1
|
Ghoneim MM, Abdelgawad MA, Elkanzi NAA, Bakr RB. Review of the recent advances of pyrazole derivatives as selective COX-2 inhibitors for treating inflammation. Mol Divers 2025; 29:1789-1820. [PMID: 39014146 DOI: 10.1007/s11030-024-10906-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/30/2024] [Indexed: 07/18/2024]
Abstract
Pyrazole heterocycle is regarded as an extremely significant agent for the therapy of inflammation. Celecoxib, lonazolac, deracoxib, and phenylbutazone are examples of commercially approved pyrazole drugs with COX-2 inhibitory potential for curing inflammation. There have been recently many reviews for the biological significance of pyrazole derivatives. This review talks about pyrazole derivatives with anti-inflammatory activity and also sheds the light on the recent updates on pyrazole research with an emphasis on some synthetic pathways utilized to construct this privileged scaffold and structure activity relationship that accounts for the anti-inflammatory activity in an attempt to pave the opportunity for medicinal chemists to develop novel anti-inflammatory agents with better COX-2 selectivity.
Collapse
Affiliation(s)
- Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, 13713, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, 72388, Saudi Arabia.
| | - Nadia A A Elkanzi
- Chemistry Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Rania B Bakr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, 62514, Beni-Suef, Egypt.
| |
Collapse
|
2
|
Olender D, Pawełczyk A, Leśków A, Sowa-Kasprzak K, Zaprutko L, Diakowska D. Synthesis of bis-Chalcones Based on Green Chemistry Strategies and Their Cytotoxicity Toward Human MeWo and A375 Melanoma Cell Lines. Molecules 2024; 29:5171. [PMID: 39519811 PMCID: PMC11547983 DOI: 10.3390/molecules29215171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Chalcone is an aromatic ketone that forms the central core of many important biological compounds. Chalcone derivatives show various biological activities, especially anti-inflammatory, antibacterial, antioxidant, and anticancer activities, and also inhibit melanoma cell growth. In this study, we synthesized chalcone compounds with bis-chalcone's chemical structure under microwave (MW) and microwave-ultrasound (MW-US) conditions and compared them to chalcones produced using the classical synthesis method. All bis-chalcones were synthesized with terephthalaldehyde and an appropriate aromatic ketone as substrates in Claisen-Schmidt condensation. All the obtained compounds were tested regarding their roles as potential anticancer agents. The cytotoxic effect of the bis-chalcones against human MeWo and A375 melanoma cell lines was investigated through colorimetric MTT and SRB assays. The data were analyzed statistically. In the case of the synthesis of bis-chalcones, it was determined that the use of green conditions supported by the MW or MW-US factors led to an increase in the yield of the final products and a reduction in the reaction time compared to the classic method. The biological results showed the high cytotoxic effect of bis-chalcones. The present results show the compounds' high antiproliferative and cytotoxic potential, especially for the two selected bis-chalcone derivatives (3b and 3c), in particular, at concentrations of 50 μM-200 μM at 24, 48 h, and 72 h of incubation. The use of MW and US for the synthesis of bis-chalcones significantly improved the process compared to the classical method. The derivatives containing two hydroxy and two methoxy groups were the most effective against the tested cancer cells.
Collapse
Affiliation(s)
- Dorota Olender
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland; (A.P.); (K.S.-K.); (L.Z.)
| | - Anna Pawełczyk
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland; (A.P.); (K.S.-K.); (L.Z.)
| | - Anna Leśków
- Department of Medical Biology, Wroclaw Medical University, Chalubinskiego 3, 50-368 Wrocław, Poland; (A.L.); (D.D.)
| | - Katarzyna Sowa-Kasprzak
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland; (A.P.); (K.S.-K.); (L.Z.)
| | - Lucjusz Zaprutko
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland; (A.P.); (K.S.-K.); (L.Z.)
| | - Dorota Diakowska
- Department of Medical Biology, Wroclaw Medical University, Chalubinskiego 3, 50-368 Wrocław, Poland; (A.L.); (D.D.)
