1
|
Qiu X, Liu P, Lin H, Peng Z, Sun X, Dong G, Han Y, Huang Z. Pan-cancer analysis and experimental verification of cytochrome B561 as a prognostic and therapeutic biomarker in breast cancer. Discov Oncol 2025; 16:330. [PMID: 40091073 PMCID: PMC11911281 DOI: 10.1007/s12672-025-02094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025] Open
Abstract
OBJECTIVE This study investigates Cytochrome B561 (CYB561) expression in Pan-Cancer, its relationship with immune invasion, and its prognostic value in Breast Cancer (BRCA) patients. METHODS Data from The Cancer Genome Atlas (TCGA) were analyzed. CYB561 expression in normal and tumor tissues was examined, with correlations to immune invasion, mutation, and immune checkpoints. Wilcoxon rank-sum test assessed expression differences. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted. Logistic regression, Kaplan-Meier, and Cox regression analyses evaluated clinicopathological features and survival outcomes. A Cox multivariate analysis-based Nomogram predicted CYB561's prognostic impact. CYB561 knockout in breast cancer cells assessed functional effects. Single-cell RNA sequencing identified prognostic biomarkers. RESULTS CYB561 was highly expressed in most tumors. BRCA showed the highest correlation with ESTIMATE scores and significant negative correlation with immune checkpoints. High CYB561 expression correlated with specific clinicopathological features and survival outcomes. The nomogram predicted BRCA prognosis. CYB561 knockout inhibited breast cancer cell proliferation. Seven predictive agents for CYB561 inhibition were identified. CONCLUSIONS CYB561 exhibits aberrant expression in tumors, particularly in BRCA, and serves as a predictive marker for immune-related therapies and a prognostic indicator in BRCA.
Collapse
Affiliation(s)
- Xiaoting Qiu
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Peizhang Liu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Hongxiang Lin
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Zeyi Peng
- Massachusetts College Of Pharmacy And Health Sciences, Boston, MA, 02115, USA
| | - Xinhao Sun
- College of Science, Northeastern University, Boston, MA, 02115, USA
| | - Guanting Dong
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Yuanyuan Han
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650000, China.
| | - Zhijian Huang
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China.
| |
Collapse
|
2
|
Zhong B, Dai Y, Chen L, Xu X, Lan Y, Deng L, Ren L, Luo N, Ning L. ncRS: A resource of non-coding RNAs in sepsis. Comput Biol Med 2024; 172:108256. [PMID: 38489989 DOI: 10.1016/j.compbiomed.2024.108256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/10/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Sepsis, a life-threatening condition triggered by the body's response to infection, presents a significant global healthcare challenge characterized by disarrayed host responses, widespread inflammation, organ impairment, and heightened mortality rates. This study introduces the ncRS database (http://www.ncrdb.cn), a meticulously curated repository housing 1144 experimentally validated non-coding RNAs (ncRNAs) intricately linked with sepsis. ncRS offers comprehensive RNA data, exhaustive experimental insights, and integrated annotations from diverse databases. This resource empowers researchers and clinicians to decipher ncRNAs' roles in sepsis pathogenesis, potentially identifying vital biomarkers for early diagnosis and prognosis, thus facilitating personalized treatments.
Collapse
Affiliation(s)
- Baocai Zhong
- School of Computer and Software, Chengdu Neusoft University, Chengdu, China
| | - Yongfang Dai
- School of Computer and Software, Chengdu Neusoft University, Chengdu, China
| | - Li Chen
- School of Computer and Software, Chengdu Neusoft University, Chengdu, China.
| | - Xinying Xu
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| | - Yuxi Lan
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| | - Leyao Deng
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| | - Liping Ren
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| | - Nanchao Luo
- School of Computer Science and Technology, A Ba Teachers University, Wenchuan, China.
| | - Lin Ning
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China; Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China.
