1
|
Jaquins-Gerstl A, Michael AC. Dexamethasone-Enhanced Microdialysis and Penetration Injury. Front Bioeng Biotechnol 2020; 8:602266. [PMID: 33364231 PMCID: PMC7752925 DOI: 10.3389/fbioe.2020.602266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/11/2020] [Indexed: 01/25/2023] Open
Abstract
Microdialysis probes, electrochemical microsensors, and neural prosthetics are often used for in vivo monitoring, but these are invasive devices that are implanted directly into brain tissue. Although the selectivity, sensitivity, and temporal resolution of these devices have been characterized in detail, less attention has been paid to the impact of the trauma they inflict on the tissue or the effect of any such trauma on the outcome of the measurements they are used to perform. Factors affecting brain tissue reaction to the implanted devices include: the mechanical trauma during insertion, the foreign body response, implantation method, and physical properties of the device (size, shape, and surface characteristics. Modulation of the immune response is an important step toward making these devices with reliable long-term performance. Local release of anti-inflammatory agents such as dexamethasone (DEX) are often used to mitigate the foreign body response. In this article microdialysis is used to locally deliver DEX to the surrounding brain tissue. This work discusses the immune response resulting from microdialysis probe implantation. We briefly review the principles of microdialysis and the applications of DEX with microdialysis in (i) neuronal devices, (ii) dopamine and fast scan cyclic voltammetry, (iii) the attenuation of microglial cells, (iv) macrophage polarization states, and (v) spreading depolarizations. The difficulties and complexities in these applications are herein discussed.
Collapse
|
3
|
Costanza B, Turtoi A, Bellahcène A, Hirano T, Peulen O, Blomme A, Hennequière V, Mutijima E, Boniver J, Meuwis MA, Josse C, Koopmansch B, Segers K, Yokobori T, Fahmy K, Thiry M, Coimbra C, Garbacki N, Colige A, Baiwir D, Bours V, Louis E, Detry O, Delvenne P, Nishiyama M, Castronovo V. Innovative methodology for the identification of soluble biomarkers in fresh tissues. Oncotarget 2018. [PMID: 29535834 PMCID: PMC5828218 DOI: 10.18632/oncotarget.24366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The identification of diagnostic and prognostic biomarkers from early lesions, measurable in liquid biopsies remains a major challenge, particularly in oncology. Fresh human material of high quality is required for biomarker discovery but is often not available when it is totally required for clinical pathology investigation. Hence, all OMICs studies are done on residual and less clinically relevant biological samples. Here after, we present an innovative, simple, and non-destructive, procedure named EXPEL that uses rapid, pressure-assisted, interstitial fluid extrusion, preserving the specimen for full routine clinical pathology investigation. In the meantime, the technique allows a comprehensive OMICs analysis (proteins, metabolites, miRNAs and DNA). As proof of concept, we have applied EXPEL on freshly collected human colorectal cancer and liver metastases tissues. We demonstrate that the procedure efficiently allows the extraction, within a few minutes, of a wide variety of biomolecules holding diagnostic and prognostic potential while keeping both tissue morphology and antigenicity unaltered. Our method enables, for the first time, both clinicians and scientists to explore identical clinical material regardless of its origin and size, which has a major positive impact on translation to the clinic.
