1
|
Ibba R, Corona P, Nonne F, Caria P, Serreli G, Palmas V, Riu F, Sestito S, Nieddu M, Loddo R, Sanna G, Piras S, Carta A. Design, Synthesis, and Antiviral Activities of New Benzotriazole-Based Derivatives. Pharmaceuticals (Basel) 2023; 16:ph16030429. [PMID: 36986528 PMCID: PMC10054465 DOI: 10.3390/ph16030429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Several human diseases are caused by enteroviruses and are currently clinically untreatable, pushing the research to identify new antivirals. A notable number of benzo[d][1,2,3]triazol-1(2)-yl derivatives were designed, synthesized, and in vitro evaluated for cytotoxicity and antiviral activity against a wide spectrum of RNA positive- and negative-sense viruses. Five of them (11b, 18e, 41a, 43a, 99b) emerged for their selective antiviral activity against Coxsackievirus B5, a human enteroviruses member among the Picornaviridae family. The EC50 values ranged between 6 and 18.5 μM. Among all derivatives, compounds 18e and 43a were interestingly active against CVB5 and were selected to better define the safety profile on cell monolayers by transepithelial resistance test (TEER). Results indicated compound 18e as the hit compound to investigate the potential mechanism of action by apoptosis assay, virucidal activity test, and the time of addition assay. CVB5 is known to be cytotoxic by inducing apoptosis in infected cells; in this study, compound 18e was proved to protect cells from viral infection. Notably, cells were mostly protected when pre-treated with derivative 18e, which had, however, no virucidal activity. From the performed biological assays, compound 18e turned out to be non-cytotoxic as well as cell protective against CVB5 infection, with a mechanism of action ascribable to an interaction on the early phase of infection, by hijacking the viral attachment process.
Collapse
Affiliation(s)
- Roberta Ibba
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni, 23/A, 07100 Sassari, Italy; (R.I.); (P.C.); (F.R.); (M.N.)
| | - Paola Corona
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni, 23/A, 07100 Sassari, Italy; (R.I.); (P.C.); (F.R.); (M.N.)
| | - Francesca Nonne
- GSK Vaccine Institute for Global Health GSK, Via Fiorentina, 1, 53100 Siena, Italy;
| | - Paola Caria
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (P.C.); (G.S.); (V.P.); (R.L.)
| | - Gabriele Serreli
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (P.C.); (G.S.); (V.P.); (R.L.)
| | - Vanessa Palmas
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (P.C.); (G.S.); (V.P.); (R.L.)
| | - Federico Riu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni, 23/A, 07100 Sassari, Italy; (R.I.); (P.C.); (F.R.); (M.N.)
- Department of Chemistry, Biomedicinskt Centrum, BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | - Simona Sestito
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Maria Nieddu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni, 23/A, 07100 Sassari, Italy; (R.I.); (P.C.); (F.R.); (M.N.)
| | - Roberta Loddo
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (P.C.); (G.S.); (V.P.); (R.L.)
| | - Giuseppina Sanna
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (P.C.); (G.S.); (V.P.); (R.L.)
- Correspondence: (G.S.); (S.P.)
| | - Sandra Piras
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni, 23/A, 07100 Sassari, Italy; (R.I.); (P.C.); (F.R.); (M.N.)
- Correspondence: (G.S.); (S.P.)
| | - Antonio Carta
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni, 23/A, 07100 Sassari, Italy; (R.I.); (P.C.); (F.R.); (M.N.)
| |
Collapse
|
2
|
Madeddu S, Ibba R, Sanna G, Piras S, Riu F, Marongiu A, Ambrosino A, Caria P, Onnis V, Franci G, Manzin A, Carta A. Human Enterovirus B: Selective Inhibition by Quinoxaline Derivatives and Bioinformatic RNA-Motif Identification as New Targets. Pharmaceuticals (Basel) 2022; 15:ph15020181. [PMID: 35215294 PMCID: PMC8878107 DOI: 10.3390/ph15020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 12/03/2022] Open
Abstract
The Enterovirus genus includes many viruses that are pathogenic in humans, including Coxsackie viruses and rhinoviruses, as well as the emerging enteroviruses D68 and A71. Currently, effective antiviral agents are not available for the treatment or prevention of enterovirus infections, which remain an important threat to public health. We recently identified a series of quinoxaline derivatives that were provento be potent inhibitors of coxsackievirus B5, the most common and a very important human pathogen belonging to the enterovirus genus. We have shown how most active derivatives interfere with the earliest stages of viral replication, blocking infection. Considering the broad antiviral spectrum, a very attractive property for an antiviral drug, we aimed to investigate the antiviral activity of the most promising compounds against other Enterovirus species. Here, we investigated the susceptibility of a panel of representatives of Enterovirus genus (enterovirus A71, belonging to A species; coxsackieviruses B4 and B3; echovirus 9, belonging to B species; and enterovirus D68, belonging to D species) to quinoxaline inhibitors. We also tested cytotoxicity and selectivity indices of the selected compounds, as well as their effects on virus yield. We also investigated their potential mechanism of action by a time course assay. In addition, a bioinformatic analysis was carried out to discover potential new conserved motifs in CVB3 and CVB4 compared to the other enterovirus species that can be used as new targets.
