1
|
Gorjipour F, Bohloolighashghaei S, Sotoudeheian M, Pazoki Toroudi H. Fetal adnexa-derived allogeneic mesenchymal stem cells for cardiac regeneration: the future trend of cell-based therapy for age-related adverse conditions. Hum Cell 2025; 38:61. [PMID: 39998714 DOI: 10.1007/s13577-025-01190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Heart failure is known as the leading cause of mortality and morbidity in adults, not only in USA but worldwide. Since the world's population is aging, the burden of cardiovascular disorders is increasing. Mesenchymal stem/stromal cells (MSCs) from a patient's bone marrow or other tissues have been widely used as the primary source of stem cells for cellular cardiomyoplasty. The incongruencies that exist between various cell-therapy approaches for cardiac diseases could be attributed to variations in cell processing methods, quality of the process, and cell donors. Off-the-shelf preparations of MSCs, enabled by batch processing of the cells and controlled cell processing factories in regulated facilities, may offer opportunities to overcome these problems. In this study, for the first time, we focused on the fetal membranes and childbirth byproducts as a promising source of cells for regenerative medicine. While many studies have described the advantages of cells derived from these organs, their advantage as a source of younger cells has not been sufficiently covered by the literature. Thus, herein, we highlight challenges that may arise from the impairment of the regenerative capacity of MSCs due to donor age and how allograft cells from fetal adnexa can be a promising substitute for the aged patients' stem cells for myocardial regeneration. Moreover, obstacles to the use of off-the-shelf cell-therapy preparations in regenerative medicine are briefly summarized here.
Collapse
Affiliation(s)
- Fazel Gorjipour
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Hamidreza Pazoki Toroudi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Cosentino M, Nicoletti C, Valenti V, Schirone L, Di Nonno F, Apa L, Zouhair M, Genovese D, Madaro L, Dinarelli S, Rossi M, Del Prete Z, Sciarretta S, Frati G, Rizzuto E, Musarò A. Remodeled eX vivo muscle engineered tissue improves heart function after chronic myocardial ischemia. Sci Rep 2023; 13:10370. [PMID: 37365262 DOI: 10.1038/s41598-023-37553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 06/23/2023] [Indexed: 06/28/2023] Open
Abstract
The adult heart displays poor reparative capacities after injury. Cell transplantation and tissue engineering approaches have emerged as possible therapeutic options. Several stem cell populations have been largely used to treat the infarcted myocardium. Nevertheless, transplanted cells displayed limited ability to establish functional connections with the host cardiomyocytes. In this study, we provide a new experimental tool, named 3D eX vivo muscle engineered tissue (X-MET), to define the contribution of mechanical stimuli in triggering functional remodeling and to rescue cardiac ischemia. We revealed that mechanical stimuli trigger a functional remodeling of the 3D skeletal muscle system toward a cardiac muscle-like structure. This was supported by molecular and functional analyses, demonstrating that remodeled X-MET expresses relevant markers of functional cardiomyocytes, compared to unstimulated and to 2D- skeletal muscle culture system. Interestingly, transplanted remodeled X-MET preserved heart function in a murine model of chronic myocardial ischemia and increased survival of transplanted injured mice. X-MET implantation resulted in repression of pro-inflammatory cytokines, induction of anti-inflammatory cytokines, and reduction in collagen deposition. Altogether, our findings indicate that biomechanical stimulation induced a cardiac functional remodeling of X-MET, which showed promising seminal results as a therapeutic product for the development of novel strategies for regenerative medicine.
Collapse
Affiliation(s)
- Marianna Cosentino
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, 00161, Rome, Italy
| | - Carmine Nicoletti
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, 00161, Rome, Italy
| | - Valentina Valenti
- Department of Cardiology, Ospedale Santa Maria Goretti, 04100, Latina, Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Leonardo Schirone
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | | | - Ludovica Apa
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184, Rome, Italy
| | - Mariam Zouhair
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, 00161, Rome, Italy
| | - Desiree Genovese
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, 00161, Rome, Italy
| | - Luca Madaro
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Simone Dinarelli
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, 00161, Rome, Italy
| | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, 00161, Rome, Italy
| | - Zaccaria Del Prete
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184, Rome, Italy
| | - Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| | - Emanuele Rizzuto
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184, Rome, Italy
| | - Antonio Musarò
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14, 00161, Rome, Italy.
