1
|
Jachym W, Urban MW, Kijanka P. Estimation of the phase velocity dispersion curves for viscoelastic materials using Point Limited Shear Wave Elastography. ULTRASONICS 2025; 148:107566. [PMID: 39817930 DOI: 10.1016/j.ultras.2025.107566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/12/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
Ultrasound shear wave elastography (SWE) is widely used in clinical applications for non-invasive measurements of soft tissue viscoelasticity. The study of tissue viscoelasticity often involves the analysis of shear wave phase velocity dispersion curves, which show how the phase velocity varies with frequency or wavelength. In this study, we propose an alternative method to the two-dimensional Fourier transform (2D-FT) and Phase Gradient (PG) methods for shear wave phase velocity estimation. We introduce a new method called Point Limited Shear Wave Elastography (PL-SWE), which aims to reconstruct phase velocity dispersion curves using a minimal number of measurement points in the spatial domain (as few as two signals can be utilized). We investigated how the positioning of the first signal and the distance between selected signals affect the shear wave velocity dispersion estimation in PL-SWE. The effectiveness of this novel approach was evaluated through the analysis of analytical phantom data in viscoelastic media, along with experimental data from custom-made tissue-mimicking elastic and viscoelastic phantoms, and in vivo renal transplant data. A comparative analysis with the 2D-FT technique revealed that PL-SWE provided phase velocity dispersion curve estimates with root mean squared percentage error (RMSPE) values of less than 1.61% for analytical phantom data, 1.58% for elastic phantoms, 4.29% for viscoelastic phantoms and 7.68% for in vivo data, while utilizing significantly fewer signals compared to 2D-FT. The results demonstrate that the PL-SWE method also outperforms the PG method. For the viscoelastic phantoms, the mean RMSPE values using PL-SWE ranged from 2.61% to 4.29%, while the PG method produced RMSPE values between 3.56% and 15%. In the case of in vivo data, PL-SWE yielded RMSPE values between 7.01% and 7.68%, while PG results ranged from 17% to 418%. These findings highlight the superior accuracy and reliability of the PL-SWE method, particularly when compared to the PG approach. Our tests demonstrate that PL-SWE can effectively measure the phase velocity of both elastic and viscoelastic materials and tissues using a limited number of signals. Utilizing a minimal number of spatial measurement points could enable accurate assessments even in cases with restricted field of view, thereby expanding the applicability of SWE across various patient populations.
Collapse
Affiliation(s)
- Wiktor Jachym
- Department of Robotics and Mechatronics, AGH University of Krakow, 30-059 Krakow, Poland
| | - Matthew W Urban
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Piotr Kijanka
- Department of Robotics and Mechatronics, AGH University of Krakow, 30-059 Krakow, Poland.
| |
Collapse
|
2
|
Urban M, Vasconcelos L, Brom K, Dave J, Kijanka P. Shear wave elastography primer for the abdominal radiologist. Abdom Radiol (NY) 2025:10.1007/s00261-025-04806-1. [PMID: 39883164 DOI: 10.1007/s00261-025-04806-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/31/2025]
Abstract
PURPOSE Shear wave elastography (SWE) provides a means for adding information about the mechanical properties of tissues to a diagnostic ultrasound examination. It is important to understand the physics and methods by which the measurements are made to aid interpretation of the results as they relate to disease processes. METHODS The components of how ultrasound is used to generate shear waves and make measurements of the induced motion are reviewed. The physics of shear wave propagation are briefly described for elastic and viscoelastic tissues. Additionally, shear wave propagation in homogeneous and inhomogeneous cases is addressed. RESULTS SWE technology has been implemented by many clinical vendors with different capabilities. Various quality metrics are used to define valid measurements based on aspects of the shear wave signals or wave velocity estimates. CONCLUSION There are many uses for SWE in abdominal imaging, but it is important to understand how the measurements are performed to gauge their utility for diagnosis of different conditions. Continued efforts to make the technology robust in complex clinical situations are ongoing, but many applications actively benefit from added information about tissue mechanical properties for a more holistic view of the patient for diagnosis or assessment of prognosis and treatment management.
Collapse
|
3
|
Adikary S, Urban MW, Guddati MN. Twin Peak Method for Estimating Tissue Viscoelasticity using Shear Wave Elastography. ARXIV 2024:arXiv:2411.11572v1. [PMID: 39606734 PMCID: PMC11601804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Tissue viscoelasticity is becoming an increasingly useful biomarker beyond elasticity and can theoretically be estimated using shear wave elastography (SWE), by inverting the propagation and attenuation characteristics of shear waves. Estimating viscosity is often more difficult than elasticity because attenuation, the main effect of viscosity, leads to poor signal-to-noise ratio of the shear wave motion. In the present work, we provide an alternative to existing methods of viscoelasticity estimation that is robust against noise. The method minimizes the difference between simulated and measured versions of two sets of peaks (twin peaks) in the frequency-wavenumber domain, obtained first by traversing through each frequency and then by traversing through each wavenumber. The slopes and deviation of the twin peaks are sensitive to elasticity and viscosity respectively, leading to the effectiveness of the proposed inversion algorithm for characterizing mechanical properties. This expected effectiveness is confirmed through in silico verification, followed by ex vivo validation and in vivo application, indicating that the proposed approach can be effectively used in accurately estimating viscoelasticity, thus potentially contributing to the development of enhanced biomarkers.
Collapse
|
4
|
Yang F, Chen Z, Wang P, Shi Y. Phase-Domain Photoacoustic Mechanical Imaging for Quantitative Elastography and Viscography. IEEE Trans Biomed Eng 2024; 71:2330-2340. [PMID: 38381629 DOI: 10.1109/tbme.2024.3368150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The role and importance of mechanical properties of cells and tissues in pathophysiological processes have widely been acknowledged. However, current elastography techniques most based on transverse elastic waves, diminish the translation of wave speed into elastic modulus due to its limited wave propagation direction. Here, we propose phase-domain photoacoustic mechanical imaging (PD-PAMI), leveraging the initial time and phase response characteristics of an omnidirectional photoacoustic elastic wave to quantitatively extract elastic and viscous moduli. Theoretical simulations and experiment on tissue-mimicking phantoms with different levels of viscoelastic properties were conducted to validate the approach with a precision in elasticity and viscosity estimation of 4.6% and 6.6%, respectively. The trans-scale viscoelasticity mappings over three length scales-covering cell, tissue section, and in vivo organ, were provided to demonstrate the scalability of the technique with different implementations of PD-PAMI. Experiments on animal models of breast tumour and atherosclerosis reveal that PD-PAMI technique enables effective monitoring of the viscoelastic parameters for examinations of the diseases involved with the variations in collagen or lipid composition and in inflammation level. PD-PAMI technique opens new perspectives of conventional PA imaging and provides new technical way for biomechanical imaging, prefiguring potential clinical applications in mechanopathology-involved disease diagnosis.
Collapse
|
5
|
Liu HC, Lee HK, Urban MW, Zhou Q, Kijanka P. Acoustic radiation force-induced longitudinal shear wave for ultrasound-based viscoelastic evaluation. ULTRASONICS 2024; 142:107389. [PMID: 38924960 PMCID: PMC11298294 DOI: 10.1016/j.ultras.2024.107389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Acoustic radiation force (ARF) is widely used to induce shear waves for evaluating the mechanical properties of biological tissues. Two shear waves can be generated when exciting with ARF: a transverse shear wave, also simply called shear wave (SW), and a longitudinal shear wave (LSW). Shear waves (SWs) have been broadly used to assess the mechanical properties. Some articles have reported that the LSW can be used to evaluate mechanical properties locally. However, existing LSW studies are mainly focused on the group velocity evaluation using optical coherence tomography (OCT). Here, we report that a LSW generated with ARF can be used to probe viscoelastic properties, including shear modulus and viscosity, using ultrasound. We took advantage of the surface boundary effect to reflect the LSW, named RLSW, to address the energy deficiency of LSW induced by ARF. We systematically evaluated the experiments with tissue-mimicking viscoelastic phantoms and validated by numerical simulations. Phase velocity and dispersion comparison between the results induced by a RLSW and a SW exhibit good agreement in both the numerical simulations and experimental results. The Kelvin-Voigt (KV) model was used to determine the shear modulus and viscosity. RLSW shows great potential to evaluate localized viscoelastic properties, which could benefit various biomedical applications such as evaluating the viscoelasticity of heterogeneous materials or microscopic lesions of tissues.
Collapse
Affiliation(s)
- Hsiao-Chuan Liu
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | - Matthew W Urban
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Qifa Zhou
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90033, USA
| | - Piotr Kijanka
- Department of Robotics and Mechatronics, AGH University of Krakow, Krakow 30059, Poland
| |
Collapse
|
6
|
Chen X, Li X, Turco S, van Sloun RJG, Mischi M. Ultrasound Viscoelastography by Acoustic Radiation Force: A State-of-the-Art Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:536-557. [PMID: 38526897 DOI: 10.1109/tuffc.2024.3381529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Ultrasound elastography (USE) is a promising tool for tissue characterization as several diseases result in alterations of tissue structure and composition, which manifest as changes in tissue mechanical properties. By imaging the tissue response to an applied mechanical excitation, USE mimics the manual palpation performed by clinicians to sense the tissue elasticity for diagnostic purposes. Next to elasticity, viscosity has recently been investigated as an additional, relevant, diagnostic biomarker. Moreover, since biological tissues are inherently viscoelastic, accounting for viscosity in the tissue characterization process enhances the accuracy of the elasticity estimation. Recently, methods exploiting different acquisition and processing techniques have been proposed to perform ultrasound viscoelastography. After introducing the physics describing viscoelasticity, a comprehensive overview of the currently available USE acquisition techniques is provided, followed by a structured review of the existing viscoelasticity estimators classified according to the employed processing technique. These estimators are further reviewed from a clinical usage perspective, and current outstanding challenges are discussed.
Collapse
|
7
|
Hossain MM, Konofagou EE. Feasibility of Phase Velocity Imaging Using Multi Frequency Oscillation-Shear Wave Elastography. IEEE Trans Biomed Eng 2024; 71:607-620. [PMID: 37647191 PMCID: PMC10873514 DOI: 10.1109/tbme.2023.3309996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
OBJECTIVE To assess viscoelasticity, a pathologically relevant biomarker, shear wave elastography (SWE) generally uses phase velocity (PV) dispersion relationship generated via pulsed acoustic radiation force (ARF) excitation pulse. In this study, a multi-frequency oscillation (MFO)- excitation pulse with higher weight to higher frequencies is proposed to generate PV images via the generation of motion with energy concentrated at the target frequencies in contrast to the broadband frequency motion generated in pulsed SWE (PSWE). METHODS The feasibility of MFO-SWE to generate PV images at 100 to 1000 Hz in steps of 100 Hz was investigated by imaging 6 and 70 kPa inclusions with 6.5 and 10.4 mm diameter and ex vivo bovine liver with and without the presence of an aberration layer and chicken muscle ex vivo, and 4T1 mouse breast tumor, in vivo with comparisons to PSWE. RESULTS MFO-SWE-derived CNR was statistically higher than PSWE for 6 kPa (both with and without aberration) and 70 kPa (with aberration) inclusions and derived SNR of the liver was statistically higher than PSWE at higher frequency (600-1000 Hz). Quantitatively, at 600-1000 Hz, MFO-SWE improved CNR of inclusions (without and with) aberration on an average by (8.2 and 156)% and of the tumor by 122%, respectively, and improved SNR of the liver (without and with) aberration by (20.2 and 51.5)% and of chicken muscle by 72%, respectively compared to the PSWE. CONCLUSIONS AND SIGNIFICANCE These results indicate the advantages of MFO-SWE to improve PV estimation at higher frequencies which could improve viscoelasticity quantification and feature delineation.