| |
Collapse
|
3
|
Kamel MG, Sroor FM, Hanafy MK, Mahrous KF, Hassaneen HM. Design, synthesis and potent anti-pancreatic cancer activity of new pyrazole derivatives bearing chalcone, thiazole and thiadiazole moieties: gene expression, DNA fragmentation, cell cycle arrest and SAR. RSC Adv 2024; 14:26954-26970. [PMID: 39193301 PMCID: PMC11348842 DOI: 10.1039/d4ra03005b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Less than 5% of pancreatic cancer patients survive for more than five years after diagnosis. Therefore, there is an urgent need for novel therapeutic drugs to treat pancreatic cancer. Herein, we report the synthesis and full characterization of fifteen novel pyrazole derivatives bearing chalcone (4-10), thiazole (16-19) and thiadiazole (23-26) moieties. All the newly synthesized pyrazole derivatives were tested in vitro as anti-cancer agents against pancreatic cancer (PaCa-2), breast cancer (MCF-7), prostate cancer (PC3), and normal cell lines (BJ1). Three pyrazolyl-chalcone derivatives (4, 5, and 7) and a pyrazolyl-thiadiazole derivative (25) showed potent anti-cancer activity against the PaCa-2 cell line with IC50 values of 13.0, 31.5, 24.9, and 5.5 μg mL-1, respectively, compared with doxorubicin (IC50 = 28.3 μg mL-1). Compound 25 showed potent anti-cancer activity against the PC3 cell line with an IC50 value of 11.8 μg mL-1. In contrast, compounds 4, 5 and 7 are safer against the normal human-cell line (BJ1) with IC50 values of 74.2, 76.6 and 81.1 μg mL-1, respectively, compared with compound 25, which has an IC50 value of 23.7 μg mL-1. The mechanism of action of compounds 4, 5 and 7 against pancreatic cancer cells was studied by investigating gene expression, DNA fragmentation, comet assay and flow cytometry experiments using doxorubicin as a reference drug. Moreover, the structure-activity relationship between the structures of these compounds and their biological properties was discussed.
Collapse
Affiliation(s)
- Monica G Kamel
- Department of Chemistry, Faculty of Science, Cairo University Giza Egypt
| | - Farid M Sroor
- Organometallic and Organometalloid Chemistry Department, National Research Centre Cairo 12622 Egypt
| | - Mahmoud Kh Hanafy
- Bioassay-Cell Culture Laboratory, National Research Centre Dokki 12622 Egypt
| | - Karima F Mahrous
- Cell Biology Department, National Research Centre Dokki 12622 Egypt
| | - Hamdi M Hassaneen
- Department of Chemistry, Faculty of Science, Cairo University Giza Egypt
| |
Collapse
|
4
|
Mukhtar SS, Sroor FM, Hafez TS, Abdelraof M, El-Sayed AF, Laboud YN, Hassaneen HM, Saleh FM. Evaluation of Pyrazolyl-Indolizine Derivatives as Antimicrobial Agents: Synthesis, In vitro, In silico ADMET and Molecular Docking Studies. Chem Biodivers 2024; 21:e202400825. [PMID: 38802323 DOI: 10.1002/cbdv.202400825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Herein, we report analogues of s-indacene by the synthesis of novel indolizine derivatives. Using chloroform as an appropriate solvent, sixteen derivatives of pyrazolyl-indolizine (4--19) were prepared by the reaction of 3-(dimethylamino)-1-(1H-pyrrol-2-yl)prop-2-en-1-one (1) with hydrazonoyl chloride derivatives (2) in the presence of triethylamine in good to excellent yields. We used NMR spectra, IR, mass spectrometry, as well as elemental analyses to prove the chemical structures and the purity of the synthesized compounds 4-19. Among all tested compounds 5, 9, 13 and 19 had a potent antimicrobial efficiency against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aerginousea, Sallmonella typhemerium, and Candida albicans. Furthermore, a significant increase in lipid peroxidation (LPO) toward the Gram-negative bacteria, Pseudomonas aeruginosa when treated with compound 9 was observed, while compound 13 remarkably increased the cell membrane oxidation of Salmonella typhimurium. Additionally, we utilized docking studies and in silico methods to evaluate the drug-likeness, physicochemical properties, and ADMET profiles of the compounds. The results of the molecular docking simulation revealed that the synthesized compounds displayed decreased binding energy when interacting with the active sites of important enzymes, including Sterol 14-demethylase of C. albicans, Dihydropteroate synthase of S. aureus, LasR of P. aeruginosa, Glucosamine-6-phosphate synthase of S. typhimurium, and Gyrase B of B. subtilis.
