1
|
Slly AM, Ewes WA, Bayoumi WA, Selim KB. Unveiling the potential anticancer activity of new dihydropyrimidines through dual inhibition of EGFR and TrkA: Design, synthesis, and in silico study. Bioorg Chem 2025; 154:107962. [PMID: 39591690 DOI: 10.1016/j.bioorg.2024.107962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024]
Abstract
A series of designed scaffold of dihydropyrimidine was synthesized as dual tyrosine kinase targets inhibitors using a multicomponent Biginelli reaction which provided a high atom economy in a single pot reaction. Several 1,4-DHPM hybrids were obtained via alkylation with different chloroacetylamine derivatives. All the synthesized derivatives were screened for their antiproliferative efficacy towards various cancer cell lines (HCT-116, PC-3, and MCF-7) and normal cell line WI-38 using MTT assay. The results indicated that compounds 8h and 8i have the most significant inhibitory effect on all evaluated cancer cell lines, displaying IC50 of 3.94-15.78 µM. Also, they demonstrated favorable selectivity towards normal cell lines. Moreover, the most active hybrids 8h and 8i were evaluated for their EGFR and TrkA inhibitory activity. The findings indicated that compound 8h had superior inhibitory activity compared to compound 8i on the targeted kinases, effectively stopping the G1 phase of the MCF-7 cell cycle and encouraging apoptosis. Additionally, the molecular docking studies declared that the most active compounds exhibited a notable binding interaction with the binding site of the target proteins. Furthermore, their physicochemical properties, ADMET profiles, and bioavailability radar plots were predicted and analyzed.
Collapse
Affiliation(s)
- Aya M Slly
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Wafaa A Ewes
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Waleed A Bayoumi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Khalid B Selim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
2
|
Moussa AM, Abdelrasheed Allam H, El-Ashrey MK, Fouad MA, Al-Karmalawy AA. Rationale design and synthesis of new roflumilast analogues as preferential selective and potent PDE-4B inhibitors. Bioorg Chem 2024; 153:107911. [PMID: 39467506 DOI: 10.1016/j.bioorg.2024.107911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
In this study, we designed and synthesized novel analogues of roflumilast that exhibit selective inhibition of PDE-4B. To accomplish this target; synthesis of novel series (4a-u, 5a-i, and 6) was done, aiming at obtaining new PDE-4B inhibitors hits based on the proposed pharmacophore, 1-(cyclopropylmethoxy)-2-(difluoromethoxy) benzene moiety. Enzyme assay was used to measure the IC50 values for the PDE-4B inhibition of all the synthesized compounds along with roflumilast as a reference drug. The results demonstrated that most of the examined candidates exhibited considerable inhibitory activity against the PDE-4B enzyme. The four compounds (4i, 4k, 4p, and 4q) exhibited the highest potency (IC50 = 7.25, 7.15, 5.50, 7.19 nM, respectively) with no significant inhibition difference from roflumilast (no statistical difference at p < 0.05). Interestingly, compound 4p with 3-OH and 4-OCH3 substituents was found to be the most potent against PDE-4B enzyme (IC50 = 5.50 nM), compared to that of roflumilast (IC50 = 2.36 nM). Moreover, the most potent derivatives 4i, 4k, 4p, and 4q were further tested for PDE-4D inhibitory activity to investigate their PDE-4D/PDE-4B selectivity ratio. Compound 4k showed the highest selectivity towards PDE-4B isozyme more than the reference drug roflumilast (PDE-4D/4B IC50 ratio for compound 4k and roflumilast = 3.22 and 3.02, respectively). Additionally, compound 4p was chosen to test its selectivity for PDE-4B over PDE-8A, PDE-11A, and PDE-1B compared to thereference drug roflumilast. Compound 4p showed approximately 6-fold selectivity for PDE-4B over PDE-8A, about 5-fold selectivity for PDE-4B over PDE-11A, and about 11-fold selectivity of PDE-4B over PDE-1B. Compound 4p showed a higher selectivity towards PDE-4B than PDE-1B, more than the reference compound roflumilast. Furthermore, the most potent compounds (4i, 4k, 4p, 4q) were subjected to further investigation, and their effects on the cAMP level and percentage of inhibition of tumor necrosis factor-alpha (TNF-α) were studied and compared with reference drug roflumilast. Compound 4q showed the highest increase in the level of intracellular cAMP (6.55 ± 0.37 pmol/mL) and compound 4i showed the highest % of TNF-α inhibition (77.22 %). On the other side, a molecular docking study against PDE-4B clarified that all the examined candidates achieved nearly similar binding modes with similar orientations to that of the native roflumilast ligand and showed higher docking scores than roflumilast.
