1
|
Prabhakar YK, Skariah S, Shanmugam G, Shome R. Molecular epidemiology, immunobiology, genomics and proteomics insights into bovine brucellosis. Vet Microbiol 2025; 305:110505. [PMID: 40233684 DOI: 10.1016/j.vetmic.2025.110505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 04/04/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
Brucella species are intracellular Gram-negative bacteria that cause brucellosis, a global zoonosis that impacts cattle productivity and public health. Both cattle and buffaloes are susceptible to bovine brucellosis, which can lead to severe degenerative changes in uterine mucosa of non-pregnant animals, including ulcerative endometritis and fibrosis. Vasculitis, localized coagulative necrosis, and ulceration of the uterine mucosa have all been reported in pregnant animals. Male testicles get inflamed due to Brucella, which results in infertility. This review article covers the molecular epidemiology, pathophysiology, immunobiology, genomics, and proteomics of Brucella, with an emphasis on novel discoveries and more recent research, especially on bovine brucellosis. The integration of molecular pathology and sero-prevalence data provide the insights into epidemiology, transmission dynamics, and genetic diversity of bovine brucellosis. The immunobiological response studies of brucellosis have provided insights into the tactics employed by Brucella to infect host cells and elude immune responses. Proteomics was utilized to find biomarkers for both acute and chronic brucellosis, which resulted in the identification of proteins with differential expression linked to immune response, inflammation, and extracellular matrix modulation. The genetic diversity, virulence factors, and evolution of Brucella strains were mostly investigated using genomics. The genomic makeup and architecture of Brucella isolates were examined using whole-genome sequencing, which revealed genetic markers linked to pathogenicity and drug resistance. This review provides possible treatment targets, diagnostic biomarkers, and vaccine candidates, contributing to molecular understanding of bovine brucellosis.
Collapse
Affiliation(s)
- Y K Prabhakar
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru 560 064, India
| | - Somy Skariah
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru 560 064, India
| | - G Shanmugam
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru 560 064, India
| | - Rajeswari Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru 560 064, India.
| |
Collapse
|
2
|
Wu Q, Sun C, Guo L, Xie Y, Zhang J, Yin D. Preparation and evaluation of Brucella T4SS recombinant proteins in serodiagnosis of human brucellosis based on TMT-based proteomics technology. Front Cell Infect Microbiol 2025; 14:1514046. [PMID: 39885966 PMCID: PMC11779724 DOI: 10.3389/fcimb.2024.1514046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/27/2024] [Indexed: 02/01/2025] Open
Abstract
Introduction Brucellosis, a significant zoonotic infectious disease, poses a global health threat. Accurate and efficient diagnosis is crucial for prevention, control, and treatment of brucellosis. VirB proteins, components of the Type IV secretion system (T4SS) in Brucella, play a pivotal role in bacterial virulence and pathogenesis but have been understudied for their diagnostic potential. Methods Tandem Mass Tag (TMT) proteomics technology was utilized to identify highly expressed VirB proteins from wild-type Brucella strains. Recombinant T4SS proteins were prepared, and an indirect ELISA method was established for serological diagnosis of human brucellosis. Results Seven T4SS proteins (rVirB3, rVirB4, rVirB9, rBMEII0036, rVirB8, rVirB11, and rVirB10) were expressed used to construct the indirect ELISA method which showed high diagnostic accuracy. Sensitivity and specificity of the proteins exceeded 0.9100 and 0.9167, respectively, demonstrating good performance comparable to traditional LPS and Rose Bengal Ag antigens. Cross-reactivity was observed in a limited number of serum samples from febrile patients without brucellosis. Conclusions The study highlights the potential of VirB proteins as novel diagnostic antigens for human brucellosis. Future research can further optimize the use of VirB proteins in diagnostic assays and explore their applications in vaccine development.
Collapse
Affiliation(s)
- Qi Wu
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chen Sun
- Department of Clinical Laboratory, Huai’an Hospital of Huai’an City, Huai’an, China
| | - Liping Guo
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yujia Xie
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jinpeng Zhang
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, China
| | - Dehui Yin
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
He M, Yin S, Huang X, Li Y, Li B, Gong T, Liu Q. Insights into the regulatory role of bacterial sncRNA and its extracellular delivery via OMVs. Appl Microbiol Biotechnol 2024; 108:29. [PMID: 38159117 DOI: 10.1007/s00253-023-12855-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 01/03/2024]
Abstract
Small noncoding RNAs (sncRNAs) play important regulatory roles in bacterial physiological processes and host-pathogen interactions. Meanwhile, bacterial outer membrane vesicles (OMVs), as naturally secreted outer membrane structures, play a vital role in the interaction between bacteria and their living environment, including the host environment. However, most current studies focus on the biological functions of sncRNAs in bacteria or hosts, while neglecting the roles and regulatory mechanisms of the OMVs that encapsulate these sncRNAs. Therefore, this review aims to summarize the intracellular regulatory roles of bacterial sncRNAs in promoting pathogen survival by regulating virulence, modulating bacterial drug resistance, and regulating iron metabolism, and their extracellular regulatory function for influencing host immunity through host-pathogen interactions. Additionally, we introduce the key role played by OMVs, which serve as important cargoes in bacterial sncRNA-host interactions. We propose emerging pathways of sncRNA action to further discuss the mode of host-pathogen interactions, highlighting that the inhibition of sncRNA delivery by OMVs may prevent the occurrence of infection to some extent. Hence, this review lays the foundation for future prophylactic treatments against bacterial infections and strategies for addressing bacterial drug resistance. KEY POINTS: •sncRNAs have intracellular and extracellular regulatory functions in bacterial physiological processes and host-pathogen interactions. •OMVs are potential mediators between bacterial sncRNAs and host cells. •OMVs encapsulating sncRNAs have more potential biological functions.
Collapse
Affiliation(s)
- Mengdan He
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, 330006, China
| | - Shuanshuan Yin
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, 330006, China
| | - Xinlei Huang
- Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Yi Li
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, 330006, China
| | - Biaoxian Li
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Tian Gong
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Qiong Liu
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|