Collapse
|
8
|
Üstüner E. Shear wave elastography and dispersion imaging in intestinal ultrasound in the setting of chronic diarrhea. JOURNAL OF CLINICAL ULTRASOUND : JCU 2024; 52:176-177. [PMID: 38037873 DOI: 10.1002/jcu.23605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023]
Affiliation(s)
- Evren Üstüner
- Department of Radiology, Ultrasound Section, Ankara University School of Medicine, Ankara, Turkey
| |
Collapse
|
9
|
Aliabouzar M, Kripfgans OD, Brian Fowlkes J, Fabiilli ML. Bubble nucleation and dynamics in acoustic droplet vaporization: a review of concepts, applications, and new directions. Z Med Phys 2023; 33:387-406. [PMID: 36775778 PMCID: PMC10517405 DOI: 10.1016/j.zemedi.2023.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 02/12/2023]
Abstract
The development of phase-shift droplets has broadened the scope of ultrasound-based biomedical applications. When subjected to sufficient acoustic pressures, the perfluorocarbon phase in phase-shift droplets undergoes a phase-transition to a gaseous state. This phenomenon, termed acoustic droplet vaporization (ADV), has been the subject of substantial research over the last two decades with great progress made in design of phase-shift droplets, fundamental physics of bubble nucleation and dynamics, and applications. Here, we review experimental approaches, carried out via high-speed microscopy, as well as theoretical models that have been proposed to study the fundamental physics of ADV including vapor nucleation and ADV-induced bubble dynamics. In addition, we highlight new developments of ADV in tissue regeneration, which is a relatively recently exploited application. We conclude this review with future opportunities of ADV for advanced applications such as in situ microrheology and pressure estimation.
Collapse
Affiliation(s)
- Mitra Aliabouzar
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Oliver D Kripfgans
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - J Brian Fowlkes
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Mario L Fabiilli
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA; Applied Physics Program, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Liu Y, He B, Zhang Y, Lang X, Yao R, Pan L. A Study on a Parameter Estimator for the Homodyned K Distribution Based on Table Search for Ultrasound Tissue Characterization. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:970-981. [PMID: 36631331 DOI: 10.1016/j.ultrasmedbio.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVE The homodyned K (HK) distribution is considered to be the most suitable distribution in the context of tissue characterization; therefore, the search for a rapid and reliable parameter estimator for HK distribution is important. METHODS We propose a novel parameter estimator based on a table search (TS) for HK parameter estimates. The TS estimator can inherit the strength of conventional estimators by integrating various features and taking advantage of the TS method in a rapid and easy operation. Performance of the proposed TS estimator was evaluated and compared with that of XU (the estimation method based on X and U statistics) and artificial neural network (ANN) estimators. DISCUSSION The simulation results revealed that the TS estimator is superior to the XU and ANN estimators in terms of normalized standard deviations and relative root mean squared errors of parameter estimation, and is faster. Clinical experiments found that the area under the receiver operating curve for breast lesion classification using the parameters estimated by the TS estimator could reach 0.871. CONCLUSION The proposed TS estimator is more accurate, reliable and faster than the state-of-the-art XU and ANN estimators and has great potential for ultrasound tissue characterization based on the HK distribution.
Collapse
Affiliation(s)
- Yang Liu
- Department of Electronic Engineering, Information School, Yunnan University, Kunming, Yunnan, China
| | - Bingbing He
- Department of Electronic Engineering, Information School, Yunnan University, Kunming, Yunnan, China.
| | - Yufeng Zhang
- Department of Electronic Engineering, Information School, Yunnan University, Kunming, Yunnan, China
| | - Xun Lang
- Department of Electronic Engineering, Information School, Yunnan University, Kunming, Yunnan, China
| | - Ruihan Yao
- Department of Electronic Engineering, Information School, Yunnan University, Kunming, Yunnan, China
| | - Lingrui Pan
- Department of Electronic Engineering, Information School, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
11
|
Abstract
OBJECTIVE Hydrogel scaffolds have attracted attention to develop cellular therapy and tissue engineering platforms for regenerative medicine applications. Among factors, local mechanical properties of scaffolds drive the functionalities of cell niche. Dynamic mechanical analysis (DMA), the standard method to characterize mechanical properties of hydrogels, restricts development in tissue engineering because the measurement provides a single elasticity value for the sample, requires direct contact, and represents a destructive evaluation preventing longitudinal studies on the same sample. We propose a novel technique, acoustic force elastography microscopy (AFEM), to evaluate elastic properties of tissue engineering scaffolds. RESULTS AFEM can resolve localized and two-dimensional (2D) elastic properties of both transparent and opaque materials with advantages of being non-contact and non-destructive. Gelatin hydrogels, neat synthetic oligo[poly(ethylene glycol)fumarate] (OPF) scaffolds, OPF hydroxyapatite nanocomposite scaffolds and ex vivo biological tissue were examined with AFEM to evaluate the elastic modulus. These measurements of Young's modulus range from approximately 2 kPa to over 100 kPa were evaluated and are in good agreement with finite element simulations, surface wave measurements, and DMA tests. CONCLUSION The AFEM can resolve localized and 2D elastic properties of hydrogels, scaffolds and thin biological tissues. These materials can either be transparent or non-transparent and their evaluation can be done in a non-contact and non-destructive manner, thereby facilitating longitudinal evaluation. SIGNIFICANCE AFEM is a promising technique to quantify elastic properties of scaffolds for tissue engineering and will be applied to provide new insights for exploring elastic changes of cell-laden scaffolds for tissue engineering and material science.
Collapse
|
12
|
Götschi T, Schärer Y, Gennisson JL, Snedeker JG. Investigation of the relationship between tensile viscoelasticity and unloaded ultrasound shear wave measurements in ex vivo tendon. J Biomech 2023; 146:111411. [PMID: 36509025 DOI: 10.1016/j.jbiomech.2022.111411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Mechanical properties of biological tissues are of key importance for proper function and in situ methods for mechanical characterization are sought after in the context of both medical diagnosis as well as understanding of pathophysiological processes. Shear wave elastography (SWE) and accompanying physical modelling methods provide valid estimates of stiffness in quasi-linear viscoelastic, isotropic tissue but suffer from limitations in assessing non-linear viscoelastic or anisotropic material, such as tendon. Indeed, mathematical modelling predicts the longitudinal shear wave velocity to be unaffected by the tensile but rather the shear viscoelasticity. Here, we employ a heuristic experimental testing approach to the problem to assess the most important potential confounders, namely tendon mass density and diameter, and to investigate associations between tendon tensile viscoelasticity with shear wave descriptors. Small oscillatory testing of animal flexor tendons at two baseline stress levels over a large frequency range comprehensively characterized tensile viscoelastic behavior. A broad set of shear wave descriptors was retrieved on the unloaded tendon based on high frame-rate plane wave ultrasound after applying an acoustic deformation impulse. Tensile modulus and strain energy dissipation increased logarithmically and linearly, respectively, with the frequency of the applied strain. Shear wave descriptors were mostly unaffected by tendon diameter but were highly sensitive to tendon mass density. Shear wave group and phase velocity showed no association with tensile elasticity or strain rate-stiffening but did show an association with tensile strain energy dissipation. The longitudinal shear wave velocity may not characterize tensile elasticity but rather tensile viscous properties of transversely isotropic collagenous tissues.
Collapse
Affiliation(s)
- Tobias Götschi
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Switzerland.
| | | | - Jean-Luc Gennisson
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401 ORSAY, France
| | - Jess G Snedeker
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Switzerland
| |
Collapse
|
13
|
Hossain MM, Konofagou EE. Imaging of Single Transducer-Harmonic Motion Imaging-Derived Displacements at Several Oscillation Frequencies Simultaneously. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:3099-3115. [PMID: 35635828 PMCID: PMC9865352 DOI: 10.1109/tmi.2022.3178897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mapping of mechanical properties, dependent on the frequency of motion, is relevant in diagnosis, monitoring treatment response, or intra-operative surgical resection planning. While shear wave speeds at different frequencies have been described elsewhere, the effect of frequency on the "on-axis" acoustic radiation force (ARF)-induced displacement has not been previously investigated. Instead of generating single transducer-harmonic motion imaging (ST-HMI)-derived peak-to-peak displacement (P2PD) image at a particular frequency, a novel multi-frequency excitation pulse is proposed to generate P2PD images at 100-1000 Hz simultaneously. The performance of the proposed excitation pulse is compared with the ARFI by imaging 16 different inclusions (Young's moduli of 6, 9, 36, 70 kPa and diameters of 1.6, 2.5, 6.5, and 10.4 mm) embedded in an 18 kPa background. Depending on inclusion size and stiffness, the maximum CNR and contrast were achieved at different frequencies and were always higher than ARFI. The frequency, at which maximum CNR and contrast were achieved, increased with stiffness for fixed inclusion's size and decreased with size for fixed stiffness. In vivo feasibility is tested by imaging a 4T1 breast cancer mouse tumor on Day 6, 12, and 19 post-injection of tumor cells. Similar to phantoms, the CNR of ST-HMI images was higher than ARFI and increased with frequency for the tumor on Day 6. Besides, P2PD at 100-1000 Hz indicated that the tumor became stiffer with respect to the neighboring non-cancerous tissue over time. These results indicate the importance of using a multi-frequency excitation pulse to simultaneously generate displacement at multiple frequencies to better delineate inclusions or tumors.
Collapse
|
14
|
Kijanka P, Urban MW. Improved two-point frequency shift power method for measurement of shear wave attenuation. ULTRASONICS 2022; 124:106735. [PMID: 35390627 PMCID: PMC9249559 DOI: 10.1016/j.ultras.2022.106735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Quantitative assessment of mechanical properties of biological soft tissues is frequently evaluated using a noninvasive modality, called ultrasound shear wave elastography (SWE). SWE typically exerts an acoustic radiation force (ARF) to produce shear waves propagating in the lateral direction for which velocities and attenuations are measured. The tissue viscoelasticity is commonly studied by investigating the shear wave phase velocity curves. Viscoelastic tissue properties can also be characterized through utilizing various shear wave attenuation techniques. In this study, we propose an improved method for measuring the shear wave attenuation, called two-point frequency shift power (2P-FSP), which is an improved version of the two-point frequency shift (2P-FS) method. The technique is fully data driven and does not use a rheological model for mathematical modeling. The 2P-FSP method utilizes the power spectra frequency shift of shear waves measured at two spatial positions, which provides robustness to noise. The conceptual basis for the 2P-FSP is provided and tested with numerical and experimental data. We investigated how the location of the first signal and the distance interval between the two locations influence the shear wave attenuation measurement in the 2P-FSP technique. We utilized the 2P-FSP method on numerical phantom data generated using a finite-difference-based method in tissue-mimicking viscoelastic media. Moreover, we tested the 2P-FSP method with data from custom-made tissue-mimicking viscoelastic phantom experiments, and ex vivo porcine liver. We compared results from the proposed technique with results from 2P-FS and analytical values in the case of simulations. The results showed that the 2P-FSP method provides improved results over the 2P-FS technique for lower signal-to-noise ratio (SNR) and locations farther from the push location considered, and can be used to measure attenuation of viscoelastic soft tissues.