| |
Collapse
|
3
|
Wang Y, Fang L, Wang Y, Xiong Z. Current Trends of Raman Spectroscopy in Clinic Settings: Opportunities and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2300668. [PMID: 38072672 PMCID: PMC10870035 DOI: 10.1002/advs.202300668] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/08/2023] [Indexed: 02/17/2024]
Abstract
Early clinical diagnosis, effective intraoperative guidance, and an accurate prognosis can lead to timely and effective medical treatment. The current conventional clinical methods have several limitations. Therefore, there is a need to develop faster and more reliable clinical detection, treatment, and monitoring methods to enhance their clinical applications. Raman spectroscopy is noninvasive and provides highly specific information about the molecular structure and biochemical composition of analytes in a rapid and accurate manner. It has a wide range of applications in biomedicine, materials, and clinical settings. This review primarily focuses on the application of Raman spectroscopy in clinical medicine. The advantages and limitations of Raman spectroscopy over traditional clinical methods are discussed. In addition, the advantages of combining Raman spectroscopy with machine learning, nanoparticles, and probes are demonstrated, thereby extending its applicability to different clinical phases. Examples of the clinical applications of Raman spectroscopy over the last 3 years are also integrated. Finally, various prospective approaches based on Raman spectroscopy in clinical studies are surveyed, and current challenges are discussed.
Collapse
Affiliation(s)
- Yumei Wang
- Department of NephrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Liuru Fang
- Hubei Province Key Laboratory of Systems Science in Metallurgical ProcessWuhan University of Science and TechnologyWuhan430081China
| | - Yuhua Wang
- Hubei Province Key Laboratory of Systems Science in Metallurgical ProcessWuhan University of Science and TechnologyWuhan430081China
| | - Zuzhao Xiong
- Hubei Province Key Laboratory of Systems Science in Metallurgical ProcessWuhan University of Science and TechnologyWuhan430081China
| |
Collapse
|
4
|
Zhang H, Wang Y, Pan Z, Sun X, Mou M, Zhang B, Li Z, Li H, Zhu F. ncRNAInter: a novel strategy based on graph neural network to discover interactions between lncRNA and miRNA. Brief Bioinform 2022; 23:6747810. [PMID: 36198065 DOI: 10.1093/bib/bbac411] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/04/2022] [Accepted: 08/23/2022] [Indexed: 12/14/2022] Open
Abstract
In recent years, many studies have illustrated the significant role that non-coding RNA (ncRNA) plays in biological activities, in which lncRNA, miRNA and especially their interactions have been proved to affect many biological processes. Some in silico methods have been proposed and applied to identify novel lncRNA-miRNA interactions (LMIs), but there are still imperfections in their RNA representation and information extraction approaches, which imply there is still room for further improving their performances. Meanwhile, only a few of them are accessible at present, which limits their practical applications. The construction of a new tool for LMI prediction is thus imperative for the better understanding of their relevant biological mechanisms. This study proposed a novel method, ncRNAInter, for LMI prediction. A comprehensive strategy for RNA representation and an optimized deep learning algorithm of graph neural network were utilized in this study. ncRNAInter was robust and showed better performance of 26.7% higher Matthews correlation coefficient than existing reputable methods for human LMI prediction. In addition, ncRNAInter proved its universal applicability in dealing with LMIs from various species and successfully identified novel LMIs associated with various diseases, which further verified its effectiveness and usability. All source code and datasets are freely available at https://github.com/idrblab/ncRNAInter.
Collapse
Affiliation(s)
- Hanyu Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Yunxia Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ziqi Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiuna Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bing Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Honglin Li
- School of Computer Science and Technology, East China Normal University, Shanghai 200062, China.,Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
5
|
Yu L, Ju B, Ren S. HLGNN-MDA: Heuristic Learning Based on Graph Neural Networks for miRNA-Disease Association Prediction. Int J Mol Sci 2022; 23:13155. [PMID: 36361945 PMCID: PMC9657597 DOI: 10.3390/ijms232113155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 01/12/2024] Open
Abstract
Identifying disease-related miRNAs can improve the understanding of complex diseases. However, experimentally finding the association between miRNAs and diseases is expensive in terms of time and resources. The computational screening of reliable miRNA-disease associations has thus become a necessary tool to guide biological experiments. "Similar miRNAs will be associated with the same disease" is the assumption on which most current miRNA-disease association prediction methods rely; however, biased prior knowledge, and incomplete and inaccurate miRNA similarity data and disease similarity data limit the performance of the model. Here, we propose heuristic learning based on graph neural networks to predict microRNA-disease associations (HLGNN-MDA). We learn the local graph topology features of the predicted miRNA-disease node pairs using graph neural networks. In particular, our improvements to the graph convolution layer of the graph neural network enable it to learn information among homogeneous nodes and among heterogeneous nodes. We illustrate the performance of HLGNN-MDA by performing tenfold cross-validation against excellent baseline models. The results show that we have promising performance in multiple metrics. We also focus on the role of the improvements to the graph convolution layer in the model. The case studies are supported by evidence on breast cancer, hepatocellular carcinoma and renal cell carcinoma. Given the above, the experiments demonstrate that HLGNN-MDA can serve as a reliable method to identify novel miRNA-disease associations.
