1
|
Kawamura J, Yamakuchi M, Ueno K, Hashiguchi T, Okamoto Y. MiR-25-3p regulates pulmonary arteriovenous malformation after Glenn procedure in patients with univentricular heart via the PHLPP2-HIF-1α axis. Sci Rep 2025; 15:4138. [PMID: 39900983 PMCID: PMC11790876 DOI: 10.1038/s41598-025-88840-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/31/2025] [Indexed: 02/05/2025] Open
Abstract
The detailed mechanism of pulmonary arteriovenous malformations after Glenn surgery (G-PAVMs) in cyanotic congenital heart disease (CHD) remains unclear. Microarray in situ hybridization was performed to assess the miRNA (miRNA) profiles of serum from pediatric patients (0-6 years of age) with G-PAVMs and after the Fontan procedure without G-PAVMs. In addition, we investigated the tube formation, migration, and proliferation of human lung microvascular endothelial cells (HMVEC-L) transfected with miR-25-3p mimic, miR-25-3p inhibitor, or PHLPP2 small interfering RNA, and examined HIF-1α/VEGF-A signaling after hypoxic stimulation. Serum miRNAs that showed ≥ 2-fold higher levels in patients with G-PAVMs than in other patients were selected. MiR-25-3p was significantly upregulated in the pulmonary artery sera of the post-Glenn group than in the post-Fontan group. We identified PHLPP2 as a direct target of miR-25-3p. PHLPP2 expression was significantly decreased in HMVEC-L transfected with miR-25-3p mimic compared to the control cells. HIF-1α and VEGF-A expression levels were increased in HMVEC-L transfected with miR-25-3p mimic compared to the control cells in a PHLPP2/Akt/mTOR signaling-dependent manner after hypoxic stimulation. MiR-25-3p promoted HMVEC-L angiogenesis, proliferation, and migration under hypoxic conditions. MiR-25-3p in the pulmonary arteries may contribute to G-PAVM development.
Collapse
Affiliation(s)
- Junpei Kawamura
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Munekazu Yamakuchi
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan.
| | - Kentaro Ueno
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Teruto Hashiguchi
- Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Yasuhiro Okamoto
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
2
|
Bolin EH, Mourani PM, Byrum SD, Mackintosh SG, Dossey AM, Angtuaco MJ, Zakaria D, Greiten LE, Strub GM, Zhang H, Richter GT. Quantitative plasma proteomic analysis in children after superior cavopulmonary anastomosis with pulmonary arteriovenous malformations. Pediatr Res 2025; 97:1193-1198. [PMID: 39134758 DOI: 10.1038/s41390-024-03450-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/18/2024] [Indexed: 05/08/2025]
Abstract
Approximately 1000 children are born every year in the United States with one effective cardiac pumping chamber, or single ventricle heart disease. One of the early causes of mortality in this population is pulmonary arteriovenous malformations (PAVMs), which allow blood to bypass gas exchange in the lungs. PAVMs most frequently occur in children after superior cavopulmonary anastomosis (SCPA), a procedure that redirects venous blood from the upper body to the lungs. Because plasma proteins are in part responsible for directing angiogenesis, we hypothesized that differential protein concentrations would be observed in superior caval blood among children after SCPA according to PAVM status. We performed quantitative plasma proteomics from 11 children with PAVMs and in seven children without PAVMs; an additional 11 children with Fontan circulation were included as a reference. Among children with SCPA, there were no significant differences in the plasma proteomes for those with and without PAVMs. When comparing children with Fontan circulation to those with SCPA and PAVMs, 18 proteins exhibited differential expression (10 downregulated and eight upregulated) in superior caval plasma. These results suggest that factors other than, or in addition to, plasma proteins may be responsible for single ventricle patients' susceptibility to PAVMs after SCPA. IMPACT: What is the key message of your article? We did not identify significant differences in plasma proteins when comparing those children with and without pulmonary arteriovenous malformations (PAVMs) after superior cavopulmonary anastomosis (SCPA). What does it add to the existing literature? The etiology of PAVMs in this population is likely due to factors other than, or in addition to, differences in plasma proteins. What is the impact? Further studies are needed to identify causes of PAVMs among children after SCPA.