Collapse
Affiliation(s)
- Piotr Kijanka
- Department of Robotics and Mechatronics, AGH University of Science and Technology, 30-059 Krakow, Poland.
| | - Matthew W Urban
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
15
|
Capriotti M, Roy T, Hugenberg NR, Harrigan H, Lee HC, Aquino W, Guddati M, Greenleaf JF, Urban MW. The influence of acoustic radiation force beam shape and location on wave spectral content for arterial dispersion ultrasound vibrometry. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac75a7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/01/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. Arterial dispersion ultrasound vibrometry (ADUV) relies on the use of guided waves in arterial geometries for shear wave elastography measurements. Both the generation of waves through the use of acoustic radiation force (ARF) and the techniques employed to infer the speed of the resulting wave motion affect the spectral content and accuracy of the measurement. In particular, the effects of the shape and location of the ARF beam in ADUV have not been widely studied. In this work, we investigated how such variations of the ARF beam affect the induced motion and the measurements in the dispersive modes that are excited. Approach. The study includes an experimental evaluation on an arterial phantom and an in vivo validation of the observed trends, observing the two walls of the waveguide, simultaneously, when subjected to variations in the ARF beam extension (F/N) and focus location. Main results. Relying on the theory of guided waves in cylindrical shells, the shape of the beam controls the selection and nature of the induced modes, while the location affects the measured dispersion curves (i.e. variation of phase velocity with frequency or wavenumber, multiple modes) across the waveguide walls. Significance. This investigation is important to understand the spectral content variations in ADUV measurements and to maximize inversion accuracy by tuning the ARF beam settings in clinical applications.
Collapse
|
16
|
Liu Y, Zhang Y, He B, Li Z, Lang X, Liang H, Chen J. An Improved Parameter Estimator of the Homodyned K Distribution Based on the Maximum Likelihood Method for Ultrasound Tissue Characterization. ULTRASONIC IMAGING 2022; 44:142-160. [PMID: 35674146 DOI: 10.1177/01617346221097867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The homodyned K distribution (HK) can generally describe the ultrasound backscatter envelope statistics distribution with parameters that have specific physical meaning. However, creating robust and reliable HK parameter estimates remains a crucial concern. The maximum likelihood estimator (MLE) usually yields a small variance and bias in parameter estimation. Thus, two recent studies have attempted to use MLE for parameter estimation of HK distribution. However, some of the statements in these studies are not fully justified and they may hinder the application of parameter estimation of HK distribution based on MLE. In this study, we propose a new parameter estimator for the HK distribution based on the MLE (i.e., MLE1), which overcomes the disadvantages of conventional MLE of HK distribution. The MLE1 was compared with other estimators, such as XU estimator (an estimation method based on the first moment of the intensity and tow log-moments) and ANN estimator (an estimation method based on artificial neural networks). We showed that the estimations of parameters α and k are the best overall (in terms of the relative bias, normalized standard deviation, and relative root mean squared errors) using the proposed MLE1 compared with the others based on the simulated data when the sample size was N = 1000. Moreover, we assessed the usefulness of the proposed MLE1 when the number of scatterers per resolution cell was high (i.e., α up to 80) and when the sample size was small (i.e., N = 100), and we found a satisfactory result. Tests on simulated ultrasound images based on Field II were performed and the results confirmed that the proposed MLE1 is feasible and reliable for the parameter estimation from the ultrasonic envelope signal. Therefore, the proposed MLE1 can accurately estimate the HK parameters with lower uncertainty, which presents a potential practical value for further ultrasonic applications.
Collapse
Affiliation(s)
- Yang Liu
- Department of Electronic Engineering, Information School, Yunnan University, Kunming, Yunnan, China
| | - Yufeng Zhang
- Department of Electronic Engineering, Information School, Yunnan University, Kunming, Yunnan, China
| | - Bingbing He
- Department of Electronic Engineering, Information School, Yunnan University, Kunming, Yunnan, China
| | - Zhiyao Li
- The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xun Lang
- Department of Electronic Engineering, Information School, Yunnan University, Kunming, Yunnan, China
| | - Hong Liang
- Department of Electronic Engineering, Information School, Yunnan University, Kunming, Yunnan, China
| | - Jianhua Chen
- Department of Electronic Engineering, Information School, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
17
|
Hossain MM, Gallippi CM. Quantitative Estimation of Mechanical Anisotropy Using Acoustic Radiation Force (ARF)-Induced Peak Displacements (PD): In Silico and Experimental Demonstration. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1468-1481. [PMID: 34995184 PMCID: PMC9208382 DOI: 10.1109/tmi.2022.3141084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Elastic degree of anisotropy (DoA) is a diagnostically relevant biomarker in muscle, kidney, breast, and other organs. Previously, elastic DoA was qualitatively assessed as the ratio of peak displacements (PD) achieved with the long-axis of a spatially asymmetric Acoustic Radiation Force Impulse (ARFI) excitation point spread function (PSF) aligned along versus across the axis of symmetry (AoS) in transversely isotropic materials. However, to better enable longitudinal and cross-sectional analyses, a quantitative measure of elastic DoA is desirable. In this study, qualitative ARFI PD ratios are converted to quantitative DoA, measured as the ratio of longitudinal over transverse shear elastic moduli, using a model empirically derived from Field II and finite element method (FEM) simulations. In silico, the median absolute percent error (MAPE) in ARFI-derived shear moduli ratio (SMR) was 1.75%, and predicted SMRs were robust to variations in transverse shear modulus, Young's moduli ratio, speed of sound, attenuation, density, and ARFI excitation PSF dimension. Further, ARFI-derived SMRs distinguished two materials when the true SMRs of the compared materials differed by as little as 10%. Experimentally, ARFI-derived SMRs linearly correlated with the corresponding ratios measured by Shear Wave Elasticity Imaging (SWEI) in excised pig skeletal muscle ( [Formula: see text], MAPE = 13%) and in pig kidney, in vivo ( [Formula: see text], MAPE = 5.3%). These results demonstrate the feasibility of using the ARFI PD to quantify elastic DoA in biological tissues.
Collapse
|
18
|
Singh M, Zvietcovich F, Larin KV. Introduction to optical coherence elastography: tutorial. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:418-430. [PMID: 35297425 PMCID: PMC10052825 DOI: 10.1364/josaa.444808] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/25/2022] [Indexed: 06/03/2023]
Abstract
Optical coherence elastography (OCE) has seen rapid growth since its introduction in 1998. The past few decades have seen tremendous advancements in the development of OCE technology and a wide range of applications, including the first clinical applications. This tutorial introduces the basics of solid mechanics, which form the foundation of all elastography methods. We then describe how OCE measurements of tissue motion can be used to quantify tissue biomechanical parameters. We also detail various types of excitation methods, imaging systems, acquisition schemes, and data processing algorithms and how various parameters associated with each step of OCE imaging can affect the final quantitation of biomechanical properties. Finally, we discuss the future of OCE, its potential, and the next steps required for OCE to become an established medical imaging technology.
Collapse
Affiliation(s)
- Manmohan Singh
- Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Fernando Zvietcovich
- Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
- Department of Engineering, Pontificia Universidad Catolica del Peru, San Miguel, Lima 15088, Peru
| | - Kirill V. Larin
- Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
19
|
Hugenberg NR, Roy T, Harrigan H, Capriotti M, Lee HK, Guddati M, Greenleaf JF, Urban MW, Aquino W. Toward improved accuracy in shear wave elastography of arteries through controlling the arterial response to ultrasound perturbation in-silico and in phantoms. Phys Med Biol 2021; 66:10.1088/1361-6560/ac38fe. [PMID: 34763319 PMCID: PMC8787730 DOI: 10.1088/1361-6560/ac38fe] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/11/2021] [Indexed: 11/11/2022]
Abstract
Dispersion-based inversion has been proposed as a viable direction for materials characterization of arteries, allowing clinicians to better study cardiovascular conditions using shear wave elastography. However, these methods rely ona prioriknowledge of the vibrational modes dominating the propagating waves induced by acoustic radiation force excitation: differences between anticipated and real modal content are known to yield errors in the inversion. We seek to improve the accuracy of this process by modeling the artery as a fluid-immersed cylindrical waveguide and building an analytical framework to prescribe radiation force excitations that will selectively excite certain waveguide modes using ultrasound acoustic radiation force. We show that all even-numbered waveguide modes can be eliminated from the arterial response to perturbation, and confirm the efficacy of this approach within silicotests that show that odd modes are preferentially excited. Finally, by analyzing data from phantom tests, we find a set of ultrasound focal parameters that demonstrate the viability of inducing the desired odd-mode response in experiments.
Collapse
Affiliation(s)
- Nicholas R Hugenberg
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, United States of America
| | - Tuhin Roy
- Department of Civil Engineering, North Carolina State University, Raleigh, NC, 27695, United States of America
| | - Hadiya Harrigan
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, United States of America
| | - Margherita Capriotti
- Department of Aerospace Engineering, San Diego State University, San Diego, CA, 92182, United States of America
| | - Hyoung-Ki Lee
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Murthy Guddati
- Department of Civil Engineering, North Carolina State University, Raleigh, NC, 27695, United States of America
| | - James F Greenleaf
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Matthew W Urban
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Wilkins Aquino
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, United States of America
| |
Collapse
|
20
|
Technical feasibility and correlations between shear-wave elastography and histology in kidney fibrosis in children. Pediatr Radiol 2021; 51:1879-1888. [PMID: 33893848 DOI: 10.1007/s00247-021-05068-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/18/2020] [Accepted: 03/21/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Ultrasound elastography has been suggested for assessing organ fibrosis. OBJECTIVE To study the feasibility of shear-wave elastography in children with kidney disease and the correlation between elasticity and kidney fibrosis in order to reduce the indications for kidney biopsy and its complications. MATERIALS AND METHODS Four operators measured kidney elasticity in children with kidney diseases or transplants, all of whom also had a renal biopsy. We assessed the feasibility and the intraobserver variability of the elasticity measurements for each probe used and each kidney explored. Then we tested the correlation between elasticity measurements and the presence of fibrosis. RESULTS Overall, we analyzed 95 children and adolescents, 31 of whom had renal transplant. Measurements with the convex probe were possible in 100% of cases. Linear probe analysis was only possible for 20% of native kidneys and 50% of transplants. Intraobserver variabilities ranged from moderate to high, depending on the probe and kidney studied. Elasticity was higher with the linear probe than with the convex probe (P<0.001 for left kidney and P=0.03 for right kidney). Measurements did not differ from one kidney to another in the same child. Elasticity and fibrosis were both higher in transplant patients (P=0.02 with convex probe; P=0.01 with linear probe; P=0.04 overall). There was no correlation between elasticity and fibrosis. CONCLUSION Of the devices used in this work, kidney elastography was more accurately analyzed with a convex probe. Our study did not identify any correlation between elasticity and kidney fibrosis.
