1
|
Asif M, Aqil F, Alasmary FA, almalki AS, Khan AR, Nasibullah M. Lewis base-catalyzed synthesis of highly functionalized spirooxindole-pyranopyrazoles and their in vitro anticancer studies. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03053-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
2
|
Belhachemi MHM, Benmohammed A, Saiah H, Boukabcha N, Saidj M, Dege N, Djafri A, Chouaih A. Synthesis, structural determination, molecular docking and biological activity of 1-(4-fluorobenzyl)-5-bromolindolin-2,3-dione. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
3
|
Bogdanov AV, Voloshina AD, Lyubina AP, Amerkhanova SK, Glukhareva TV, Mironov VF. Sterically Hindered Phenolic Isatin Derivatives Containing a DABCO Fragment: Synthesis and Antimicrobial Activity Testing. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022080012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Feng J, Huang D, Yang Y, Chen J, Qiu S, Lv Z, Ma X, Li Y, Li R, Xiao Y, Chen W. Isatis indigotica: from (ethno) botany, biochemistry to synthetic biology. MOLECULAR HORTICULTURE 2021; 1:17. [PMID: 37789475 PMCID: PMC8668392 DOI: 10.1186/s43897-021-00021-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/25/2021] [Indexed: 05/20/2023]
Abstract
Isatis indigotica Fort. (Chinese woad) is a species with an ancient and well-documented history as an indigo dye and medicinal plant. It is often confused with Isatis tinctoria L. (European woad), a medicinal plant in Europe. Here, the differences between I. indigotica and I. tinctoria are systematically described. The usage development history, clinical applications and pharmacological activities, and chemical components of I. indigotica are also summarized. Lignans, indole alkaloids, and their corresponding derivatives have been identified as the major active ingredients of I. indigotica and are associated with anti-viral, anti-inflammatory, anti-cancer, and other health-promoting activities. Notable progress has been made in understanding the biosynthetic pathway and regulation mechanism of lignans and indole alkaloids in I. indigotica, the results from which should facilitate the process of targeted metabolic engineering or synthetic biology. Moreover, multiple biotechnology methods such as polyploid breeding and genetic engineering have been used with I. indigotica to result in, for example, greater yields, higher levels of bioactive component accumulation, and enhanced stress tolerance to salt, drought, and insects. Some issues require additional analyses, and suggestions for future research on I. indigotica are also discussed.
Collapse
Affiliation(s)
- Jingxian Feng
- Research and Development Center of Chinese Medicine Resources and Biotechnology, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Doudou Huang
- Research and Development Center of Chinese Medicine Resources and Biotechnology, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yingbo Yang
- Research and Development Center of Chinese Medicine Resources and Biotechnology, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Jiangsu Kanion Pharmaceutical Co., Ltd, Jiangsu, 222001, Lianyungang, China
| | - Junfeng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shi Qiu
- Research and Development Center of Chinese Medicine Resources and Biotechnology, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zongyou Lv
- Research and Development Center of Chinese Medicine Resources and Biotechnology, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xueqi Ma
- Research and Development Center of Chinese Medicine Resources and Biotechnology, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuanyu Li
- Research and Development Center of Chinese Medicine Resources and Biotechnology, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rongrong Li
- Research and Development Center of Chinese Medicine Resources and Biotechnology, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Xiao
- Research and Development Center of Chinese Medicine Resources and Biotechnology, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wansheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Medical Guarantee Center, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
5
|
Kitagawa DAS, Rodrigues RB, Silva TN, Dos Santos WV, da Rocha VCV, de Almeida JSFD, Bernardo LB, Carvalho-Silva T, Ferreira CN, da Silva AAT, Simas ABC, Nepovimova E, Kuča K, França TCC, Cavalcante SFDA. Design, synthesis, in silico studies and in vitro evaluation of isatin-pyridine oximes hybrids as novel acetylcholinesterase reactivators. J Enzyme Inhib Med Chem 2021; 36:1370-1377. [PMID: 34148470 PMCID: PMC8219220 DOI: 10.1080/14756366.2021.1916009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Organophosphorus poisoning caused by some pesticides and nerve agents is a life-threating condition that must be swiftly addressed to avoid casualties. Despite the availability of medical countermeasures, the clinically available compounds lack a broad spectrum, are not effective towards all organophosphorus toxins, and have poor pharmacokinetics properties to allow them crossing the blood-brain barrier, hampering cholinesterase reactivation at the central nervous system. In this work, we designed and synthesised novel isatin derivatives, linked to a pyridinium 4-oxime moiety by an alkyl chain with improved calculated properties, and tested their reactivation potency against paraoxon- and NEMP-inhibited acetylcholinesterase in comparison to the standard antidote pralidoxime. Our results showed that these compounds displayed comparable in vitro reactivation also pointed by the in silico studies, suggesting that they are promising compounds to tackle organophosphorus poisoning.