Collapse
Affiliation(s)
- Elijah H Bolin
- Department of Pediatrics, Section of Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Arkansas Children's Research Institute, Little Rock, AR, USA.
| | - Peter M Mourani
- Arkansas Children's Research Institute, Little Rock, AR, USA
- Department of Pediatrics, Critical Care Section, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stephanie D Byrum
- Arkansas Children's Research Institute, Little Rock, AR, USA
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Samuel G Mackintosh
- Arkansas Children's Research Institute, Little Rock, AR, USA
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Amy M Dossey
- Department of Pediatrics, Section of Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Michael J Angtuaco
- Department of Pediatrics, Section of Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Dala Zakaria
- Department of Pediatrics, Section of Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Lawrence E Greiten
- Arkansas Children's Research Institute, Little Rock, AR, USA
- Department of Surgery, Section of Pediatric Cardiovascular Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Graham M Strub
- Arkansas Children's Research Institute, Little Rock, AR, USA
- Department of Otolaryngology, Section of Pediatric Otolaryngology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Haihong Zhang
- Arkansas Children's Research Institute, Little Rock, AR, USA
- Department of Otolaryngology, Section of Pediatric Otolaryngology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Gresham T Richter
- Arkansas Children's Research Institute, Little Rock, AR, USA
- Department of Otolaryngology, Section of Pediatric Otolaryngology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
3
|
Pulmonary Vascular Sequelae of Palliated Single Ventricle Circulation: Arteriovenous Malformations and Aortopulmonary Collaterals. J Cardiovasc Dev Dis 2022; 9:jcdd9090309. [PMID: 36135454 PMCID: PMC9501802 DOI: 10.3390/jcdd9090309] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Children and adults with single ventricle congenital heart disease (CHD) develop many sequelae during staged surgical palliation. Universal pulmonary vascular sequelae in this patient population include two inter-related but distinct complications: pulmonary arteriovenous malformations (PAVMs) and aortopulmonary collaterals (APCs). This review highlights what is known and unknown about these vascular sequelae focusing on diagnostic testing, pathophysiology, and areas in need of further research.
Collapse
|
4
|
Merbach M, Ramchandran R, Spearman AD. Hepatic factor may not originate from hepatocytes. Front Cardiovasc Med 2022; 9:999315. [PMID: 36148055 PMCID: PMC9486074 DOI: 10.3389/fcvm.2022.999315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
Pulmonary arteriovenous malformations (PAVMs) develop universally in patients with univentricular congenital heart disease. They are believed to form due to lack of an unidentified factor from hepatocytes that perfuses the lungs to maintain vascular homeostasis and prevent PAVM formation. This unidentified factor is termed hepatic factor; however, the identity, mechanism, and origin of hepatic factor are unknown. Several hepatic factor candidates have been previously proposed, but few data are available to support previous hypotheses. Recent data showed that soluble vascular endothelial growth factor receptor 1 (sVEGFR1) is enriched in hepatic vein blood and may be a potential hepatic factor candidate. We used imaging and molecular approaches with wild-type mice to determine whether sVEGFR1 originates from hepatocytes in the liver. To our surprise, we identified that sVEGFR1 is negligibly expressed by hepatocytes but is robustly expressed by the non-parenchymal cell population of the liver. This suggests that hepatic factor may not originate from hepatocytes and alternative hypotheses should be considered. We believe it is necessary to consider hepatic factor candidates more broadly to finally identify hepatic factor and develop targeted therapies for CHD-associated PAVMs.