Collapse
Affiliation(s)
- Brunella Costanza
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Andrei Turtoi
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Touko Hirano
- Laboratory for Analytical Instruments, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Arnaud Blomme
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Vincent Hennequière
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Eugene Mutijima
- Department of Pathology, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Jacques Boniver
- Department of Pathology, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Marie-Alice Meuwis
- Gastroenterology Department, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Claire Josse
- Center for Human Genetic, Molecular Haemato-Oncology Unit, UniLab, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Benjamin Koopmansch
- Center for Human Genetic, Molecular Haemato-Oncology Unit, UniLab, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Karin Segers
- Center for Human Genetic, Molecular Haemato-Oncology Unit, UniLab, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Takehiko Yokobori
- Division of Integrated Oncology Research, Research Program for Omics-based Medical Science, Gunma University Initiative for Advanced Research, Gunma, Japan
| | - Karim Fahmy
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Marc Thiry
- Laboratory of Cell Biology, Faculty of Sciences, University of Liège, Liège, Belgium
| | - Carla Coimbra
- Department of Abdominal Surgery, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Nancy Garbacki
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University Hospital, University of Liège, Liège, Belgium
| | - Alain Colige
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University Hospital, University of Liège, Liège, Belgium
| | - Dominique Baiwir
- Mass Spectrometry Laboratory, University of Liège, Liège, Belgium.,GIGA Proteomics Facility, University of Liège, Liège, Belgium
| | - Vincent Bours
- Center for Human Genetic, Molecular Haemato-Oncology Unit, UniLab, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Edouard Louis
- Gastroenterology Department, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Olivier Detry
- Department of Abdominal Surgery, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Philippe Delvenne
- Department of Pathology, University Hospital (CHU), University of Liège, Liège, Belgium
| | - Masahiko Nishiyama
- Division of Integrated Oncology Research, Research Program for Omics-based Medical Science, Gunma University Initiative for Advanced Research, Gunma, Japan.,Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| |
Collapse
|
4
|
Patel S, Ngounou Wetie AG, Darie CC, Clarkson BD. Cancer secretomes and their place in supplementing other hallmarks of cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:409-42. [PMID: 24952195 DOI: 10.1007/978-3-319-06068-2_20] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The secretome includes all macromolecules secreted by cells, in particular conditions at defined times, allowing cell-cell communication. Cancer cell secretomes that are altered compared to normal cells have shown significant potential for elucidating cancer biology. Proteins of secretomes are secreted by various secretory pathways and can be studied using different methods. Cancer secretomes seem to play an important role in known hallmarks of cancers such as excessive proliferation, reduced apoptosis, immune invasion, angioneogenesis, alteration in energy metabolism, and development of resistance against anti-cancer therapy [1, 2]. If a significant role of an altered secretome can be identified in cancer cells, using advanced mass spectrometry-based techniques, this may allow researchers to screen and characterize the secretome proteins involved in cancer progression and open up new opportunities to develop new therapies. We aim to elaborate upon recent advances in cancer cell secretome analysis using different proteomics techniques. In this review, we highlight the role of the altered secretome in contributing to already recognized and emerging hallmarks of cancer and we discuss new challenges in the field of secretome analysis.
Collapse
Affiliation(s)
- Sapan Patel
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology and Chemistry Program, 415 East 68th Street, New York, NY, 10065, USA
| | | | | | | |
Collapse
|
5
|
Brown KJ, Formolo CA, Seol H, Marathi RL, Duguez S, An E, Pillai D, Nazarian J, Rood BR, Hathout Y. Advances in the proteomic investigation of the cell secretome. Expert Rev Proteomics 2013; 9:337-45. [PMID: 22809211 DOI: 10.1586/epr.12.21] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Studies of the cell secretome have greatly increased in recent years owing to improvements in proteomic platforms, mass spectrometry instrumentation and to the increased interaction between analytical chemists, biologists and clinicians. Several secretome studies have been implemented in different areas of research, leading to the generation of a valuable secretome catalogs. Secreted proteins continue to be an important source of biomarkers and therapeutic target discovery and are equally valuable in the field of microbiology. Several discoveries have been achieved in vitro using cell culture systems, ex vivo using human tissue specimens and in vivo using animal models. In this review, some of the most recent advances in secretome studies and the fields that have benefited the most from this evolving technology are highlighted.
Collapse
Affiliation(s)
- Kristy J Brown
- Children's National Medical Center, Center for Genetic Medicine Research, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Pharmacokinetic studies require information regarding drug concentration at numerous time points during the process of absorption, distribution, metabolism and excretion. In order to obtain reproducible and good-quality data, the sampling method is as important as the bioanalytical method. A further difficulty in performing pharmacokinetic studies is related to the limited amount of sample that can be collected in some cases. Since analytical methods should interfere as little as possible with the investigated organism, microsampling techniques are a natural choice for pharmacokinetic studies. Accordingly, microdevices and microsampling approaches have been used increasingly in recent years for a wide variety of analytical applications, including analysis of drugs in biological samples. Such techniques not only reduce the amount of reagents needed for analysis, but are also faster and less disrupting. This review provides a brief overview of contemporary microsampling techniques: collection of small sample aliquots, ultrafiltration, microdialysis, solid-phase microextraction, biosensors and microfluidics. It is concluded that recent developments in microsampling and microdevices promise to streamline pharmacokinetic studies and bring bedside monitoring of therapeutic drugs into clinical practice.
Collapse
|