Collapse
Affiliation(s)
- Daniel A S Kitagawa
- Laboratory of Molecular Modelling Applied to Chemical and Biological Defense (LMACBD), Military Institute of Engineering (IME), Rio de Janeiro, Brazil.,Brazilian Army Technological Center (CTEx), Institute of CBRN Defense (IDQBRN), Rio de Janeiro, Brazil
| | - Rafael B Rodrigues
- Brazilian Army Technological Center (CTEx), Institute of CBRN Defense (IDQBRN), Rio de Janeiro, Brazil
| | - Thiago N Silva
- School of Pharmacy, Universidade Castelo Branco (UCB), Rio de Janeiro, Brazil
| | - Wellington V Dos Santos
- Emergency and Rescue Department (DSE), Rio de Janeiro State Fire Department (CBMERJ), Rio de Janeiro, Brazil.,Universidade Estácio de Sá (UNESA), Rio de Janeiro, Brazil
| | - Vinicius C V da Rocha
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Nilópolis, Brazil
| | - Joyce S F D de Almeida
- Laboratory of Molecular Modelling Applied to Chemical and Biological Defense (LMACBD), Military Institute of Engineering (IME), Rio de Janeiro, Brazil
| | - Leandro B Bernardo
- Brazilian Army Technological Center (CTEx), Institute of CBRN Defense (IDQBRN), Rio de Janeiro, Brazil
| | - Taynara Carvalho-Silva
- Brazilian Army Technological Center (CTEx), Institute of CBRN Defense (IDQBRN), Rio de Janeiro, Brazil
| | - Cintia N Ferreira
- Brazilian Army Technological Center (CTEx), Institute of CBRN Defense (IDQBRN), Rio de Janeiro, Brazil
| | - Angelo A T da Silva
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Nilópolis, Brazil
| | - Alessandro B C Simas
- Instituto de Pesquisas de Produtos Naturais Walter Mors (IPPN), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Tanos C C França
- Laboratory of Molecular Modelling Applied to Chemical and Biological Defense (LMACBD), Military Institute of Engineering (IME), Rio de Janeiro, Brazil.,Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Samir F de A Cavalcante
- Brazilian Army Technological Center (CTEx), Institute of CBRN Defense (IDQBRN), Rio de Janeiro, Brazil.,School of Pharmacy, Universidade Castelo Branco (UCB), Rio de Janeiro, Brazil.,Instituto de Pesquisas de Produtos Naturais Walter Mors (IPPN), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| |
Collapse
|
6
|
Shareghi-Boroujeni D, Iraji A, Mojtabavi S, Faramarzi MA, Akbarzadeh T, Saeedi M. Synthesis, in vitro evaluation, and molecular docking studies of novel hydrazineylideneindolinone linked to phenoxymethyl-1,2,3-triazole derivatives as potential α-glucosidase inhibitors. Bioorg Chem 2021; 111:104869. [PMID: 33839583 DOI: 10.1016/j.bioorg.2021.104869] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/02/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023]
Abstract
In this work, a novel series of hydrazineylideneindolinone linked to phenoxymethyl-1,2,3-triazole derivatives were designed, synthesized, and evaluated for their anti-α-glucosidase activity due to an urgent need to develop effective anti-diabetic agents. Among tested 15 compounds, 8 derivatives (9a, 9b, 9c, 9d, 9e, 9f, 9h, and 9o) demonstrated superior potency compared to that of positive control, acarbose. Particularly, compound 9d possessed the best anti-α-glucosidase activity with around a 46-fold improvement in the inhibitory activity. Additionally, 9d showed a competitive type of inhibition in the kinetic study and the molecular docking study demonstrated that it well occupied the binding pocket of the catalytic center through desired interactions with residues, correlating to the experimental results.
Collapse
Affiliation(s)
- Diba Shareghi-Boroujeni
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Tahmineh Akbarzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|