Collapse
Affiliation(s)
- Liang Yu
- School of Computer Science and Technology, Xidian University, Xi’an 710071, China
| | | | | |
Collapse
|
6
|
Li M, Fan Y, Zhang Y, Lv Z. Using Sequence Similarity Based on CKSNP Features and a Graph Neural Network Model to Identify miRNA-Disease Associations. Genes (Basel) 2022; 13:1759. [PMID: 36292644 PMCID: PMC9602123 DOI: 10.3390/genes13101759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 01/12/2024] Open
Abstract
Among many machine learning models for analyzing the relationship between miRNAs and diseases, the prediction results are optimized by establishing different machine learning models, and less attention is paid to the feature information contained in the miRNA sequence itself. This study focused on the impact of the different feature information of miRNA sequences on the relationship between miRNA and disease. It was found that when the graph neural network used was the same and the miRNA features based on the K-spacer nucleic acid pair composition (CKSNAP) feature were adopted, a better graph neural network prediction model of miRNA-disease relationship could be built (AUC = 93.71%), which was 0.15% greater than the best model in the literature based on the same benchmark dataset. The optimized model was also used to predict miRNAs related to lung tumors, esophageal tumors, and kidney tumors, and 47, 47, and 37 of the top 50 miRNAs related to three diseases predicted separately by the model were consistent with descriptions in the wet experiment validation database (dbDEMC).
Collapse
Affiliation(s)
- Mingxin Li
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Yu Fan
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Yiting Zhang
- College of Biology, Southwest Jiaotong University, Chengdu 611756, China
- College of Biology, Georgia State University, Atlanta, GA 30302-3965, USA
| | - Zhibin Lv
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Xiong Y, Wang S, Wei H, Li H, Lv Y, Chi M, Su D, Lu Q, Yu Y, Zuo Y, Yang L. Deep learning-based transcription factor activity for stratification of breast cancer patients. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194838. [PMID: 35690313 DOI: 10.1016/j.bbagrm.2022.194838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Transcription factors directly bind to DNA and regulate the expression of the gene, causing epigenetic modification of the DNA. They often mediate epigenetic parameters of transcriptional and posttranscriptional mechanisms, and their expression activities can be used to characterize genomic aberrations in cancer cell. In this study, the activity profile of transcription factors inferred by VIPER algorithm. The autoencoder model was applied for compressing the transcription factor activity profile for obtaining more useful transformed features for stratifying patients into two different breast cancer subtypes. The deep learning-based subtypes exhibited superior prognostic value and yielded better risk-stratification than the transcription factor activity-based method. Importantly, according to transformed features, a deep neural network was constructed to predict the subtypes, and achieved the accuracy of 94.98% and area under the ROC curve of 0.9663, respectively. The proposed subtypes were found to be significantly associated with immune infiltration, tumor immunogenicity and so on. Furthermore, the ceRNA network was constructed for the breast cancer subtypes. Besides, 11 master regulators were found to be associated with patients in cluster 1. Given the robustness performance of our deep learning model over multiple breast cancer cohorts, we expected this model may be useful in the area of prognosis prediction and lead some possibility for personalized medicine in breast cancer patients.