Collapse
Affiliation(s)
- Shorouk S Mukhtar
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 12622, Cairo, Egypt
| | - Farid M Sroor
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 12622, Cairo, Egypt
| | - Taghrid S Hafez
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 12622, Cairo, Egypt
| | - Mohamed Abdelraof
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Ahmed F El-Sayed
- Microbial Genetics Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Yara N Laboud
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Hamdi M Hassaneen
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Fatma M Saleh
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Yasser N, Sroor FM, El-Shorbagy HM, Eissa SM, Hassaneen HM, Abdelhamid IA. Synthesis, anticancer evaluation of novel hybrid pyrazole-based chalcones, molecular docking, DNA fragmentation, and gene expression: in vitro studies. RSC Adv 2024; 14:21859-21873. [PMID: 38984258 PMCID: PMC11232109 DOI: 10.1039/d4ra03375b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
A unique series of pyrazolyl-chalcone derivatives was synthesized via the method of Claisen-Schmidt condensation. The desired chalcone derivatives 7a-d and 9a-f were obtained in good yields by reacting the 4-acetyl-5-thiophene-pyrazole with the appropriate heteroaryl aldehyde derivatives. The novel chalcones have undergone complete elemental analysis, 1H-NMR, 13C-NMR, mass spectrometry, and IR characterization. The three human cancer cell lines MCF7 (human Caucasian breast adenocarcinoma), PC3 (prostatic cancer) and PACA2 (pancreatic carcinoma) as well as the normal cell line BJ1 (normal skin fibroblasts) were tested in vitro for the anti-cancer properties of the newly synthesized chalcone derivatives. When compared to the reference medicine doxorubicin (IC50 = 52.1 μM), compound 9e showed the most promise derivative (IC50 = 27.6 μM) against PACA2 cells, while compound 7d demonstrated anticancer efficacy (IC50 = 42.6 μM against MCF7 cells compared to the reference drug doxorubicin (IC50 = 48 μM). Using breast and pancreatic cell lines, the gene expression, DNA damage, and DNA fragmentation percentages for compounds 7d and 9e were evaluated. Moreover, the molecular docking study of compounds 7d and 9e was assessed. The binding affinities of compound 9e toward P53 mutant Y220C was -22 kcal per mole, while those of compound 7d towards Bcl2 and CDK4 were -27.81 and -26.9 kcal per mole, respectively, compared to the standard values (-15.82, -33.96 and -29.9 kcal per mole).
Collapse
Affiliation(s)
- Norhan Yasser
- Department of Zoology, Faculty of Science, Cairo University 12613 Giza Egypt
- Faculty of Biotechnology, October University for Modern Science and Arts 6th October Giza Egypt
| | - Farid M Sroor
- Organometallic and Organometalloid Chemistry Department, National Research Centre 12622 Cairo Egypt
| | - Haidan M El-Shorbagy
- Department of Zoology, Faculty of Science, Cairo University 12613 Giza Egypt
- Faculty of Biotechnology, October University for Modern Science and Arts 6th October Giza Egypt
| | - Shaymaa M Eissa
- Department of Zoology, Faculty of Science, Cairo University 12613 Giza Egypt
| | - Hamdi M Hassaneen
- Department of Chemistry, Faculty of Science, Cairo University Giza Egypt
| | | |
Collapse
|
6
|
Sroor FM, Soliman AAF, Youssef EM, Abdelraof M, El-Sayed AF. Green, facile synthesis and evaluation of unsymmetrical carbamide derivatives as antimicrobial and anticancer agents with mechanistic insights. Sci Rep 2024; 14:15441. [PMID: 38965246 PMCID: PMC11224357 DOI: 10.1038/s41598-024-65308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 06/19/2024] [Indexed: 07/06/2024] Open
Abstract