- Scuola Superiore di Studi Avanzati Sapienza (SSAS), Sapienza University of Rome, 00185, Rome, Italy.
| |
Collapse
|
3
|
Shazly T, Smith A, Uline MJ, Spinale FG. Therapeutic payload delivery to the myocardium: Evolving strategies and obstacles. JTCVS OPEN 2022; 10:185-194. [PMID: 36004211 PMCID: PMC9390211 DOI: 10.1016/j.xjon.2022.04.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Key Words
- BMC, bone marrow cell
- HF, heart failure
- ID, intracoronary delivery
- IMD, intramyocardial delivery
- IPD, intrapericardial delivery
- LV, left ventricle
- MI, myocardial infarct
- MSC, mesenchymal stem cell
- TED, transendocardial delivery
- bFGF, basic fibroblast growth factor
- biomaterial
- cardiac
- injection
- local delivery
- myocardium
- payload
Collapse
Affiliation(s)
- Tarek Shazly
- College of Engineering and Computing, School of Medicine, University of South Carolina, Columbia, SC
| | - Arianna Smith
- College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, Fla
| | - Mark J. Uline
- College of Engineering and Computing, School of Medicine, University of South Carolina, Columbia, SC
| | - Francis G. Spinale
- College of Engineering and Computing, School of Medicine, University of South Carolina, Columbia, SC
- Cardiovascular Translational Research Center, School of Medicine, University of South Carolina, Columbia, SC
- Columbia VA Health Care System, Columbia, SC
| |
Collapse
|
4
|
Yousefi-Ahmadipour A, Asadi F, Pirsadeghi A, Nazeri N, Vahidi R, Abazari MF, Afgar A, Mirzaei-Parsa MJ. Current Status of Stem Cell Therapy and Nanofibrous Scaffolds in Cardiovascular Tissue Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00230-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Cardiac Differentiation of Mesenchymal Stem Cells: Impact of Biological and Chemical Inducers. Stem Cell Rev Rep 2021; 17:1343-1361. [PMID: 33864233 DOI: 10.1007/s12015-021-10165-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular disorders (CVDs) are the leading cause of global death, widely occurs due to irreparable loss of the functional cardiomyocytes. Stem cell-based therapeutic approaches, particularly the use of Mesenchymal Stem Cells (MSCs) is an emerging strategy to regenerate myocardium and thereby improving the cardiac function after myocardial infarction (MI). Most of the current approaches often employ the use of various biological and chemical factors as cues to trigger and modulate the differentiation of MSCs into the cardiac lineage. However, the recent advanced methods of using specific epigenetic modifiers and exosomes to manipulate the epigenome and molecular pathways of MSCs to modify the cardiac gene expression yield better profiled cardiomyocyte like cells in vitro. Hitherto, the role of cardiac specific inducers triggering cardiac differentiation at the cellular and molecular level is not well understood. Therefore, the current review highlights the impact and recent trends in employing biological and chemical inducers on cardiac differentiation of MSCs. Thereby, deciphering the interactions between the cellular microenvironment and the cardiac inducers will help us to understand cardiomyogenesis of MSCs. Additionally, the review also provides an insight on skeptical roles of the cell free biological factors and extracellular scaffold assisted mode for manipulation of native and transplanted stem cells towards translational cardiac research.