Collapse
Affiliation(s)
- Yuqiang Xiong
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shiyuan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Haodong Wei
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Hanshuang Li
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yingli Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Meng Chi
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Dongqing Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Qianzi Lu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yao Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yongchun Zuo
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Digital College, Inner Mongolia Intelligent Union Big Data Academy, Inner Mingolia Wesure Date Technology Co., Ltd., Hohhot 010010, China.
| | - Lei Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
8
|
Huang Z, Yang L, Chen J, Li S, Huang J, Chen Y, Liu J, Wang H, Yu H. CCDC134 as a Prognostic-Related Biomarker in Breast Cancer Correlating With Immune Infiltrates. Front Oncol 2022; 12:858487. [PMID: 35311121 PMCID: PMC8927640 DOI: 10.3389/fonc.2022.858487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background The expression of Coiled-Coil Domain Containing 134(CCDC134) is up-regulated in different pan-cancer species. However, its prognostic value and correlation with immune infiltration in breast cancer are unclear. Therefore, we evaluated the prognostic role of CCDC134 in breast cancer and its correlation with immune invasion. Methods We downloaded the transcription profile of CCDC134 between breast cancer and normal tissues from the Cancer Genome Atlas (TCGA). CCDC134 protein expression was assessed by the Clinical Proteomic Cancer Analysis Consortium (CPTAC) and the Human Protein Atlas. Gene set enrichment analysis (GSEA) was also used for pathway analysis. Receiver operating characteristic (ROC) curve was used to differentiate breast cancer from adjacent normal tissues. Kaplan-Meier method was used to evaluate the effect of CCDC134 on survival rate. The protein-protein interaction (PPI) network is built from STRING. Function expansion analysis is performed using the ClusterProfiler package. Through tumor Immune Estimation Resource (TIMER) and tumor Immune System Interaction database (TISIDB) to determine the relationship between CCDC134 expression level and immune infiltration. CTD database is used to predict drugs that inhibit CCDC134 and PubChem database is used to determine the molecular structure of identified drugs. Results The expression of CCDC134 in breast cancer tissues was significantly higher than that of CCDC134 mRNA expression in adjacent normal tissues. ROC curve analysis showed that the AUC value of CCDC134 was 0.663. Kaplan-meier survival analysis showed that patients with high CCDC134 had a lower prognosis (57.27 months vs 36.96 months, P = 2.0E-6). Correlation analysis showed that CCDC134 mRNA expression was associated with tumor purity immune invasion. In addition, CTD database analysis identified abrine, Benzo (A) Pyrene, bisphenol A, Soman, Sunitinib, Tetrachloroethylene, Valproic Acid as seven targeted therapy drugs that may be effective treatments for seven targeted therapeutics. It may be an effective treatment for inhibiting CCDC134. Conclusion In breast cancer, upregulated CCDC134 is significantly associated with lower survival and immune infiltrates invasion. Our study suggests that CCDC134 can serve as a biomarker of poor prognosis and a potential immunotherapy target in breast cancer. Seven drugs with significant potential to inhibit CCDC134 were identified.
Collapse
Affiliation(s)
- Zhijian Huang
- Department of Breast Surgical Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China.,The Graduate School of Fujian Medical University, Fuzhou, China
| | - Linhui Yang
- Department of Breast Surgical Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Jian Chen
- Department of Breast Surgical Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Shixiong Li
- Department of Breast Surgical Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Jing Huang
- Department of Pharmacy, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Yijie Chen
- Department of Ultrasound, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Jingbo Liu
- Pathology Department, Daqing Longnan Hospital, The Fifth Affiliated Hospital of Qiqihar Medical College, Daqing, China
| | - Hongyan Wang
- Department of Pathology, Daqing Oilfield General Hospital, Daqing, China
| | - Hui Yu
- Department of Pharmacy, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
9
|
Zhang S, Jiang H, Gao B, Yang W, Wang G. Identification of Diagnostic Markers for Breast Cancer Based on Differential Gene Expression and Pathway Network. Front Cell Dev Biol 2022; 9:811585. [PMID: 35096840 PMCID: PMC8790293 DOI: 10.3389/fcell.2021.811585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Breast cancer is the second largest cancer in the world, the incidence of breast cancer continues to rise worldwide, and women's health is seriously threatened. Therefore, it is very important to explore the characteristic changes of breast cancer from the gene level, including the screening of differentially expressed genes and the identification of diagnostic markers. Methods: The gene expression profiles of breast cancer were obtained from the TCGA database. The edgeR R software package was used to screen the differentially expressed genes between breast cancer patients and normal samples. The function and pathway enrichment analysis of these genes revealed significant enrichment of functions and pathways. Next, download these pathways from KEGG website, extract the gene interaction relations, construct the KEGG pathway gene interaction network. The potential diagnostic markers of breast cancer were obtained by combining the differentially expressed genes with the key genes in the network. Finally, these markers were used to construct the diagnostic prediction model of breast cancer, and the predictive ability of the model and the diagnostic ability of the markers were verified by internal and external data. Results: 1060 differentially expressed genes were identified between breast cancer patients and normal controls. Enrichment analysis revealed 28 significantly enriched pathways (p < 0.05). They were downloaded from KEGG website, and the gene interaction relations were extracted to construct the gene interaction network of KEGG pathway, which contained 1277 nodes and 7345 edges. The key nodes with a degree greater than 30 were extracted from the network, containing 154 genes. These 154 key genes shared 23 genes with differentially expressed genes, which serve as potential diagnostic markers for breast cancer. The 23 genes were used as features to construct the SVM classification model, and the model had good predictive ability in both the training dataset and the validation dataset (AUC = 0.960 and 0.907, respectively). Conclusion: This study showed that the difference of gene expression level is important for the diagnosis of breast cancer, and identified 23 breast cancer diagnostic markers, which provides valuable information for clinical diagnosis and basic treatment experiments.