Collapse
|
21
|
Urban MW, Rule AD, Atwell TD, Chen S. Novel Uses of Ultrasound to Assess Kidney Mechanical Properties. KIDNEY360 2021; 2:1531-1539. [PMID: 34939037 PMCID: PMC8691758 DOI: 10.34067/kid.0002942021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ultrasound is a key imaging tool for evaluating the kidney. Over the last two decades, methods to measure the mechanical properties of soft tissues have been developed and used in clinical practice, although use in the kidney has not been as widespread as for other applications. The mechanical properties of the kidney are determined by the structure and composition of the renal parenchyma and perfusion characteristics. Because pathologic processes change these factors, the mechanical properties change and can be used for diagnostic purposes and for monitoring treatment or disease progression. Ultrasound-based elastography methods for evaluating the mechanical properties of the kidney use focused ultrasound beams to perturb the kidney and then high frame-rate ultrasound methods are used to measure the resulting motion. The motion is analyzed to estimate the mechanical properties. This review will describe the principles of these methods and discuss several seminal studies related to characterizing the kidney. Additionally, an overview of the clinical use of elastography methods in native and kidney allografts will be provided. Perspectives on future developments and uses of elastography technology along with other complementary ultrasound imaging modalities will be provided.
Collapse
Affiliation(s)
| | - Andrew D. Rule
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Shigao Chen
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
22
|
The effect of water intake on ultrasound tissue characteristics and hemodynamics of adult livers. Clin Exp Hepatol 2021; 7:223-230. [PMID: 34295991 PMCID: PMC8284166 DOI: 10.5114/ceh.2021.107068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/22/2021] [Indexed: 11/27/2022] Open
Abstract
Aim of the study To assess the effect of water intake on ultrasound tissue characteristics and hemodynamics of adult livers. Material and methods In February 2020, we prospectively performed ultrasound shear wave elastography and attenuation imaging (ATI) of the liver parenchyma, and spectral Doppler sonography of the portal vein and hepatic artery in 19 adult healthy volunteers (10 men and 9 women, mean age 27 years, mean body mass index 24.65 kg/m2). We measured liver shear wave velocity (SWV, m/s), shear wave dispersion (SWD, m/s/kHz), attenuation coefficient (dB/cm/MHz), main portal vein velocity (PVV, cm/s), hepatic artery peak systolic velocity (PSV, cm/s), and end diastolic velocity (EDV, cm/s) immediately before and at different time points (15, 30, 45, and 60 minutes) after water intake (1.0 l water and 1.5 l water for body weight < 150 lbs. and ≥ 150 lbs., respectively). Results The differences in SWV, PVV, hepatic artery PSV and EDV before and after water intake were significant (p < 0.01) whereas the differences in SWD and ATI were not (p > 0.05) based on repeated measures ANOVA tests. The values of SWV, PVV, PSV, and EDV reached a peak at 30-45 minutes and returned to baseline 60 minutes after water intake. We observed positive correlations of SWV with PVV, PSV, and EDV in linear regression analyses (r2 > 0.73). Conclusions Water intake affects the liver stiffness and hemodynamics. No water intake at least one hour prior to liver ultrasound elastography and Doppler sonography is recommended.
Collapse
|
23
|
Fang JX, Chen XY, Yang QM, Xue MH. Factors Influencing Renal Parenchymal Stiffiness in Patients with Diabetic Nephropathy. Int J Gen Med 2021; 14:1911-1917. [PMID: 34040423 PMCID: PMC8140885 DOI: 10.2147/ijgm.s311420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/29/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Glomerulosclerosis and tubulointerstitial fibrosis are associated with lower renal parenchymal resilience. The purpose of this study is to determine the factors influencing renal resilience in patients with diabetic nephropathy (DN). Methods We recruited 56 healthy volunteers and 187 patients with DN. All the participants were evaluated using shear-wave elastography (SWE), and the size of their kidneys and Young's modulus values for the parenchyma were recorded. A total of 187 patients with DN are allocated to three groups according to their urinary albumin-to-creatinine ratio: normoalbuminuric (<30 mg/g creatinine), microalbuminuric (30-300 mg/g), and macroalbuminuric (≥300 mg/g) groups. Renal resilience is compared between the stages of diabetic nephropathy and the healthy control group, and the factors affecting the stiffiness of the renal parenchyma in DN are analyzed. Results The renal parenchyma is harder in participants with DN than in healthy participants (P < 0.001), and the stiffiness increases with the progression of the disease (P < 0.001). Multivariate logistic regression analysis shows that disease stage (β = 0.789, P < 0.001), duration of diabetes (β = 0.028, P < 0.001), and serum creatinine (SCr) concentration (β = 0.001, p < 0.001) influence the stiffiness of the renal parenchyma. Conclusion We show that SWE can be used to measure changes in the stiffiness of the renal parenchyma in patients with DN. Furthermore, Young's modulus of the renal parenchyma is related to the duration of diabetes, urinary albumin excretion, and SCr concentration. Thus, SWE can be used to objectively and non-invasively stage DN.
Collapse
Affiliation(s)
- Jian-Xiu Fang
- Department of Ultrasound, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, People's Republic of China
| | - Xiao-Yan Chen
- Department of Ultrasound, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, People's Republic of China
| | - Qing-Mei Yang
- Department of Ultrasound, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, People's Republic of China
| | - Meng-Hua Xue
- Department of Ultrasound, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, People's Republic of China
| |
Collapse
|
24
|
Kijanka P, Urban MW. Phase Velocity Estimation With Expanded Bandwidth in Viscoelastic Phantoms and Tissues. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1352-1362. [PMID: 33502973 PMCID: PMC8087630 DOI: 10.1109/tmi.2021.3054950] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ultrasound shear wave elastography (SWE) is a technique used to measure mechanical properties to evaluate healthy and pathological soft tissues. SWE typically employs an acoustic radiation force (ARF) to generate laterally propagating shear waves that are tracked in the spatiotemporal domains, and algorithms are used to estimate the wave velocity. The tissue viscoelasticity is often examined through analyzing the shear wave phase velocity dispersion curves, which is the variation of phase velocity with frequency or wavelength. A number of available methods to estimate dispersion exist, which can differ in resolution and variance. Moreover, most of these techniques reconstruct dispersion curves for a limited frequency band. In this work, we propose a novel method used for dispersion curve calculation. Our unique approach uses a generalized Stockwell transformation combined with a slant frequency-wavenumber analysis (GST-SFK). We tested the GST-SFK method on numerical phantom data generated using a finite-difference-based method in tissue-mimicking viscoelastic media. In addition, we evaluated the method on numerical shear wave motion data with different amounts of white Gaussian noise added. Additionally, we performed tests on data from custom-made tissue-mimicking viscoelastic phantom experiments, ex vivo porcine liver measurements, and in vivo liver tissue experiments. We compared results from our method with two other techniques used for estimating shear wave phase velocity: the two-dimensional Fourier transform (2D-FT) and the eigenvector (EV) method. Tests carried out revealed that the GST-SFK method provides dispersion curve estimates with lower errors over a wider frequency band in comparison to the 2D-FT and EV methods. In addition, the GST-SFK provides expanded bandwidth by a factor of two or more to be used for phase velocity estimation, which is meaningful for a tissue dispersion analysis in vivo.
Collapse
|
25
|
Turgutalp K, Balcı Y, Özer C, Bardak S, Gürses İ, Karabulut Y, Helvacı İ, Dölarslan E, Demir S, Kıykım A. Shear wave elastography findings in Immunoglobulin A Nephropathy patients: is it more specific and sensitive for interstitial fibrosis or interstitial fibrosis/tubular atrophy? Ren Fail 2021; 42:590-599. [PMID: 32597278 PMCID: PMC7946010 DOI: 10.1080/0886022x.2020.1779087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Prediction of prognosis in Immunoglobulin A Nephropathy (IgAN) and taking appropriate precautions may reduce annual incidence of chronic kidney disease. This may be possible by close follow-up for the development and progression of interstitial fibrosis (IF) or interstitial fibrosis/tubular atrophy (IFTA) in IgAN patients. Aim To investigate whether Young’s elastic modulus (YM) which measured shear wave elastography (SWE) might be used for follow-up of IF or IFTA in IgAN patients. Methods Prospective study was approved by Human Research Ethics Committee. Group 1 consisted of patients with IgAN. Group 2 consisted of healthy control participants. Young’s elastic modulus which is a value of stiffness along with longitudinal stiffness was used to evaluate tissue elasticity. Specificity, sensitivity, positive predictive value (PPV) of YM for the presence of IF and IFTA were evaluated. Results Group 1 consisted of 30 participants, and group 2 consisted of 32 participants. Sensitivity and specificity of SWE to diagnose presence of IF for YM > 15 kPa were 89% and 90%, respectively. PPV among the ones whom IF was diagnosed by YM >15 kPa was 91%. Sensitivity and specificity of SWE to diagnose presence of IFTA for YM > 15 were 65% and 51%, respectively. PPV among the ones whom IFTA was diagnosed by YM >15 kPa was 78.1%. Conclusions YM which measured SWE is highly specific and sensitive in the diagnosis of IF, but not for IFTA in IgAN patients. Therefore, progression for IF in IgAN may be followed by SWE.