Collapse
Affiliation(s)
- Silvia Madeddu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato (Cagliari), 09042 Monserrato, Italy; (S.M.); (A.M.); (P.C.); (A.M.)
| | - Roberta Ibba
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via Muroni, 23A, 07100 Sassari, Italy; (R.I.); (S.P.); (F.R.); (A.C.)
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Giuseppina Sanna
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato (Cagliari), 09042 Monserrato, Italy; (S.M.); (A.M.); (P.C.); (A.M.)
- Correspondence: (G.S.); (V.O.)
| | - Sandra Piras
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via Muroni, 23A, 07100 Sassari, Italy; (R.I.); (S.P.); (F.R.); (A.C.)
| | - Federico Riu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via Muroni, 23A, 07100 Sassari, Italy; (R.I.); (S.P.); (F.R.); (A.C.)
| | - Alessandra Marongiu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato (Cagliari), 09042 Monserrato, Italy; (S.M.); (A.M.); (P.C.); (A.M.)
- Department of Biomedical Sciences, University of Sassari, Viale S. Pietro, 43C, 07100 Sassari, Italy
| | - Annalisa Ambrosino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Paola Caria
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato (Cagliari), 09042 Monserrato, Italy; (S.M.); (A.M.); (P.C.); (A.M.)
| | - Valentina Onnis
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato (Cagliari), 09042 Monserrato, Italy
- Correspondence: (G.S.); (V.O.)
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy;
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio e Ruggi D’Aragona University Hospital, 84131 Salerno, Italy
| | - Aldo Manzin
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato (Cagliari), 09042 Monserrato, Italy; (S.M.); (A.M.); (P.C.); (A.M.)
| | - Antonio Carta
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via Muroni, 23A, 07100 Sassari, Italy; (R.I.); (S.P.); (F.R.); (A.C.)
| |
Collapse
|
3
|
Ibba R, Piras S, Corona P, Riu F, Loddo R, Delogu I, Collu G, Sanna G, Caria P, Dettori T, Carta A. Synthesis, Antitumor and Antiviral In Vitro Activities of New Benzotriazole-Dicarboxamide Derivatives. Front Chem 2021; 9:660424. [PMID: 34017818 PMCID: PMC8129498 DOI: 10.3389/fchem.2021.660424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer and viral infections continue to threaten humankind causing death worldwide. Hence, the discovery of new anticancer and antiviral agents still represents a major scientific goal. Heterocycles designed to mimic the chemical structure of natural pyrimidines and purines have been designed over the years, exerting their activity acting as false substrates on several different targets. We reported a series of bis-benzotriazole-dicarboxamide derivatives which inhibit viral helicase of poliovirus, and hence we planned structure modifications to obtain different series of new dicarboxamides. Here, the synthesis and characterization of 56 new compounds: 31 bis-benzotriazole dicarboxamides and 25 mono-substituted acidic derivatives are reported. The synthesized compounds were tested for their antiviral and antitumor activity. Mostly, compounds 4a, 4c and 4d showed antiviral activity against tested Picornaviruses, Coxsackievirus B5 and Poliovirus-1. Likewise, four derivatives (3b, 3d, 4d, 9b) showed notable antiproliferative activity inhibiting cell growth in two distinct antitumor screenings. Compound 3b was selected as the antitumor lead compound for the wide range of activity and the potency proved. The lead compound was proved to induce apoptosis in SK-MES1 tumor cells, in a dose-dependent manner.
