, are known to increase the likelihood and severity of HIV-1 associated neurocognitive disorders (HAND). In the current studies synaptic integrity was assessed following exposure to low concentrations of the HIV-1 viral protein Tat 1-86B, with or without cocaine, by quantifying filamentous actin (F-actin) rich structures (i.e., puncta and dendritic spines) on neuronal dendrites in vitro. In addition, the synapse-protective effects of either R-Equol (RE) or S-Equol (SE; derivatives of the soy isoflavone, daidzein) were determined. Individually, neither low concentrations of HIV-1 Tat (10 nM) nor low concentrations of cocaine (1.6 μM) had any significant effect on F-actin puncta number; however, the same low concentrations of HIV-1 Tat + cocaine in combination significantly reduced dendritic synapses. This synaptic reduction was prevented by pre-treatment with either RE or SE, in an estrogen receptor beta dependent manner. In sum, targeted therapeutic intervention with SE may prevent HIV-1 + drug abuse synaptopathy, and thereby potentially influence the development of HAND.
Collapse
Affiliation(s)
- Sarah J Bertrand
- Laboratory Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina Columbia, SC, USA
| | - Calvin Hu
- Laboratory Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina Columbia, SC, USA
| | - Marina V Aksenova
- Laboratory Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina Columbia, SC, USA
| | - Charles F Mactutus
- Laboratory Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina Columbia, SC, USA
| | - Rosemarie M Booze
- Laboratory Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina Columbia, SC, USA
| |
Collapse
|
25
|
Carryl H, Swang M, Lawrence J, Curtis K, Kamboj H, Van Rompay KKA, De Paris K, Burke MW. Of mice and monkeys: can animal models be utilized to study neurological consequences of pediatric HIV-1 infection? ACS Chem Neurosci 2015; 6:1276-89. [PMID: 26034832 PMCID: PMC4545399 DOI: 10.1021/acschemneuro.5b00044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pediatric human immunodeficiency virus (HIV-1) infection remains a global health crisis. Children are much more susceptible to HIV-1 neurological impairments than adults, which can be exacerbated by coinfections. Neurological characteristics of pediatric HIV-1 infection suggest dysfunction in the frontal cortex as well as the hippocampus; limited MRI data indicate global cerebral atrophy, and pathological data suggest accelerated neuronal apoptosis in the cortex. An obstacle to pediatric HIV-1 research is a human representative model system. Host-species specificity of HIV-1 limits the ability to model neurological consequences of pediatric HIV-1 infection in animals. Several models have been proposed including neonatal intracranial injections of HIV-1 viral proteins in rats and perinatal simian immunodeficiency virus (SIV) infection of infant macaques. Nonhuman primate models recapitulate the complexity of pediatric HIV-1 neuropathogenesis while rodent models are able to elucidate the role specific viral proteins exert on neurodevelopment. Nonhuman primate models show similar behavioral and neuropathological characteristics to pediatric HIV-1 infection and offer a stage to investigate early viral mechanisms, latency reservoirs, and therapeutic interventions. Here we review the relative strengths and limitations of pediatric HIV-1 model systems.
Collapse
Affiliation(s)
- Heather Carryl
- Department of Physiology & Biophysics, College of Medicine, Howard University, Washington, D.C. 20059, United States
| | - Melanie Swang
- Department of Biology, Howard University, Washington, D.C. 20059, United States
| | - Jerome Lawrence
- Department of Biology, Howard University, Washington, D.C. 20059, United States
| | - Kimberly Curtis
- Department of Physiology & Biophysics, College of Medicine, Howard University, Washington, D.C. 20059, United States
| | - Herman Kamboj
- Department of Physiology & Biophysics, College of Medicine, Howard University, Washington, D.C. 20059, United States
| | - Koen K. A. Van Rompay
- California National Primate Research Center, University of California at Davis, Davis, California 95616, United States
| | - Kristina De Paris
- Department of Microbiology and Immunology and Center for AIDS Research School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mark W. Burke
- Department of Physiology & Biophysics, College of Medicine, Howard University, Washington, D.C. 20059, United States
| |
Collapse
|