Collapse
Affiliation(s)
- Kenan Turgutalp
- Department of Internal Medicine, School of Medicine, Division of Nephrology, Mersin University, Mersin, Turkey
| | - Yüksel Balcı
- Department of Radiology, School of Medicine, Mersin University, Mersin, Turkey
| | - Caner Özer
- Department of Radiology, School of Medicine, Mersin University, Mersin, Turkey
| | - Simge Bardak
- Department of Nephrology, Lefkosa BN State Hospital, Lefkosa, Cyprus
| | - İclal Gürses
- Department of Pathology Cerrahpasa School of Medicine, Istanbul University - Cerrahpasa, Istanbul, Turkey
| | - Yasemin Karabulut
- Department of Pathology, School of Medicine, Mersin University, Mersin, Turkey
| | - İlter Helvacı
- Department of Business Information and Biostatistic Management, Silifke School of Applied Technology and Management, Mersin University, Mersin, Turkey
| | - Esra Dölarslan
- Department of Internal Medicine, School of Medicine, Division of Nephrology, Mersin University, Mersin, Turkey
| | - Serap Demir
- Department of Internal Medicine, School of Medicine, Division of Nephrology, Mersin University, Mersin, Turkey
| | - Ahmet Kıykım
- Department of Internal Medicine, School of Medicine, Division of Nephrology, Mersin University, Mersin, Turkey
| |
Collapse
|
26
|
Kawai T, Takahashi M, Takamoto K, Bito I. Hamstring strains in professional rugby players result in increased fascial stiffness without muscle quality changes as assessed using shear wave elastography. J Bodyw Mov Ther 2021; 27:34-41. [PMID: 34391255 DOI: 10.1016/j.jbmt.2021.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/18/2020] [Accepted: 03/13/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Hamstring strain injury is common among sports injuries. A previous history of this injury is considered a strong predictor of recurrent hamstring strain injury. Fascial tissue reportedly becomes stiffer after hamstring strain injury. However, the association between fascial stiffness and previous hamstring strain injury has not been investigated in clinical studies. We aimed to determine whether a previous history of hamstring strain injury affects fascial tissue and muscle tissues using shear wave elastography. METHOD In eleven male professional rugby players, the stiffness as a shear modulus (kPa) of fascial tissue and muscle was measured on the specific injured area measured by magnetic resonance imaging (MRI) at resting position by using shear wave elastography. The side-to-side differences between the injured and the uninjured side were analyzed. The length and area of the muscle scar tissue were evaluated by MRI in relation to fascial stiffness. RESULTS The shear elastic modulus of fascia was stiffer in the injured vs. the uninjured side; however, no difference was observed in the muscle. No significant relationship was detected between the length and area of the muscle scar tissue (all P > 0.05). DISCUSSION Rugby players with a previous history of hamstring strain injury exhibited passive stiffness of fascial tissues in the injured leg, regardless of the length or area of the muscle scar tissue. However, the passive stiffness of muscles was same between the injured and the uninjured leg. CONCLUSION The results can be beneficial to consider future risk for hamstring strain injuries.
Collapse
Affiliation(s)
- Tomonori Kawai
- Department of Sports and Health Sciences, Faculty of Human Sciences, University of East Asia, Ichinomiya Gakuen Cyo, Shimonoseki, Yamaguchi, Japan.
| | - Masayasu Takahashi
- Konan Medical Center, Department of Orthopaedic Surgery, Hyogo, Japan 1-5-16 Kamokogahara Higashinada, Kobe, Hyogo, Japan
| | - Kouichi Takamoto
- Department of Sports and Health Sciences, Faculty of Human Sciences, University of East Asia, Ichinomiya Gakuen Cyo, Shimonoseki, Yamaguchi, Japan.
| | - Itsumu Bito
- Department of Sports and Health Sciences, Faculty of Human Sciences, University of East Asia, Ichinomiya Gakuen Cyo, Shimonoseki, Yamaguchi, Japan
| |
Collapse
|
27
|
Beuve S, Kritly L, Callé S, Remenieras JP. Diffuse shear wave spectroscopy for soft tissue viscoelastic characterization. ULTRASONICS 2021; 110:106239. [PMID: 32942089 DOI: 10.1016/j.ultras.2020.106239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 08/03/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
In order to limit and slow the development of diseases, they have to be diagnosed early as possible to treat patients in a better and more rapid manner. In this paper, we focus on a noninvasive and quick method based on diffuse fields in elastography to detect diseases that affect the stiffness of organs. To validate our method, a phantom experiment numerically pre-validated is designed. It consists of seven vibrators that generate white noises in a bandwidth of [80-300] Hz and then a complex acoustic field in a phantom. Waves are tracked by a linear ultrasound probe L11-4v linked to a Verasonics Vantage System and are converted into a particle velocity 2D map as a function of time. The phase velocity of the shear waves is calculated using a temporal and 2D spatial Fourier transform and an adapted signal-processing method. Shear wave velocity dispersion measurement in the frequency bandwidth of the vibrators enables one to characterize the dynamic hardness of the material through the viscoelastic parameters μ and η in an acquisition time shorter than a second (Tacq = 300 ms). With the aim of estimating the consistency of the method, the experiment is performed N = 10 times. The measured elastic modulus and viscous parameter that quantify the dynamic properties of the medium correspond to the expected values: μ = 1.23 ± 0.05 kPa and η = 0.51 ± 0.09 Pa∙s.
Collapse
Affiliation(s)
- S Beuve
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| | - L Kritly
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - S Callé
- GREMAN UMR 7347, Université de Tours, CNRS, INSA Centre Val de Loire, Tours, France
| | - J-P Remenieras
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| |
Collapse
|
28
|
Sorriento A, Poliziani A, Cafarelli A, Valenza G, Ricotti L. A novel quantitative and reference-free ultrasound analysis to discriminate different concentrations of bone mineral content. Sci Rep 2021; 11:301. [PMID: 33432022 PMCID: PMC7801603 DOI: 10.1038/s41598-020-79365-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
Bone fracture is a continuous process, during which bone mineral matrix evolves leading to an increase in hydroxyapatite and calcium carbonate content. Currently, no gold standard methods are available for a quantitative assessment of bone fracture healing. Moreover, the available tools do not provide information on bone composition. Whereby, there is a need for objective and non-invasive methods to monitor the evolution of bone mineral content. In general, ultrasound can guarantee a quantitative characterization of tissues. However, previous studies required measurements on reference samples. In this paper we propose a novel and reference-free parameter, based on the entropy of the phase signal calculated from the backscattered data in combination with amplitude information, to also consider absorption and scattering phenomena. The proposed metric was effective in discriminating different hydroxyapatite (from 10 to 50% w/v) and calcium carbonate (from 2 to 6% w/v) concentrations in bone-mimicking phantoms without the need for reference measurements, paving the way to their translational use for the diagnosis of tissue healing. To the best of our knowledge this is the first time that the phase entropy of the backscattered ultrasound signals is exploited for monitoring changes in the mineral content of bone-like materials.
Collapse
Affiliation(s)
- A Sorriento
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127, Pisa, Italy.
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127, Pisa, Italy.
| | - A Poliziani
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
| | - A Cafarelli
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
| | - G Valenza
- Bioengineerring and Robotics Research Centre E Piaggio, University of Pisa, 56122, Pisa, Italy
- Department of Information Engineering, University of Pisa, 56123, Pisa, Italy
| | - L Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
| |
Collapse
|
29
|
Wang X, Geng Y, Han D, Lu M, Li R, Li Y, Zhang Q, Wan M. Viscoelastic characterization of HIFU ablation with shear wave by using K-space analysis combined with model-fitting correction method. ULTRASONICS 2020; 108:106179. [PMID: 32504988 DOI: 10.1016/j.ultras.2020.106179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
The viscoelastic properties of tissues can reflect human physiological and pathological conditions. During and after the high-intensity focused ultrasound (HIFU) treatment, measuring the viscoelasticity of HIFU ablated tissue is important for therapy evaluation. Two-dimensional Fourier transform (2DFT) method has been reported to quantify elasticity and viscosity. However, a deviation is induced by under-sampling in practical application. This work proposes an approach based on the convolution theorem and model fitting to solve the finite spatial data problem. A model using the convolution theorem was constructed, and mean-square error (MSE) was calculated to determine the optimal fitting between the model and experimental data. For validation, HIFU therapeutic experiments were conducted in polyacrylamide-bovine serum (BAS) transparent tissue-mimicking phantoms. This approach was used to quantify the viscoelasticity of HIFU ablation and untreated phantoms. Acoustic-radiation-force (ARF) shear wave was generated by the same HIFU therapeutic transducer, and laser Doppler vibrometer (LDV) was used for the high-resolution measurement of shear wave signals. Results suggest that the shear elasticity and viscosity of untreated phantoms are generally smaller than those of HIFU ablation. Thus, the proposed method may be helpful for HIFU treatment monitoring.
Collapse
Affiliation(s)
- Xuan Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi'an 710049, China
| | - Yizhe Geng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi'an 710049, China
| | - Dan Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi'an 710049, China
| | - Mingzhu Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi'an 710049, China.
| | - Ruixin Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi'an 710049, China
| | - Yujiao Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi'an 710049, China
| | - Quan Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi'an 710049, China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
30
|
Liu HC, Kijanka P, Urban MW. Four-dimensional (4D) phase velocity optical coherence elastography in heterogeneous materials and biological tissue. BIOMEDICAL OPTICS EXPRESS 2020; 11:3795-3817. [PMID: 33014567 PMCID: PMC7510894 DOI: 10.1364/boe.394835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/21/2020] [Accepted: 06/09/2020] [Indexed: 05/03/2023]
Abstract
The variations of mechanical properties in soft tissues are biomarkers used for clinical diagnosis and disease monitoring. Optical coherence elastography (OCE) has been extensively developed to investigate mechanical properties of various biological tissues. These methods are generally based on time-domain data and measure the time-of-flight of the localized shear wave propagations to estimate the group velocity. However, there is considerable information that can be obtained from examining the mechanical properties such as wave propagation velocities at different frequencies. Here we propose a method to evaluate phase velocity, wave velocity at various frequencies, in four-dimensional space (x, y, z, f), called 4D-OCE phase velocity. The method enables local estimates of the phase velocity of propagating mechanical waves in a medium. We acquired and analyzed data with this method from a homogeneous reference phantom, a heterogeneous phantom material with four different excitation cases, and ex vivo porcine kidney tissue. The 3D-OCE group velocity was also estimated to compare with 4D-OCE phase velocity. Moreover, we performed numerical simulation of wave propagations to illustrate the boundary behavior of the propagating waves. The proposed 4D-OCE phase velocity is capable of providing further information in OCE to better understand the spatial variation of mechanical properties of various biological tissues with respect to frequency.
Collapse
Affiliation(s)
- Hsiao-Chuan Liu
- Department of Radiology, Mayo Clinic, 200
First St SW, Rochester, MN 55905, USA
| | - Piotr Kijanka
- Department of Radiology, Mayo Clinic, 200
First St SW, Rochester, MN 55905, USA
- Department of Robotics and Mechatronics,
AGH University of Science and Technology, Al. Mickiewicza 30, Krakow
30-059, Poland
| | - Matthew W. Urban
- Department of Radiology, Mayo Clinic, 200
First St SW, Rochester, MN 55905, USA
- Department of Physiology and Biomedical
Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905,
USA
| |
Collapse
|
31
|
Hossain MM, Gallippi CM. Viscoelastic Response Ultrasound Derived Relative Elasticity and Relative Viscosity Reflect True Elasticity and Viscosity: In Silico and Experimental Demonstration. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:1102-1117. [PMID: 31899421 PMCID: PMC7341692 DOI: 10.1109/tuffc.2019.2962789] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Viscoelastic response (VisR) ultrasound characterizes the viscoelastic properties of tissue by fitting acoustic radiation force (ARF)-induced displacements in the region of ARF excitation to a 1-D mass-spring-damper (MSD) model. Elasticity and viscosity are calculated separately but relative to the applied ARF amplitude. We refer to these parameters as "relative elasticity (RE)" and "relative viscosity (RV)." We herein test the hypothesis that RE and RV linearly correlate to true elasticity and viscosity in tissue. VisR imaging was simulated in 144 homogeneous viscoelastic materials with varying elasticities and viscosities. Derived RE linearly correlated with material elasticity and varied by an average of 2.52% when the material viscosity changed from 0.1 to 1.3 Pa · s. Derived RV linearly correlated with material viscosity but varied by an average of 102.5% when material elasticity changed from 3.33 to 20 kPa. The effect of elasticity on RV measurement was compensated using the slope of the linear relationship between RV and natural frequency ( ωtextn ). After compensation, RV [Formula: see text] (elasticity compensated RV) linearly correlated with material viscosity and varied by less than 1.00% on average when the modeled shear elastic modulus changed from 3.3 to 20 kPa. In addition to elasticity compensation, variation in ARF amplitude over depth was compensated, yielding REDC and [Formula: see text]. REDC and [Formula: see text] successfully contrasted elastic and viscous inclusions, respectively, in three simulated phantoms. Experimentally, in the homogeneous oil-in-gelatin phantoms and excised livers, REDC linearly correlated with shear wave dispersion ultrasound vibrometry (SDUV) derived shear elastic modulus, and [Formula: see text] linearly correlated with SDUV-derived shear viscosity. In excised livers containing viscoelastic oil-in-gelatin inclusions, the inclusions were successfully contrasted from the liver background by both REDC and [Formula: see text]. These results suggest that RE and RV are relevant for qualitatively assessing the elastic and viscous properties of tissue.