Collapse
Affiliation(s)
- Monica Merbach
- Division of Cardiology, Department of Pediatrics, Medical College of Wisconsin, Children's Wisconsin, Herma Heart Institute, Milwaukee, WI, United States
| | - Ramani Ramchandran
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States,Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Children's Wisconsin, Milwaukee, WI, United States
| | - Andrew D. Spearman
- Division of Cardiology, Department of Pediatrics, Medical College of Wisconsin, Children's Wisconsin, Herma Heart Institute, Milwaukee, WI, United States,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States,*Correspondence: Andrew D. Spearman
| |
Collapse
|
5
|
A Comparative Study of Invasive Modalities for Evaluation of Pulmonary Arteriovenous Fistula after Bidirectional Glenn Shunt. Pediatr Cardiol 2021; 42:1818-1825. [PMID: 34331559 DOI: 10.1007/s00246-021-02670-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
Development of pulmonary AV fistula (PAVF) after bidirectional glenn shunt (BDG) results in significant cyanosis, impaired exercise performance, and increased morbidity and mortality. We attempted to detect and quantify PAVF in post-BDG patients by saline contrast transesophageal echocardiography (TEE) and compare with pulmonary angiography and pulmonary vein oximetry. This was a prospective study done between 2017 and 2018. Twenty-five children who underwent BDG and planned for cardiac catheterization prior to Fontan completion were included in the study. All patients underwent pulmonary angiography, oximetry, and saline contrast TEE at the time of cardiac catheterization. Twenty-two patients had undergone unilateral BDG surgery and three were palliated by bilateral BDG. The mean oxygen saturation was 80 ± 5.2%. Thirteen patients (52%) had preserved antegrade pulmonary blood flow. Eighteen patients (72%) had PAVF by angiography and oximetry, while 19 (76%) had PAVF identified by contrast echocardiography. There was moderate correlation between the degree of pulmonary venous desaturation and grading of PAVF by contrast echocardiography. PAVF was predominantly located in the lower zones of the lungs. Higher grades of PAVF were not seen in patients with preserved antegrade flow after BDG. Angiographically detected PAVF showed a steady increase with increasing delay to cardiac catheterization from BDG. Significant reduction in systemic saturation was limited to advanced grades of PAVF in patients after BDG. Saline contrast TEE, pulmonary venous oximetry, and pulmonary angiography equally identified PAVF in patients after BDG. Prognostic utility of the same needs to be assessed by long-term follow-up of these subjects.
Collapse
|
6
|
Becker K, Uebing A, Hansen JH. Pulmonary vascular disease in Fontan circulation-is there a rationale for pulmonary vasodilator therapies? Cardiovasc Diagn Ther 2021; 11:1111-1121. [PMID: 34527537 DOI: 10.21037/cdt-20-431] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022]
Abstract
The Fontan circulation is a palliative concept for patients with univentricular hearts. The central veins are connected directly to the pulmonary arteries (cavo-pulmonary connection) to separate the pulmonary and the systemic circulation. There is no sub-pulmonary ventricle that generates pressure to drive blood through the pulmonary arteries. Pulmonary blood flow is determined by central venous pressure (CVP) and pulmonary vascular resistance (PVR). The capability of the Fontan circulation to compensate for alterations in PVR is limited, as CVP can only be increased within narrow ranges without adverse clinical consequences. Consequently, systemic ventricular preload and cardiac output are dependent on a healthy lung with low PVR. Failure of the Fontan circulation is relatively common. In addition to ventricular dysfunction, maladaptive pulmonary vascular remodeling resulting in increased pulmonary resistance may play a key role. The pathophysiology of the maladaptive vascular processes remains largely unclear and diagnosis of an increased PVR is challenging in Fontan circulation as accurate measurement of pulmonary arterial blood flow is difficult. In the absence of a sub-pulmonary ventricle, pulmonary artery pressure will almost never reach the threshold conventionally used to define pulmonary arterial hypertension. There is a need for markers of pulmonary vascular disease complementary to invasive hemodynamic data in Fontan patients. In order to treat or prevent failure of the Fontan circulation, pathophysiological considerations support the use of pulmonary vasodilators to augment pulmonary blood flow and systemic ventricular preload and lower CVP. However, to date the available trial data have neither yielded enough evidence to support routine use of pulmonary vasodilators in every Fontan patient nor have they been helpful in defining subgroups of patients that might benefit from such therapies. This review discusses potential pathomechanisms of pulmonary vascular disease; it summarizes the current knowledge of the effects and efficacy of pulmonary vasodilator therapy in Fontan patients and tries to outline areas of potential future research on the diagnosis and treatment of pulmonary vascular disease and Fontan failure.