Collapse
|
6
|
Qazi REM, Naeem N, Khan I, Qadeer Q, Shaheen F, Salim A. Effect of a dianthin G analogue in the differentiation of rat bone marrow mesenchymal stem cells into cardiomyocytes. Mol Cell Biochem 2020; 475:27-39. [PMID: 32737770 DOI: 10.1007/s11010-020-03855-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023]
Abstract
Loss of cardiomyocytes due to myocardial infarction results in ventricular remodeling which includes non-contractile scar formation, which can lead to heart failure. Stem cell therapy aims to replace the scar tissue with the functional myocardium. Mesenchymal stem cells (MSCs) are undifferentiated cells capable of self-renewal as well as differentiation into multiple lineages. MSCs can be differentiated into cardiomyocytes by treating them with small molecules and peptides. Here, we report for the first time, the role of a cyclic peptide, an analogue of dianthin G, [Glu2]-dianthin G (1) in the in vitro cardiac differentiation of rat bone marrow MSCs. In this study, [Glu2]-dianthin G (1) was synthesized using solid-phase total synthesis and characterized by NMR spectroscopy. MSCs were treated with two different concentrations (0.025 and 0.05 mM) of the peptide separately for 72 h and then incubated for 15 days to allow the cells to differentiate into cardiomyocytes. Treated cells were analyzed for the expression of cardiac-specific genes and proteins. Results showed significant upregulation of cardiac-specific genes GATA4, cardiac troponin T (cTnT), cardiac troponin I (cTnI), cardiac myosin heavy chain, and connexin 43 in the treated MSCs compared to the untreated control. For cardiac-specific proteins, GATA4, cTnT, and Nkx2.5 were analyzed in the treated cells and were shown to have significant upregulation as compared to the untreated control. In conclusion, this study has demonstrated the cardiac differentiation potential of [Glu2]-dianthin G (1)-treated rat bone marrow MSCs in vitro both at the gene and at the protein levels. Transplantation of pre-differentiated MSCs into the infarcted myocardium may result in the efficient regeneration of cardiac cells and restoration of normal cardiac function.
Collapse
Affiliation(s)
- Rida-E-Maria Qazi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Nadia Naeem
- Dow University of Health Sciences, Ojha Campus, Gulzar-e-Hijri, Suparco Road, KDA Scheme-33, Karachi, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Quratulain Qadeer
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Farzana Shaheen
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
7
|
Laiva AL, Venugopal JR, Navaneethan B, Karuppuswamy P, Ramakrishna S. Biomimetic approaches for cell implantation to the restoration of infarcted myocardium. Nanomedicine (Lond) 2015; 10:2907-30. [PMID: 26371367 DOI: 10.2217/nnm.15.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Compelling evidences accumulated over the years have proven stem cells as a promising source for regenerative medicine. However, the inadequacy with the design of delivery modalities has prolonged the research in realizing an ideal cell-based approach for the regeneration of infarcted myocardium. Currently, some modest improvements in cardiac function have been documented in clinical trials with stem cell treatments, although regenerating a fully functional myocardium remains a dream for cardiac surgeons. This review provides an overview on the significance of stem cell therapy, the current attempts to resolve the drawbacks with the cell implantation approach and the various stratagems adopted with electrospun hybrid nanofibers for implementation in myocardial regenerative therapy.
Collapse
Affiliation(s)
- Ashang Luwang Laiva
- Center for Nanofibers & Nanotechnology, Nanoscience & Nanotechnology Initiative, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block E3, #05-12, 2 Engineering Drive 3, Singapore 117576.,Amity Institute of Nanotechnology, Amity University, Noida, UP, India
| | - Jayarama Reddy Venugopal
- Center for Nanofibers & Nanotechnology, Nanoscience & Nanotechnology Initiative, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block E3, #05-12, 2 Engineering Drive 3, Singapore 117576
| | - Balchandar Navaneethan
- Center for Nanofibers & Nanotechnology, Nanoscience & Nanotechnology Initiative, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block E3, #05-12, 2 Engineering Drive 3, Singapore 117576
| | - Priyadharsini Karuppuswamy
- Center for Nanofibers & Nanotechnology, Nanoscience & Nanotechnology Initiative, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block E3, #05-12, 2 Engineering Drive 3, Singapore 117576
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Nanoscience & Nanotechnology Initiative, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block E3, #05-12, 2 Engineering Drive 3, Singapore 117576