Collapse
|
32
|
Caenen A, Knight AE, Rouze NC, Bottenus NB, Segers P, Nightingale KR. Analysis of multiple shear wave modes in a nonlinear soft solid: Experiments and finite element simulations with a tilted acoustic radiation force. J Mech Behav Biomed Mater 2020; 107:103754. [PMID: 32364950 DOI: 10.1016/j.jmbbm.2020.103754] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 11/16/2022]
Abstract
Tissue nonlinearity is conventionally measured in shear wave elastography by studying the change in wave speed caused by the tissue deformation, generally known as the acoustoelastic effect. However, these measurements have mainly focused on the excitation and detection of one specific shear mode, while it is theoretically known that the analysis of multiple wave modes offers more information about tissue material properties that can potentially be used to refine disease diagnosis. This work demonstrated proof of concept using experiments and finite element simulations in a uniaxially stretched phantom by tilting the acoustic radiation force excitation axis with respect to the material's symmetry axis. Using this unique set-up, we were able to visualize two propagating shear wave modes across the stretch direction for stretches larger than 140%. Complementary simulations were performed using material parameters determined from mechanical testing, which enabled us to convert the observed shear wave behavior into a correct representative constitutive law for the phantom material, i.e. the Isihara model. This demonstrates the potential of measuring shear wave propagation in combination with shear wave modeling in complex materials as a non-invasive alternative for mechanical testing.
Collapse
Affiliation(s)
- Annette Caenen
- IBiTech-bioMMeda, Ghent University, Ghent, Belgium; Department of Cardiology, University Medical Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands.
| | - Anna E Knight
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Ned C Rouze
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Nick B Bottenus
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | | | | |
Collapse
|
33
|
Gao J, Thai A, Lee J, Fowlkes JB. Ultrasound Shear Wave Elastography and Doppler Sonography to Assess the Effect of Hydration on Human Kidneys: A Preliminary Observation. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1179-1188. [PMID: 32081585 DOI: 10.1016/j.ultrasmedbio.2020.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/16/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
To assess the feasibility of ultrasound imaging in depicting the changes in kidney size, hemodynamics and cortex viscoelasticity after hydration, we prospectively performed 2-D ultrasound shear wave elastography (SWE) and Doppler sonography of bilateral kidneys in 30 volunteers. Kidney length, cortex shear wave velocity (SWV), shear wave dispersion (SWD), interlobar artery peak systolic velocity (PSV), end-diastolic velocity (EDV) and resistive index (RI) were measured before and 60 min after with and without drinking water (1 L). The differences in kidney length, SWV, PSV, EDV and color pixel intensity before and after hydration were significant (p < 0.001), whereas these differences were not significant without hydration (p > 0.05). SWD and RI did not significantly differ with or without hydration. Inter- and intra-observer reliability in performing SWE and Doppler sonography was good. The use of Doppler sonography and ultrasound SWE to evaluate the effect of hydration on kidney size, hemodynamics and viscoelasticity seem to be feasible.
Collapse
Affiliation(s)
- Jing Gao
- Rocky Vista University, Ivins, Utah, USA.
| | - Andy Thai
- Rocky Vista University, Ivins, Utah, USA
| | - Juhyun Lee
- Rocky Vista University, Ivins, Utah, USA
| | | |
Collapse
|
34
|
Knight AE, Lipman SL, Ketsiri T, Hobson-Webb LD, Nightingale KR. On the Challenges Associated with Obtaining Reproducible Measurements Using SWEI in the Median Nerve. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1092-1104. [PMID: 32057471 PMCID: PMC7419061 DOI: 10.1016/j.ultrasmedbio.2019.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/25/2019] [Accepted: 12/29/2019] [Indexed: 05/03/2023]
Abstract
This work discusses challenges we have encountered in acquiring reproducible measurements of shear wave speed (SWS) in the median nerve and suggests methods for improving reproducibility. First, procedural acquisition challenges are described, including nerve echogenicity, transducer pressure and transmit focal depth. Second, we present an iterative, radon sum-based algorithm that was developed specifically for measuring the SWS in median nerves. SWSs were measured using single track location shear wave elasticity imaging (SWEI) in the median nerves of six healthy volunteers and six patients diagnosed with carpal tunnel syndrome. Unsuccessful measurements were associated with several challenges including reverberation artifacts, low signal-to-noise ratio and temporal window limitations for tracking the velocity wave. To address these challenges, an iterative convergence algorithm was implemented to identify an appropriate temporal processing window that removed the reverberation artifacts while preserving shear wave signals. Algorithmically, it was important to consider the lateral regression kernel size and position and the temporal window. Procedurally, both nerve echogenicity and transducer compression were determined to impact the measured SWS. Shear waves were successfully measured in the median nerve proximal to the carpal tunnel, but SWEI measurements were significantly compromised within the carpal tunnel itself. The velocity-based SWSs were statistically significantly higher than the displacement SWSs (p < 0.0001), demonstrating for the first time dispersion in the median nerve in vivo using SWEI.
Collapse
Affiliation(s)
- Anna E Knight
- Duke Biomedical Engineering, Duke University, Durham, NC.
| | | | | | - Lisa D Hobson-Webb
- Duke Department of Neurology/Neuromuscular Division, Duke University, Durham, NC
| | | |
Collapse
|
35
|
Rus G, Faris IH, Torres J, Callejas A, Melchor J. Why Are Viscosity and Nonlinearity Bound to Make an Impact in Clinical Elastographic Diagnosis? SENSORS (BASEL, SWITZERLAND) 2020; 20:E2379. [PMID: 32331295 PMCID: PMC7219338 DOI: 10.3390/s20082379] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/24/2022]
Abstract
The adoption of multiscale approaches by the biomechanical community has caused a major improvement in quality in the mechanical characterization of soft tissues. The recent developments in elastography techniques are enabling in vivo and non-invasive quantification of tissues' mechanical properties. Elastic changes in a tissue are associated with a broad spectrum of pathologies, which stems from the tissue microstructure, histology and biochemistry. This knowledge is combined with research evidence to provide a powerful diagnostic range of highly prevalent pathologies, from birth and labor disorders (prematurity, induction failures, etc.), to solid tumors (e.g., prostate, cervix, breast, melanoma) and liver fibrosis, just to name a few. This review aims to elucidate the potential of viscous and nonlinear elastic parameters as conceivable diagnostic mechanical biomarkers. First, by providing an insight into the classic role of soft tissue microstructure in linear elasticity; secondly, by understanding how viscosity and nonlinearity could enhance the current diagnosis in elastography; and finally, by compounding preliminary investigations of those elastography parameters within different technologies. In conclusion, evidence of the diagnostic capability of elastic parameters beyond linear stiffness is gaining momentum as a result of the technological and imaging developments in the field of biomechanics.
Collapse
Affiliation(s)
- Guillermo Rus
- Ultrasonics Group (TEP-959), Department of Structural Mechanics, University of Granada, 18071 Granada, Spain; (G.R.); (I.H.F.); (A.C.)
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain;
- Excellence Research Unit “ModelingNature” MNat UCE.PP2017.03, University of Granada, 18071 Granada, Spain
| | - Inas H. Faris
- Ultrasonics Group (TEP-959), Department of Structural Mechanics, University of Granada, 18071 Granada, Spain; (G.R.); (I.H.F.); (A.C.)
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain;
| | - Jorge Torres
- Ultrasonics Group (TEP-959), Department of Structural Mechanics, University of Granada, 18071 Granada, Spain; (G.R.); (I.H.F.); (A.C.)
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain;
| | - Antonio Callejas
- Ultrasonics Group (TEP-959), Department of Structural Mechanics, University of Granada, 18071 Granada, Spain; (G.R.); (I.H.F.); (A.C.)
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain;
| | - Juan Melchor
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain;
- Excellence Research Unit “ModelingNature” MNat UCE.PP2017.03, University of Granada, 18071 Granada, Spain
- Department of Statistics and Operations Research, University of Granada, 18071 Granada, Spain
| |
Collapse
|
36
|
Liu HC, Kijanka P, Urban MW. Acoustic radiation force optical coherence elastography for evaluating mechanical properties of soft condensed matters and its biological applications. JOURNAL OF BIOPHOTONICS 2020; 13:e201960134. [PMID: 31872545 PMCID: PMC7243171 DOI: 10.1002/jbio.201960134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 05/11/2023]
Abstract
Evaluating mechanical properties of biological soft tissues and viscous mucus is challenging because of complicated dynamic behaviors. Soft condensed matter models have been successfully used to explain a number of dynamical behaviors. Here, we reported that optical coherence elastography (OCE) is capable of quantifying mechanical properties of soft condensed matters, micellar fluids. A 7.5 MHz focused transducer was utilized to generate acoustic radiation force exerted on the surface of soft condensed matters in order to produce Rayleigh waves. The waves were recorded by optical coherence tomography (OCT). The Kelvin-Voigt model was adopted to evaluate shear modulus and loss modulus of soft condensed matters. The results reported that various concentrations of micellar fluids can provide reasonable ranges of elasticity from 65.71 to 428.78 Pa and viscosity from 0.035 to 0.283 Pa·s, which are close to ranges for actual biological samples, like mucus. OCE might be a promising tool to differentiate pathologic mucus samples from healthy cases as advanced applications in the future.