Collapse
Affiliation(s)
- Shumei Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Haoran Jiang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Bo Gao
- Department of Radiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Wen Yang
- International Medical Center, Shenzhen University General Hospital, Shenzhen, China
| | - Guohua Wang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| |
Collapse
|
10
|
Duan T, Kuang Z, Wang J, Ma Z. GBDTLRL2D Predicts LncRNA-Disease Associations Using MetaGraph2Vec and K-Means Based on Heterogeneous Network. Front Cell Dev Biol 2021; 9:753027. [PMID: 34977011 PMCID: PMC8718797 DOI: 10.3389/fcell.2021.753027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, the long noncoding RNA (lncRNA) has been shown to be involved in many disease processes. The prediction of the lncRNA-disease association is helpful to clarify the mechanism of disease occurrence and bring some new methods of disease prevention and treatment. The current methods for predicting the potential lncRNA-disease association seldom consider the heterogeneous networks with complex node paths, and these methods have the problem of unbalanced positive and negative samples. To solve this problem, a method based on the Gradient Boosting Decision Tree (GBDT) and logistic regression (LR) to predict the lncRNA-disease association (GBDTLRL2D) is proposed in this paper. MetaGraph2Vec is used for feature learning, and negative sample sets are selected by using K-means clustering. The innovation of the GBDTLRL2D is that the clustering algorithm is used to select a representative negative sample set, and the use of MetaGraph2Vec can better retain the semantic and structural features in heterogeneous networks. The average area under the receiver operating characteristic curve (AUC) values of GBDTLRL2D obtained on the three datasets are 0.98, 0.98, and 0.96 in 10-fold cross-validation.
Collapse
Affiliation(s)
| | - Zhufang Kuang
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
| | | | | |
Collapse
|
11
|
Li Y, Wang R, Zhang S, Xu H, Deng L. LRGCPND: Predicting Associations between ncRNA and Drug Resistance via Linear Residual Graph Convolution. Int J Mol Sci 2021; 22:10508. [PMID: 34638849 PMCID: PMC8508984 DOI: 10.3390/ijms221910508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 01/08/2023] Open
Abstract
Accurate inference of the relationship between non-coding RNAs (ncRNAs) and drug resistance is essential for understanding the complicated mechanisms of drug actions and clinical treatment. Traditional biological experiments are time-consuming, laborious, and minor in scale. Although several databases provide relevant resources, computational method for predicting this type of association has not yet been developed. In this paper, we leverage the verified association data of ncRNA and drug resistance to construct a bipartite graph and then develop a linear residual graph convolution approach for predicting associations between non-coding RNA and drug resistance (LRGCPND) without introducing or defining additional data. LRGCPND first aggregates the potential features of neighboring nodes per graph convolutional layer. Next, we transform the information between layers through a linear function. Eventually, LRGCPND unites the embedding representations of each layer to complete the prediction. Results of comparison experiments demonstrate that LRGCPND has more reliable performance than seven other state-of-the-art approaches with an average AUC value of 0.8987. Case studies illustrate that LRGCPND is an effective tool for inferring the associations between ncRNA and drug resistance.
Collapse
Affiliation(s)
| | | | | | | | - Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha 410083, China; (Y.L.); (R.W.); (S.Z.); (H.X.)
| |
Collapse
|