Collapse
Affiliation(s)
- Kolja Becker
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Anselm Uebing
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Jan Hinnerk Hansen
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| |
Collapse
|
7
|
Spearman AD, Gupta A, Pan AY, Gudausky TM, Foerster SR, Konduri GG, Ramchandran R. sVEGFR1 Is Enriched in Hepatic Vein Blood-Evidence for a Provisional Hepatic Factor Candidate? Front Pediatr 2021; 9:679572. [PMID: 34195162 PMCID: PMC8236596 DOI: 10.3389/fped.2021.679572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/24/2021] [Indexed: 01/13/2023] Open
Abstract
Background: Pulmonary arteriovenous malformations (PAVMs) are common sequelae of palliated univentricular congenital heart disease, yet their pathogenesis remain poorly defined. In this preliminary study, we used paired patient blood samples to identify potential hepatic factor candidates enriched in hepatic vein blood. Methods: Paired venous blood samples were collected from the hepatic vein (HV) and superior vena cava (SVC) from children 0 to 10 years with univentricular and biventricular congenital heart disease (n = 40). We used three independent protein analyses to identify proteomic differences between HV and SVC blood. Subsequently, we investigated the relevance of our quantified protein differences with human lung microvascular endothelial assays. Results: Two independent protein arrays (semi-quantitative immunoblot and quantitative array) identified that soluble vascular endothelial growth factor receptor 1 (sVEGFR1) is significantly elevated in HV serum compared to SVC serum. Using ELISA, we confirmed the previous findings that sVEGFR1 is enriched in HV serum (n = 24, p < 0.0001). Finally, we studied the quantified HV and SVC serum levels of sVEGFR1 in vitro. HV levels of sVEGFR1 decreased tip cell selection (p = 0.0482) and tube formation (fewer tubes [p = 0.0246], shorter tube length [p = 0.0300]) in vitro compared to SVC levels of sVEGFR1. Conclusions: Based on a small heterogenous cohort, sVEGFR1 is elevated in HV serum compared to paired SVC samples, and the mean sVEGFR1 concentrations in these two systemic veins cause pulmonary endothelial phenotypic differences in vitro. Further research is needed to determine whether sVEGFR1 has a direct role in pulmonary microvascular remodeling and PAVMs in patients with palliated univentricular congenital heart disease.
Collapse
Affiliation(s)
- Andrew D Spearman
- Division of Cardiology, Department of Pediatrics, Medical College of Wisconsin, Children's Wisconsin, Herma Heart Institute, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ankan Gupta
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Children's Wisconsin, Milwaukee, WI, United States
| | - Amy Y Pan
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Division of Quantitative Health Sciences, Department of Pediatrics, Medical College of Wisconsin, Children's Wisconsin, Milwaukee, WI, United States
| | - Todd M Gudausky
- Division of Cardiology, Department of Pediatrics, Medical College of Wisconsin, Children's Wisconsin, Herma Heart Institute, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Susan R Foerster
- Division of Cardiology, Department of Pediatrics, Medical College of Wisconsin, Children's Wisconsin, Herma Heart Institute, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - G Ganesh Konduri
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Children's Wisconsin, Milwaukee, WI, United States
| | - Ramani Ramchandran
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Children's Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
8
|
Affiliation(s)
- Leigh Reardon
- Medicine, University of California Los Angeles, Los Angeles, California, USA.,Pediatrics, University of California Los Angeles, Los Angeles, California, USA
| | - Jeannette Lin
- Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
9
|
Bastkowski R, Bindermann R, Brockmeier K, Weiss K, Maintz D, Giese D. Respiration Dependency of Caval Blood Flow in Patients with Fontan Circulation: Quantification Using 5D Flow MRI. Radiol Cardiothorac Imaging 2019; 1:e190005. [PMID: 33778515 PMCID: PMC7977808 DOI: 10.1148/ryct.2019190005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/26/2019] [Accepted: 07/30/2019] [Indexed: 06/12/2023]
Abstract