Collapse
Affiliation(s)
| | - Piotr Kijanka
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
- Department of Robotics and Mechatronics, AGH University of Science and Technology, Poland
| | - Matthew W Urban
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
37
|
Kijanka P, Urban MW. Two-Point Frequency Shift Method for Shear Wave Attenuation Measurement. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:483-496. [PMID: 31603777 PMCID: PMC7138459 DOI: 10.1109/tuffc.2019.2945620] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ultrasound shear wave elastography (SWE) is an increasingly used noninvasive modality for quantitative evaluation of tissue mechanical properties. SWE typically uses an acoustic radiation force to produce laterally propagating shear waves that are tracked in the spatial and temporal domains, in order to obtain the wave velocity. One of the ways to study the viscoelasticity is through studying the shear wave phase velocity dispersion curves. Shear wave attenuation can be also characterized in viscoelastic tissues with methods that use multiple lateral data samples. In this article, we present an alternative method for measuring the shear wave attenuation without using a rheological model two-point frequency shift (2P-FS). The technique uses information related to the amplitude spectra FS of shear waves measured at only two lateral locations. The theoretical basis for the 2P-FS is derived and validated. We examined how the first signal position and the distance between the two locations affect the shear wave attenuation estimation in the 2P-FS method. We tested this new method on digital phantom data created using the local interaction simulation approach (LISA) in viscoelastic media. Moreover, we tested data acquired from custom-made tissue-mimicking viscoelastic phantom experiments and ex vivo porcine liver measurements. We compared results from the 2P-FS method with the other two techniques used for assessing a shear wave attenuation: the FS-based method and the attenuation-measuring ultrasound shear wave elastography (AMUSE) technique. In addition, we evaluated the 2P-FS algorithm with different levels of added white Gaussian noise to the shear wave particle velocity using numerical phantoms. Tests conducted showed that the 2P-FS method gives robust results based on only two measurements and can be used to measure attenuation of viscoelastic soft tissues.
Collapse
|
38
|
Cristea A, Collier N, Franceschini E, Mamou J, Cachard C, Basset O. Quantitative assessment of media concentration using the Homodyned K distribution. ULTRASONICS 2020; 101:105986. [PMID: 31539763 DOI: 10.1016/j.ultras.2019.105986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/04/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
The Homodyned K distribution has been used successfully as a tool in the ultrasound characterization of sparse media, where the scatterer clustering parameter α accurately discriminates between media with different numbers of scatterers per resolution cell. However, as the number of scatterers increases and the corresponding amplitude statistics become Rician, the reliability of the α estimates decreases rapidly. In the present study, we assess the usefulness of α for the characterization of both sparse and concentrated media, using simulated independent and identically distributed (i.i.d.) samples from Homodyned K distributions, ultrasound images of media with up to 68 scatterers per resolution cell and ultrasound signals acquired from particle phantoms with up to 101 scatterers per resolution cell. All parameter estimates are obtained using the XU estimator (Destrempes et al., 2013). Results suggest that the parameter α can be used to distinguish between media with up to 40 scatterers per resolution cell at 22 MHz, provided that parameter estimation can be performed on very large sample sizes (i.e., >10,000 i.i.d. samples).
Collapse
Affiliation(s)
- Anca Cristea
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway; Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, Lyon, France.
| | - Nicolas Collier
- Aix-Marseille Univ., CNRS, Centrale Marseille, LMA, Marseille, France
| | | | - Jonathan Mamou
- F.L. Lizzi Center for Biomedical Engineering, Riverside Research, New York, NY, USA
| | - Christian Cachard
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, Lyon, France
| | - Olivier Basset
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, Lyon, France
| |
Collapse
|
39
|
Jin Z, Zhou Y, Shen M, Wang Y, Lu F, Zhu D. Assessment of corneal viscoelasticity using elastic wave optical coherence elastography. JOURNAL OF BIOPHOTONICS 2020; 13:e201960074. [PMID: 31626371 DOI: 10.1002/jbio.201960074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/21/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
The corneal viscoelasticity have great clinical significance, such as the early diagnosis of keratoconus. In this work, an analysis method which utilized the elastic wave velocity, frequency and energy attenuation to assess the corneal viscoelasticity is presented. Using phase-resolved optical coherence tomography, the spatial-temporal displacement map is derived. The phase velocity dispersion curve and center frequency are obtained by transforming the displacement map into the wavenumber-frequency domain through the 2D fast Fourier transform (FFT). The shear modulus is calculated through Rayleigh wave equation using the phase velocity in the high frequency. The normalized energy distribution is plotted by transforming the displacement map into the spatial-frequency domain through the 1D FFT. The energy attenuation coefficient is derived by exponential fitting to calculate the viscous modulus. Different concentrations of tissue-mimicking phantoms and porcine corneas are imaged to validate this method, which demonstrates that the method has the capability to assess the corneal viscoelasticity.
Collapse
Affiliation(s)
- Zi Jin
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Yuheng Zhou
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Meixiao Shen
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Wang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Fan Lu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Dexi Zhu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
40
|
Viscoelasticity in natural tissues and engineered scaffolds for tissue reconstruction. Acta Biomater 2019; 97:74-92. [PMID: 31400521 DOI: 10.1016/j.actbio.2019.08.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/23/2019] [Accepted: 08/06/2019] [Indexed: 02/05/2023]
Abstract
Viscoelasticity of living tissues plays a critical role in tissue homeostasis and regeneration, and its implication in disease development and progression is being recognized recently. In this review, we first explored the state of knowledge regarding the potential application of tissue viscoelasticity in disease diagnosis. In order to better characterize viscoelasticity with local resolution and non-invasiveness, emerging characterization methods have been developed with the potential to be supplemented to existing facilities. To understand cellular responses to matrix viscoelastic behaviors in vitro, hydrogels made of natural polymers have been developed and the relationships between their molecular structure and viscoelastic behaviors, are elucidated. Moreover, how cells perceive the viscoelastic microenvironment and cellular responses including cell attachment, spreading, proliferation, differentiation and matrix production, have been discussed. Finally, some future perspective on an integrated mechanobiological comprehension of the viscoelastic behaviors involved in tissue homeostasis, cellular responses and biomaterial design are highlighted. STATEMENT OF SIGNIFICANCE: Tissue- or organ-scale viscoelastic behavior is critical for homeostasis, and the molecular basis and cellular responses of viscoelastic materials at micro- or nano-scale are being recognized recently. We summarized the potential applications of viscoelasticity in disease diagnosis enabled by emerging non-invasive characterization technologies, and discussed the underlying mechanism of viscoelasticity of hydrogels and current understandings of cell regulatory functions of them. With a growing understanding of the molecular basis of hydrogel viscoelasticity and recognition of its regulatory functions on cell behaviors, it is important to bring the clinical insights on how these characterization technologies and engineered materials may contribute to disease diagnosis and treatment. This review explains the basics in characterizing viscoelasticity with our hope to bridge the gap between basic research and clinical applications.
Collapse
|
41
|
Rasool G, Wang AB, Rymer WZ, Lee SSM. Shear Waves Reveal Viscoelastic Changes in Skeletal Muscles After Hemispheric Stroke. IEEE Trans Neural Syst Rehabil Eng 2019; 26:2006-2014. [PMID: 30334740 DOI: 10.1109/tnsre.2018.2870155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We investigated alterations in material properties such as elasticity and viscoelasticity of stroke-affected muscles using ultrasound induced shear waves and mechanical models. We used acoustic radiation force to generate shear waves along fascicles of biceps muscles and measured their propagation velocity. The shear wave data were collected in muscles of 13 hemiplegic stroke survivors under passive conditions at 90°, 120°, and 150° elbow flexion angles. In a viscoelastic medium, as opposed to a purely elastic medium, the shear wave propagation velocity depends on the frequency content of the induced wave. Therefore, in addition to the shear wave group velocity (GpV), we also estimated a frequency-dependent phase velocity (PhV). We found significantly higher GpVs and PhVs in stroke-affected muscles ( ). The velocity data were used to estimate shear elasticity and viscosity using an elastic and viscoelastic material models. A pure elastic model showed increased shear elasticity in stroke-affected muscles ( ). The Voigt model estimates of viscoelastic properties were also significantly different between the stroke-impaired and non-impaired muscles. We observed significantly larger model-estimated viscosity values on the stroke-affected side at elbow flexion angles of 120° and 150°. Furthermore, the creep behavior (tissue strain resulting from the application of sudden constant stress) of the model was also different between muscles of the paretic and non-paretic side. We speculate that these changes are associated with the structural disruption of muscles after stroke and may potentially affect force generation from muscle fibers as well as transmission of force to tendons.
Collapse
|
42
|
Parcero GC, Costa-Júnior JFS, Machado JC. Errors in phase velocity estimation owing to the method used for shear wave waveform phase extraction. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab0f5d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Zhou K, Li C, Chen S, Nabi G, Huang Z. Feasibility study of using the dispersion of surface acoustic wave impulse for viscoelasticity characterization in tissue mimicking phantoms. JOURNAL OF BIOPHOTONICS 2019; 12:e201800177. [PMID: 30073776 DOI: 10.1002/jbio.201800177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 05/04/2023]
Abstract
The aim of this study was to investigate the feasibility of utilizing the phase velocity dispersion of impulse surface acoustic wave (SAW) for viscoelasticity characterization of soft materials. The focused ultrasound transducer and the phase-sensitive optical coherence tomography were applied as the impulse SAW inducer and tracker, respectively. Three types of liquid-paraffin-based cream-in-agar phantoms were tested. Phase velocity dispersion curve was extracted using a Fourier transform-based phase velocity analysis algorithm. Viscoelastic parameters were obtained by fitting the dispersion curve of SAW into Rayleigh wave dispersion equation. The estimated viscoelasticity was compared with that from spherical indenter, ramp-hold relaxation testing for validation. Both results show an increasing trend in the elasticity and decreasing trend in the viscosity with the concentration of liquid-paraffin-based cream increasing in the samples. The proposed method has the capability of evaluating the viscoelastic properties of homogeneous soft tissue. By combining viscoelastic parameters estimated from the proposed method, the dispersive SAW-impulse-based viscosity-compensated elastography could be further developed.
Collapse
Affiliation(s)
- Kanheng Zhou
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - Chunhui Li
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - Siping Chen
- School of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Ghulam Nabi
- Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, UK
| | - Zhihong Huang
- School of Science and Engineering, University of Dundee, Dundee, UK
| |
Collapse
|
44
|
Hu JJ, Qureshi MY, Urban MW, Graham R, Yin M, Oommen S, Holst KA, Edgerton S, Vasconcelos L, Nenadic I, Cetta F. Ultrasound Shear Wave Elastography as a Measure of Porcine Hepatic Disease in Right Heart Dysfunction: A Pilot Study. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2393-2399. [PMID: 30126621 PMCID: PMC10081146 DOI: 10.1016/j.ultrasmedbio.2018.05.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Patients with congenital heart disease with a pressure-overloaded right ventricle can develop liver disease and would benefit from non-invasive diagnostic modalities such as ultrasound shear wave elastography (US SWE). We sought to investigate the ability of US SWE to measure dynamic changes in liver stiffness with an acute fluid bolus in an animal model. Three piglets underwent surgical intervention to create a pressure-overloaded right ventricle and, 12 wk later, underwent US SWE, both pre- and post-intravenous infusion of a saline bolus. Ultrasound measures of shear modulus, velocity and attenuation were taken to characterize hepatic mechanical properties. Liver stiffness exhibited a dynamic component that increased after fluid bolus, although not reaching statistical significance with our small sample size, and these changes were greater in more diseased livers. US SWE may provide a promising non-invasive method for assessing dynamic changes in hydration status and degree of liver disease.