A very practical method for the synthesis of unsymmetrical carbamide derivatives in good to excellent yield was presented, without the need for any catalyst and at room temperature. Using a facile and robust protocol, fifteen unsymmetrical carbamide derivatives (9-23) bearing different aliphatic amine moieties were designed and synthesized by the reaction of secondary aliphatic amines with isocyanate derivatives in the presence of acetonitrile as an appropriate solvent in good to excellent yields. Trusted instruments like IR, mass spectrometry, NMR spectra, and elemental analyses were employed to validate the purity and chemical structures of the synthesized compounds. All the synthesized compounds were tested as antimicrobial agents against some clinically bacterial pathogens such as Salmonella typhimurium, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans. Compounds 15, 16, 17, 19 and 22 showed potent antimicrobial activity with promising MIC values compared to the positive controls. Moreover, compounds 15 and 22 provide a potent lipid peroxidation (LPO) of the bacterial cell wall. On the other hand, we investigated the anti-proliferative activity of compounds 9-23 against selected human cancerous cell lines of breast (MCF-7), colon (HCT-116), and lung (A549) relative to healthy noncancerous control skin fibroblast cells (BJ-1). The mechanism of their cytotoxic activity has been also examined by immunoassaying the levels of key anti- and pro-apoptotic protein markers. The results of MTT assay revealed that compounds 10, 13, 21, 22 and 23 possessed highly cytotoxic effects. Out of these, three synthesized compounds 13, 21 and 22 showed cytotoxicity with IC50 values (13, IC50 = 62.4 ± 0.128 and 22, IC50 = 91.6 ± 0.112 µM, respectively, on MCF-7), (13, IC50 = 43.5 ± 0.15 and 21, IC50 = 38.5 ± 0.17 µM, respectively, on HCT-116). Cell cycle and apoptosis/necrosis assays demonstrated that compounds 13 and 22 induced S and G2/M phase cell cycle arrest in MCF-7 cells, while only compound 13 had this effect on HCT-116 cells. Furthermore, compound 13 exhibited the greatest potency in inducing apoptosis in both cell lines compared to compounds 21 and 22. Docking studies indicated that compounds 10, 13, 21 and 23 could potentially inhibit enzymes and exert promising antimicrobial effects, as evidenced by their lower binding energies and various types of interactions observed at the active sites of key enzymes such as Sterol 14-demethylase of C. albicans, Dihydropteroate synthase of S. aureus, LasR of P. aeruginosa, Glucosamine-6-phosphate synthase of K. pneumenia and Gyrase B of B. subtilis. Moreover, 13, 21, and 22 demonstrated minimal binding energy and favorable affinity towards the active pocket of anticancer receptor proteins, including CDK2, EGFR, Erα, Topoisomerase II and VEGFFR. Physicochemical properties, drug-likeness, and ADME (absorption, distribution, metabolism, excretion, and toxicity) parameters of the selected compounds were also computed.
Collapse
Affiliation(s)
- Farid M Sroor
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, 12622, Egypt.
| | - Ahmed A F Soliman
- Pharmacognosy Department, National Research Centre, Dokki, 12622, Egypt
| | | | - Mohamed Abdelraof
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Ahmed F El-Sayed
- Microbial Genetics Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| |
Collapse
|
7
|
Sroor FM, Tohamy WM, Zoheir KMA, Abdelazeem NM, Mahrous KF, Ibrahim NS. Design, synthesis, in vitro anticancer, molecular docking and SAR studies of new series of pyrrolo[2,3-d]pyrimidine derivatives. BMC Chem 2023; 17:106. [PMID: 37641068 PMCID: PMC10463376 DOI: 10.1186/s13065-023-01014-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
The current study involves the design and synthesis of a newly synthesized pyrrolo[2,3-d]pyrimidine derivatives to contain chlorine atoms in positions 4 and 6 and trichloromethyl group in position 2 using microwave technique as a new and robust approach for preparation of this type of pyrrolo[2,3-d]pyrimidine derivatives. The chemical structure of the synthesized pyrrolo[2,3-d]pyrimidine derivatives 3-19 was well-characterized using spectral and elemental analyses as well as single-crystal X-ray diffraction. All compounds were tested in vitro against seven selected human cancer cell lines, namely, MCF7, A549, HCT116, PC3, HePG2, PACA2 and BJ1 using MTT assay. It was found that compounds 14a, 16b and 18b were the most active toward MCF7 with IC50 (1.7, 5.7, and 3.4 μg/ml, respectively) relative to doxorubicin (Dox.) (26.1 μg/ml). Additionally, compound 17 exerted promising cytotoxic effects against HePG2 and PACA2 