PURPOSE To measure respiration-dependent blood flow in the total cavopulmonary connection (TCPC) of patients with Fontan circulation by using free-running, fully self-gated five-dimensional (5D) flow MRI. MATERIALS AND METHODS From July to November 2018, 10 volunteers (six female volunteers, mean age, 25.1 years ± 4.4 [standard deviation]) and six patients with Fontan circulation (two female patients, mean age, 19.7 years ± 7.5) with a TCPC were examined by using a cardiac- and respiration-resolved three-directional and three-dimensional phase-contrast MRI sequence (hereafter, 5D flow MRI). This prospective study was conducted with approval of the local ethics committee, and written informed consent was obtained from all participants and/or their representative. 5D flow data were acquired during free breathing. Data were reconstructed into 15-20 heart phases and four respiratory phases: end-expiration, inspiration, end-inspiration, and expiration. Respiration-dependent stroke volumes (SVs) and particle traces were analyzed from the caval circulation of volunteers and patients with Fontan circulation. Statistical analysis was performed by using parametric tests and scatterplots. RESULTS The respiration dependency of caval blood flow was evaluated in all participants and was significantly elevated in patients with Fontan circulation as compared with volunteers. In patients, SV in the inferior vena cava (IVC) showed variations of 120% between inspiration and expiration (P = .002). The flow distribution in the IVC and superior vena cava among the four respiratory phases was differentiated by 20% (range, 9%-30%) and 4% (range, 0%-13%), respectively. CONCLUSION Hemodynamic parameters (volume flow and blood flow distribution) throughout the cardiac and respiratory cycle can be measured using a single scan, potentially providing further insights into the Fontan circulation.© RSNA, 2019Supplemental material is available for this article.
Collapse
|
10
|
Rychik J, Atz AM, Celermajer DS, Deal BJ, Gatzoulis MA, Gewillig MH, Hsia TY, Hsu DT, Kovacs AH, McCrindle BW, Newburger JW, Pike NA, Rodefeld M, Rosenthal DN, Schumacher KR, Marino BS, Stout K, Veldtman G, Younoszai AK, d'Udekem Y. Evaluation and Management of the Child and Adult With Fontan Circulation: A Scientific Statement From the American Heart Association. Circulation 2019; 140:e234-e284. [PMID: 31256636 DOI: 10.1161/cir.0000000000000696] [Citation(s) in RCA: 524] [Impact Index Per Article: 87.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It has been 50 years since Francis Fontan pioneered the operation that today bears his name. Initially designed for patients with tricuspid atresia, this procedure is now offered for a vast array of congenital cardiac lesions when a circulation with 2 ventricles cannot be achieved. As a result of technical advances and improvements in patient selection and perioperative management, survival has steadily increased, and it is estimated that patients operated on today may hope for a 30-year survival of >80%. Up to 70 000 patients may be alive worldwide today with Fontan circulation, and this population is expected to double in the next 20 years. In the absence of a subpulmonary ventricle, Fontan circulation is characterized by chronically elevated systemic venous pressures and decreased cardiac output. The addition of this acquired abnormal circulation to innate abnormalities associated with single-ventricle congenital heart disease exposes these patients to a variety of complications. Circulatory failure, ventricular dysfunction, atrioventricular valve regurgitation, arrhythmia, protein-losing enteropathy, and plastic bronchitis are potential complications of the Fontan circulation. Abnormalities in body composition, bone structure, and growth have been detected. Liver fibrosis and renal dysfunction are common and may progress over time. Cognitive, neuropsychological, and behavioral deficits are highly prevalent. As a testimony to the success of the current strategy of care, the proportion of adults with Fontan circulation is increasing. Healthcare providers are ill-prepared to tackle these challenges, as well as specific needs such as contraception and pregnancy in female patients. The role of therapies such as cardiovascular drugs to prevent and treat complications, heart transplantation, and mechanical circulatory support remains undetermined. There is a clear need for consensus on how best to follow up patients with Fontan circulation and to treat their complications. This American Heart Association statement summarizes the current state of knowledge on the Fontan circulation and its consequences. A proposed surveillance testing toolkit provides recommendations for a range of acceptable approaches to follow-up care for the patient with Fontan circulation. Gaps in knowledge and areas for future focus of investigation are highlighted, with the objective of laying the groundwork for creating a normal quality and duration of life for these unique individuals.