Collapse
Affiliation(s)
- Roberta Ibba
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Sandra Piras
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Paola Corona
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Federico Riu
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Roberta Loddo
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Ilenia Delogu
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Gabriella Collu
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Giuseppina Sanna
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Paola Caria
- Department of Biomedical Sciences, Section of Biochemistry, Biology and Genetics, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Tinuccia Dettori
- Department of Biomedical Sciences, Section of Biochemistry, Biology and Genetics, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Antonio Carta
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| |
Collapse
|
4
|
Inhibition of Enterovirus A71 by a Novel 2-Phenyl-Benzimidazole Derivative. Viruses 2021; 13:v13010058. [PMID: 33406781 PMCID: PMC7823780 DOI: 10.3390/v13010058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Enterovirus A71 (EV-A71) infection has emerged as a significant public health concern at the global level. Epidemic events of EV-A71 have been reported worldwide, and this succession of outbreaks has heightened concern that EV-A71 may become a public health threat. In recent years, widespread A71 enterovirus also occurred in European countries. EV-A71 infection causes hand-foot-mouth disease (HFMD), herpangina, and fever. However, it can sometimes induce a variety of neurological complications, including encephalitis, aseptic meningitis, pulmonary edema, and acute flaccid paralysis. We identified new benzimidazole derivatives and described theirin vitrocytotoxicity and broad-spectrum anti-enterovirus activity. Among them, derivative 2b resulted in interesting activity against EV-A71, and therefore it was selected for further investigations. Compound 2b proved to be able to protect cell monolayers from EV-A71-induced cytopathogenicity, with an EC50 of 3 µM. Moreover, Vero-76 cells resulted in being significantly protected from necrosis and apoptosis when treated with 2b at 20 and 80 µM. Compound 2b reduced viral adsorption to Vero-76 cells, and when evaluated in a time-of-addition assay, the derivative had the highest effect when added during the infection period. Moreover, derivative 2b reduced viral penetration into host cells. Besides, 2b did not affect intestinal monolayers permeability, showing no toxic effects. A detailed insight into the efficacy of compound 2b against EV-A71 showed a dose-dependent reduction in the viral titer, also at low concentrations. Mechanism of action investigations suggested that our derivative can inhibit viral endocytosis by reducing viral attachment to and penetration into host cells. Pharmacokinetic and toxicity predictions validated compound 2b as a good candidate for furtherin vivoassays.
Collapse
|
5
|
Corona P, Piras S, Ibba R, Riu F, Murineddu G, Sanna G, Madeddu S, Delogu I, Loddo R, Carta A. Antiviral Activity of Benzotriazole Based Derivatives. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2020. [DOI: 10.2174/1874104502014010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
For the last thirty years, the benzotriazole scaffold has been the object of our group interest and we have already presented some results on the antiviral activity of our compounds.
Objective:
In this article, we conclude the exploration of N-(4-(R-2H-benzo[d][1,2,3]triazol-2-yl)phenyl)-4-R’-benzamides and 1-(4-(R-2H-benzo[d][1,2,3]triazol-2-yl)phenyl)-3-R’-ureas by synthesizing further modified derivatives, in order to have more elements for SARs evaluation.
Methods:
Here, we reported the synthesis and the antiviral screening results of 38 newly synthesized benzotriazole derivatives against a panel of DNA and RNA viruses. We also analyse SARs in comparing these compounds with previously published benzotriazole analogues, taking stock of the situation.
Results:
Among the newly presented derivatives, compounds 17 and 18 were the most active with EC50 6.9 and 5.5 µM, respectively against Coxsackievirus B5 (CV-B5) and 20.5 and 17.5 µM against Poliovirus (Sb-1).
Conclusion:
we can conclude that N-(4-(2H-benzo[d] [1 - 3] triazol-2-yl)phenyl-R-amide is a good chemical scaffold for the development of new antiviral molecules.
Collapse
|
6
|
5,6-Dichloro-2-phenyl-benzotriazoles: New Potent Inhibitors of Orthohantavirus. Viruses 2020; 12:v12010122. [PMID: 31968537 PMCID: PMC7019903 DOI: 10.3390/v12010122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/11/2020] [Accepted: 01/15/2020] [Indexed: 02/07/2023] Open
Abstract
Orthohantaviruses, previously known as hantaviruses (family Hantaviridae, order Bunyavirales), are emerging zoonoses hosted by different rodent and insectivore species. Orthohantaviruses are transmitted by aerosolized excreta (urine, saliva and feces) of their reservoir hosts. When transmitted to humans, they cause hemorrhagic fever with renal syndrome (HFRS) in Asia and Europe and hantavirus (cardio) pulmonary syndrome (HPS) in the Americas. Clinical studies have shown that early treatments of HFRS patients with ribavirin (RBV) improve prognosis. Nevertheless, there is the need for urgent development of specific antiviral drugs. In the search for new RNA virus inhibitors, we recently identified a series of variously substituted 5,6-dichloro-1(2)-phenyl-1(2)H-benzo[d][1,2,3]triazole derivatives active against the human respiratory syncytial virus (HRSV). Interestingly, several 2-phenyl-benzotriazoles resulted in fairly potent inhibitors of the Hantaan virus in a chemiluminescence focus reduction assay (C-FRA) showing an EC50 = 4–5 µM, ten-fold more active than ribavirin. Currently, there are no FDA approved drugs for the treatment of orthohantavirus infections. Antiviral activities and cytotoxicity profiles suggest that 5,6-dichloro-1(2)-phenyl-1(2)H-benzo[d][1,2,3]triazoles could be promising candidates for further investigation as a potential treatment of hantaviral diseases.
Collapse
|