Collapse
Affiliation(s)
- Jessie J Hu
- Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota, USA
| | - M Yasir Qureshi
- Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew W Urban
- Division of Radiology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Rondell Graham
- Division of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Meng Yin
- Division of Radiology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Saji Oommen
- Wanek Program for Hypoplastic Left Heart Syndrome, Mayo Clinic, Rochester, Minnesota, USA
| | - Kimberly A Holst
- Department of Cardiothoracic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah Edgerton
- Wanek Program for Hypoplastic Left Heart Syndrome, Mayo Clinic, Rochester, Minnesota, USA
| | - Luiz Vasconcelos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Ivan Nenadic
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Frank Cetta
- Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota, USA; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
45
|
Qian X, Ma T, Shih CC, Heur M, Zhang J, Shung KK, Varma R, Humayun MS, Zhou Q. Ultrasonic Microelastography to Assess Biomechanical Properties of the Cornea. IEEE Trans Biomed Eng 2018; 66:647-655. [PMID: 29993484 DOI: 10.1109/tbme.2018.2853571] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To both qualitatively and quantitatively investigate corneal biomechanical properties through an ultrasonic microelastography imaging system, which is potentially useful in the diagnosis of diseases, such as keratoconus, postrefractive keratectasia, and tracking treatment such as cross-linking surgery. METHODS Our imaging system has a dual-frequency configuration, including a 4.5 MHz ring transducer to push the tissue and a confocally aligned 40 MHz needle transducer to track micron-level displacement. Two-dimensional/three-dimensional acoustic radiation force impulse (ARFI) imaging and Young's modulus in the region of interest were performed on ex vivo porcine corneas that were either cross-linked using formalin solution or preloaded with intraocular pressure (IOPs) from 5 to 30 mmHg. RESULTS The increase of corneal stiffness and the change in cross-linked volume following formalin crosslinking could be precisely observed in the ARFI images and reflected by the reconstructed Young's modulus while the B-mode structural images remained almost unchanged. In addition, the relationship between the stiffness of the cornea and IOPs was investigated among 12 porcine corneas. The corneal stiffness is significantly different at various IOPs and has a tendency to become stiffer with increasing IOP. CONCLUSION Our results demonstrate the principle of using ultrasonic microelastography techniques to image the biomechanical properties of the cornea. Integrating high-resolution ARFI imaging labeled with reconstructed Young's modulus and structural imaging of the cornea can potentially lead to a routinely performed imaging modality in the field of ophthalmology.
Collapse
|
46
|
Xu H, Chen S, An KN, Luo ZP. Near field effect on elasticity measurement for cartilage-bone structure using Lamb wave method. Biomed Eng Online 2017; 16:123. [PMID: 29084547 PMCID: PMC5663048 DOI: 10.1186/s12938-017-0417-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/26/2017] [Indexed: 11/21/2022] Open
Abstract
Background Cartilage elasticity changes with cartilage degeneration. Hence, cartilage elasticity detection might be an alternative to traditional imaging methods for the early diagnosis of osteoarthritis. Based on the wave propagation measurement, Shear wave elastography (SWE) become an emerging non-invasive elasticity detection method. The wave propagation model, which is affected by tissue shapes, is crucial for elasticity estimating in SWE. However, wave propagation model for cartilage was unclear. Methods This study aimed to establish a wave propagation model for the cartilage-bone structure. We fabricated a cartilage-bone structure, and studied the elasticity measurement and wave propagation by experimental and numerical Lamb wave method (LWM). Results Results indicated the wave propagation model satisfied the lamb wave theory for two-layered structure. Moreover, a near field region, which affects wave speed measurements and whose occurrence can be prevented if the wave frequency is larger than one critical frequency, was observed. Conclusion Our findings would provide a theoretical foundation for further application of LWM in elasticity measurement of cartilage in vivo. It can help the application of LWM to the diagnosis of osteoarthritis.
Collapse
Affiliation(s)
- Hao Xu
- Orthopaedic Institute, Department of Orthopaedics, the First Affiliated Hospital, Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Shigao Chen
- Department of Radiology, Mayo Clinic, Rochester, MN, United States of America
| | - Kai-Nan An
- Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, Rochester, MN, United States of America
| | - Zong-Ping Luo
- Orthopaedic Institute, Department of Orthopaedics, the First Affiliated Hospital, Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China.
| |
Collapse
|
47
|
Hossain MM, Moore CJ, Gallippi CM. Acoustic Radiation Force Impulse (ARFI)-Induced Peak Displacements Reflect Degree of Anisotropy in Transversely Isotropic Elastic Materials. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:989-1001. [PMID: 28371775 PMCID: PMC8262365 DOI: 10.1109/tuffc.2017.2690223] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In transversely isotropic (TI) materials, mechanical properties (Young's modulus, shear modulus, and Poisson's ratio) are different along versus across the axis of symmetry (AoS). In this work, the feasibility of interrogating such directional mechanical property differences using acoustic radiation force impulse (ARFI) imaging is investigated. We herein test the hypotheses that 1) ARFI-induced peak displacements (PDs) vary with TI material orientations when an asymmetrical ARFI excitation point spread function (PSF) is used, but not when a symmetrical ARFI PSF is employed; and 2) the ratio of PDs induced with the long axis of an asymmetrical ARFI PSF oriented along versus across the material's AoS is related to the degree of anisotropy of the material. These hypotheses were tested in silico using finite element method (FEM) models and Field II. ARFI excitations had F/1.5, 3, 4, or 5 focal configurations, with the F/1.5 and F/5 cases having the most asymmetrical and symmetrical PSFs at the focal depth, respectively. These excitations were implemented for ARFI imaging in 52 different simulated TI materials with varying degrees of anisotropy, and the ratio of ARFI-induced PDs was calculated. The change in the ratio of PDs with respect to the anisotropy of the materials was highest for the F/1.5, indicating that PD was most strongly impacted by the material orientation when the ARFI excitation was the most asymmetrical. On the contrary, the ratio of PDs did not depend on the anisotropy of the material for the F/5 ARFI excitation, suggesting that PD did not depend on material orientation when the ARFI excitation was symmetrical. Finally, the ratio of PDs achieved using asymmetrical ARFI PSF reflected the degree of anisotropy in TI materials. These results support that symmetrical ARFI focal configurations are desirable when the orientation of the ARFI excitation to the AoS is not specifically known and measurement standardization is important, such as for longitudinal or cross-sectional studies of anisotropic organs. However, asymmetrical focal configurations are useful for exploiting anisotropy, which may be diagnostically relevant. Feasibility for future experimental implementation is demonstrated by simulating ultrasonic displacement tracking and by varying the ARF duration.
Collapse
|
48
|
Palmeri ML, Qiang B, Chen S, Urban MW. Guidelines for Finite-Element Modeling of Acoustic Radiation Force-Induced Shear Wave Propagation in Tissue-Mimicking Media. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:78-92. [PMID: 28026760 PMCID: PMC5310216 DOI: 10.1109/tuffc.2016.2641299] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Ultrasound shear wave elastography is emerging as an important imaging modality for evaluating tissue material properties. In its practice, some systematic biases have been associated with ultrasound frequencies, focal depths and configuration, and transducer types (linear versus curvilinear), along with displacement estimation and shear wave speed estimation algorithms. Added to that, soft tissues are not purely elastic, so shear waves will travel at different speeds depending on their spectral content, which can be modulated by the acoustic radiation force (ARF) excitation focusing, duration, and the frequency-dependent stiffness of the tissue. To understand how these different acquisition and material property parameters may affect the measurements of shear wave velocity, the simulations of the propagation of shear waves generated by ARF excitations in viscoelastic media are a very important tool. This paper serves to provide an in-depth description of how these simulations are performed. The general scheme is broken into three components: 1) simulation of the 3-D ARF push beam; 2) applying that force distribution to a finite-element model; and 3) extraction of the motion data for post-processing. All three components will be described in detail and combined to create a simulation platform that is powerful for developing and testing algorithms for academic and industrial researchers involved in making quantitative shear-wave-based measurements of tissue material properties.
Collapse
|
49
|
Akkus Z, Bayat M, Cheong M, Viksit K, Erickson BJ, Alizad A, Fatemi M. Fully Automated and Robust Tracking of Transient Waves in Structured Anatomies Using Dynamic Programming. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2504-12. [PMID: 27425150 PMCID: PMC6494618 DOI: 10.1016/j.ultrasmedbio.2016.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/19/2016] [Accepted: 06/02/2016] [Indexed: 05/12/2023]
Abstract
Tissue stiffness is often linked to underlying pathology and can be quantified by measuring the mechanical transient transverse wave speed (TWS) within the medium. Time-of-flight methods based on correlation of the transient signals or tracking of peaks have been used to quantify the TWS from displacement maps obtained with ultrasound pulse-echo techniques. However, it is challenging to apply these methods to in vivo data because of tissue inhomogeneity, noise and artifacts that produce outliers. In this study, we introduce a robust and fully automated method based on dynamic programming to estimate TWS in tissues with known geometries. The method is validated using ultrasound bladder vibrometry data from an in vivo study. We compared the results of our method with those of time-of-flight techniques. Our method performs better than time-of-flight techniques. In conclusion, we present a robust and accurate TWS detection method that overcomes the difficulties of time-of-flight methods.
Collapse
Affiliation(s)
- Zeynettin Akkus
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA; Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
| | - Mahdi Bayat
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Mathew Cheong
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Kumar Viksit
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Bradley J Erickson
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Azra Alizad
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA; Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
50
|
Vejdani-Jahromi M, Nagle M, Jiang Y, Trahey GE, Wolf PD. A Comparison of Acoustic Radiation Force-Derived Indices of Cardiac Function in the Langendorff Perfused Rabbit Heart. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1288-95. [PMID: 27008665 PMCID: PMC5068575 DOI: 10.1109/tuffc.2016.2543026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the past decade, there has been an increased interest in characterizing cardiac tissue mechanics utilizing newly developed ultrasound-based elastography techniques. These methods excite the tissue mechanically and track the response. Two frequently used methods, acoustic radiation force impulse (ARFI) and shear-wave elasticity imaging (SWEI), have been considered qualitative and quantitative techniques providing relative and absolute measures of tissue stiffness, respectively. Depending on imaging conditions, it is desirable to identify indices of cardiac function that could be measured by ARFI and SWEI and to characterize the relationship between the measures. In this study, we have compared two indices (i.e., relaxation time constant used for diastolic dysfunction assessment and systolic/diastolic stiffness ratio) measured nearly simultaneously by M-mode ARFI and SWEI techniques. We additionally correlated ARFI-measured inverse displacements with SWEI-measured values of the shear modulus of stiffness. For the eight animals studied, the average relaxation time constant ( τ) measured by ARFI and SWEI were ([Formula: see text]) and ([Formula: see text]), respectively ([Formula: see text]). Average systolic/diastolic stiffness ratios for ARFI and SWEI measurements were 6.01±1.37 and 7.12±3.24, respectively ([Formula: see text]). Shear modulus of stiffness (SWEI) was linearly related to inverse displacement values (ARFI) with a 95% CI for the slope of 0.010-0.011 [Formula: see text] ( R(2)=0.73). In conclusion, the relaxation time constant and the systolic/diastolic stiffness ratio were calculated with good agreement between the ARFI- and SWEI-derived measurements. ARFI relative and SWEI absolute stiffness measurements were linearly related with varying slopes based on imaging conditions and subject tissue properties.
Collapse
|