Collapse
|
11
|
Aregullin EO, Kaley VR, Vettukattil JJ. Pulmonary arteriovenous malformations leading to hypoxemia in child with primary ciliary dyskinesia. Pediatr Pulmonol 2019; 54:E7-E9. [PMID: 30561897 DOI: 10.1002/ppul.24198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 11/07/2022]
Abstract
Primary ciliary dyskinesia (PCD) is a rare genetic condition characterized by respiratory tract infections, situs inversus or heterotaxy, and male infertility. Chronic respiratory infections begin in childhood and result in complications such as bronchiectasis. As hypoxemia is often attributed to bronchiectasis, other etiologies for desaturation in this setting are not routinely evaluated. The development of pulmonary arteriovenous malformations (PAVMs) in PCD is not an established association. PAVMs as the etiology for hypoxemia may have been overlooked due to the lack of awareness of this rare association. We present a child with diagnosis of PCD with significant hypoxemia in the absence of bronchiectasis, found to have diffuse bilateral PAVMs and discuss possible physiopathologic mechanisms.
Collapse
Affiliation(s)
- E Oliver Aregullin
- Congenital Heart Center, Spectrum Health Helen DeVos Children's Hospital, Grand Rapids, Michigan.,Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Vishal R Kaley
- Congenital Heart Center, Spectrum Health Helen DeVos Children's Hospital, Grand Rapids, Michigan
| | - Joseph J Vettukattil
- Congenital Heart Center, Spectrum Health Helen DeVos Children's Hospital, Grand Rapids, Michigan.,Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| |
Collapse
|
12
|
Ni JS, Zheng H, Huang ZP, Hong YG, Ou YL, Tao YP, Wang MC, Wang ZG, Yang Y, Zhou WP. MicroRNA-197-3p acts as a prognostic marker and inhibits cell invasion in hepatocellular carcinoma. Oncol Lett 2018; 17:2317-2327. [PMID: 30675297 PMCID: PMC6341871 DOI: 10.3892/ol.2018.9848] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 11/16/2018] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs (miRNAs) serve an important regulatory role in carcinogenesis and cancer progression. Aberrant expression of miR-197-3p has been reported in various human malignancies. However, the role of miR-197-3p in the progression and prognosis of hepatocellular carcinoma (HCC) remains unknown. The present study demonstrated that miR-197-3p was downregulated in HCC tissues and that the low level of miR-197-3p expression in HCC tumours correlated with aggressive clinicopathological characteristics; thus, miR-197-3p may serve as a predictor for poor prognosis in patients with HCC. Additionally, miR-197-3p markedly inhibited the metastasis of HCC cells in vitro and in vivo. Bioinformatics analysis further identified zinc finger protein interacted with K protein 1 (ZIK1) as a novel target of miR-197-3p in HCC cells. These findings suggest that miR-197-3p may regulate the survival of HCC cells, partially through the downregulation of ZIK1. Therefore, the miR-197-3p/ZIK1 axis may serve as a novel therapeutic target in patients with HCC.
Collapse
Affiliation(s)
- Jun-Sheng Ni
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China.,Key Laboratory of Signalling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, P.R. China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, P.R. China
| | - Hao Zheng
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China.,Key Laboratory of Signalling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, P.R. China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, P.R. China
| | - Zhi-Ping Huang
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China.,Key Laboratory of Signalling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, P.R. China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, P.R. China.,Department of Hepatobiliary Surgery, General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Yong-Gang Hong
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Yang-Liu Ou
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Yuan-Ping Tao
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China.,Key Laboratory of Signalling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, P.R. China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, P.R. China
| | - Meng-Chao Wang
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China.,Key Laboratory of Signalling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, P.R. China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, P.R. China
| | - Zhen-Guang Wang
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China.,Key Laboratory of Signalling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, P.R. China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, P.R. China
| | - Yuan Yang
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China.,Key Laboratory of Signalling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, P.R. China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, P.R. China
| | - Wei-Ping Zhou
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, P.R. China.,Key Laboratory of Signalling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, P.R. China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, P.R. China
| |
Collapse
|