with IC50 (8.7 and 6.4 μg/ml, respectively) relative to Dox. (21.6 and 28.3 μg/ml, respectively). The molecular docking study confirmed our ELISA result which showed the promising binding affinities of compounds 14a and 17 against Bcl2 anti-apoptotic protein. At the gene expression level, P53, BAX, DR4 and DR5 were up-regulated, while Bcl2, Il-8, and CDK4 were down-regulated in 14a, 14b and 18b treated MCF7 cells. At the protein level, compound 14b increased the activity of Caspase 8 and BAX (18.263 and 14.25 pg/ml) relative to Dox. (3.99 and 4.92 pg/ml, respectively), while the activity of Bcl2 was greatly decreased in 14a treated MCF7 (2.4 pg/ml) compared with Dox. (14.37 pg/ml). Compounds 14a and 14b caused cell cycle arrest at the G1/S phase in MCF7. Compounds 16b and 18b induced the apoptotic death of MCF7 cells. In addition, the percentage of fragmented DNA was increased significantly in 14a treated MCF7 cells.
Collapse
Affiliation(s)
- Farid M Sroor
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, 12622, Egypt.
| | - Wael M Tohamy
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, 12622, Egypt
| | - Khairy M A Zoheir
- Cell Biology Department, National Research Centre, Dokki, 12622, Egypt
| | - Nagwa M Abdelazeem
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, 12622, Egypt
| | - Karima F Mahrous
- Cell Biology Department, National Research Centre, Dokki, 12622, Egypt
| | - Nada S Ibrahim
- Department of Chemistry (Biochemistry Branch), Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
8
|
Chalcones: Promising therapeutic agents targeting key players and signaling pathways regulating the hallmarks of cancer. Chem Biol Interact 2023; 369:110297. [PMID: 36496109 DOI: 10.1016/j.cbi.2022.110297] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The need for innovative anticancer treatments with high effectiveness and low toxicity is urgent due to the development of malignancies that are resistant to chemotherapeutic agents and the poor specificity of existing anticancer treatments. Chalcones are 1,3-diaryl-2-propen-1-ones, which are the precursors for flavonoids and isoflavonoids. Chalcones are readily available from a wide range of natural resources and consist of very basic chemical scaffolds. Because the ease with which the synthesis it allows for the production of several chalcone derivatives. Various in-vitro and in-vivo studies indicate that naturally occurring and synthetic chalcone derivatives exhibit promising biological activities against cancer hallmarks such as proliferation, angiogenesis, invasion, metastasis, inflammation, stemness, and regulation of cancer epigenetics. According to their structure and functional groups, chalcones derivatives and their hybrid compounds exert a broad range of biological activities through targeting key elements and signaling molecules relevant to cancer progression. This review will provide valuable insights into the latest updates of chalcone groups as anticancer agents and extensively discuss their underlying molecular mechanisms of action.
Collapse
|
9
|
Mahmoud HK, Selim NHM, Elwahy AHM, Abdelhamid IA, Diab HM. Microwave-Assisted Hantzsch-Like Synthesis of Novel Bis(Tetrahydrobenzo[4,5]Imidazo[2,1- b]Quinazolinones). Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2151476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Huda Kamel Mahmoud
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Ahmed H. M. Elwahy
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Hadeer M. Diab
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
10
|
Salem ME, Fares IMZ, Ghozlan SAS, Elwahy AHM, Abdelhamid IA. Hantzsch-like three-component synthesis of bis(1,4-dihydropyridines) and bis(fused-1,4-dihydropyridines) linked to piperazine core via 2-phenoxyethanone linkage: Novel hybrid molecules. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2122844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Mostafa E. Salem
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | | | | | | |
Collapse
|
11
|
Abdelhamid IA, Shaaban MR, Elwahy AH. Bis-aldehydes: Versatile precursors for bis-heterocycles. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|