| |
Collapse
|
8
|
Castells-Sala C, Martínez-Ramos C, Vallés-Lluch A, Monleón Pradas M, Semino C. in vitro development of bioimplants made up of elastomeric scaffolds with peptide gel filling seeded with human subcutaneous adipose tissue-derived progenitor cells. J Biomed Mater Res A 2015; 103:3419-30. [PMID: 25903327 DOI: 10.1002/jbm.a.35482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 03/31/2015] [Accepted: 04/13/2015] [Indexed: 12/17/2022]
Abstract
Myocardial tissue lacks the ability to regenerate itself significantly following a myocardial infarction. Thus, new strategies that could compensate this lack are of high interest. Cardiac tissue engineering (CTE) strategies are a relatively new approach that aims to compensate the tissue loss using combination of biomaterials, cells and bioactive molecules. The goal of the present study was to evaluate cell survival and growth, seeding capacity and cellular phenotype maintenance of subcutaneous adipose tissue-derived progenitor cells in a new synthetic biomaterial scaffold platform. Specifically, here we tested the effect of the RAD16-I peptide gel in microporous poly(ethyl acrylate) polymers using two-dimensional PEA films as controls. Results showed optimal cell adhesion efficiency and growth in the polymers coated with the self-assembling peptide RAD16-I. Importantly, subATDPCs seeded into microporous PEA scaffolds coated with RAD16-I maintained its phenotype and were able to migrate outwards the bioactive patch, hopefully toward the infarcted area once implanted. These data suggest that this bioimplant (scaffold/RAD16-I/cells) can be suitable for further in vivo implantation with the aim to improve the function of affected tissue after myocardial infarction.
Collapse
Affiliation(s)
- Cristina Castells-Sala
- Tissue Engineering Laboratory, Bioengineering Department, Institut Químic De Sarrià, Universitat Ramon Llull, Barcelona, Spain
| | - Cristina Martínez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica De Valencia, Cno. De Vera S/N, Valencia, 46022, Spain
| | - Ana Vallés-Lluch
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica De Valencia, Cno. De Vera S/N, Valencia, 46022, Spain
| | - Manuel Monleón Pradas
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica De Valencia, Cno. De Vera S/N, Valencia, 46022, Spain
| | - Carlos Semino
- Tissue Engineering Laboratory, Bioengineering Department, Institut Químic De Sarrià, Universitat Ramon Llull, Barcelona, Spain
| |
Collapse
|
9
|
Moon SH, Kang SW, Park SJ, Bae D, Kim SJ, Lee HA, Kim KS, Hong KS, Kim JS, Do JT, Byun KH, Chung HM. The use of aggregates of purified cardiomyocytes derived from human ESCs for functional engraftment after myocardial infarction. Biomaterials 2013; 34:4013-4026. [DOI: 10.1016/j.biomaterials.2013.02.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/10/2013] [Indexed: 11/15/2022]
|
10
|
Gandolfi F, Vanelli A, Pennarossa G, Rahaman M, Acocella F, Brevini TAL. Large animal models for cardiac stem cell therapies. Theriogenology 2011; 75:1416-25. [PMID: 21463721 DOI: 10.1016/j.theriogenology.2011.01.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 01/18/2011] [Accepted: 01/23/2011] [Indexed: 01/12/2023]
Abstract
Cardiovascular disease is the leading cause of death in developed countries and is one of the leading causes of disease burden in developing countries. Therapies have markedly increased survival in several categories of patients, nonetheless mortality still remains high. For this reason high hopes are associated with recent developments in stem cell biology and regenerative medicine that promise to replace damaged or lost cardiac muscle with healthy tissue, and thus to dramatically improve the quality of life and survival in patients with various cardiomyopathies. Much of our insight into the molecular and cellular basis of cardiovascular biology comes from small animal models, particularly mice. However, significant differences exist with regard to several cardiac characteristics when mice are compared with humans. For this reason, large animal models like dog, sheep and pig have a well established role in cardiac research. A distinct characteristic of cardiac stem cells is that they can either be endogenous or derive from outside the heart itself; they can originate as the natural course of their differentiation programme (e.g., embryonic stem cells) or can be the result of specific inductive conditions (e.g., mesenchymal stem cells). In this review we will summarize the current knowledge on the kind of heart-related stem cells currently available in large animal species and their relevance to human studies as pre-clinical models.
Collapse
Affiliation(s)
- F Gandolfi
- Centre for Stem Cell Research, Università degli Studi di Milano, Milano, Italy.
| | | | | | | | | | | |
Collapse
|