Collapse
Affiliation(s)
- Ahmed M Moussa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Heba Abdelrasheed Allam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, P.O. Box 11562, Cairo, Egypt.
| | - Mohamed K El-Ashrey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, P.O. Box 11562, Cairo, Egypt; Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University, South Sinai 46612, Egypt
| | - Marwa A Fouad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, P.O. Box 11562, Cairo, Egypt; Pharmaceutical Chemistry Department, School of Pharmacy, Newgiza University, Newgiza, km 22 Cairo-Alexandria Desert Road, Cairo, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt; Department of Pharmaceutical Chemistry, College of Pharmacy, The University of Mashreq, Baghdad 10023, Iraq.
| |
Collapse
|
3
|
El Hamaky NFM, Hamdi A, Bayoumi WA, Elgazar AA, Nasr MNA. Novel quinazolin-2-yl 1,2,3-triazole hybrids as promising multi-target anticancer agents: Design, synthesis, and molecular docking study. Bioorg Chem 2024; 148:107437. [PMID: 38749114 DOI: 10.1016/j.bioorg.2024.107437] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 02/28/2025]
Abstract
In our study, a series of quinazoline-1,2,3-triazole hybrids (14a-r) have been designed and synthesized as multi-target EGFR, VEGFR-2, and Topo II inhibitors. All synthesized hybrids were assessed for their anticancer capacity. MTT assay revealed that compounds 14a, 14d, and 14k were the most potent hybrids against four cancer cell lines, HeLa, HePG-2, MCF-7, and HCT-116 at low micromolar range while exhibiting good selectivity against normal cell line WI-38. Sequentially, the three compounds were evaluated for EGFR, VEGFR-2, and Topo II inhibition. Compound 14d was moderate EGFR inhibitor (IC50 0.103 µM) compared to Erlotinib (IC50 0.049 µM), good VEGFR-2 inhibitor (IC50 0.069 µM) compared to Sorafenib (IC50 0.031 µM), and stronger Topo II inhibitor (IC50 19.74 µM) compared to Etoposide (IC50 34.19 µM) by about 1.7 folds. Compounds 14k and 14a represented strong inhibitory activity against Topo II with (IC50 31.02 µM and 56.3 µM) respectively, compared to Etoposide. Additionally, cell cycle analysis and apoptotic induction were performed. Compound 14d arrested the cell cycle on HeLa at G2/M phase by 17.53 % and enhanced apoptosis by 44.08 %. A molecular Docking study was implemented on the three hybrids and showed proper binding interaction with EGFR, VEGFR-2, and Topo II active sites.
Collapse
Affiliation(s)
- Noura F M El Hamaky
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Abdelrahman Hamdi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Waleed A Bayoumi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Abdullah A Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Magda N A Nasr
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| |
Collapse
|
4
|
Zeidan MA, Othman DIA, Goda FE, Mostafa AS. Identification of novel sulfathiazole-triazolo-chalcone hybrids as VEGFR-2/EGFR dual inhibitors with antiangiogenic activity and apoptotic induction. Arch Pharm (Weinheim) 2024; 357:e2300320. [PMID: 38117940 DOI: 10.1002/ardp.202300320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/22/2023]
Abstract
Certain sulfathiazole-triazolo chalcone hybrids were identified as anticancer agents with dual vascular endothelial growth factor receptor-2 (VEGFR-2)/epidermal growth factor receptor (EGFR) kinase inhibitory effect. All of the compounds were evaluated for their cytotoxic activity against the MCF-7 and HepG-2 tumor cell lines. Compounds 11g, 11h, and 11j exhibited the most potent antiproliferative activity against both cancer cell lines, with good safety toward WI-38 normal cells. Thus, they were further assessed for VEGFR-2 inhibitory activity. They have suppressed VEGFR-2 enzyme at IC50 of 0.316, 0.076, and 0.189 µM, respectively in comparison to sorafenib (IC50 = 0.035 µM). EGFR enzyme inhibition was further screened for the most potent inhibitors, 11h and 11j, where they displayed enhanced potency with IC50 of 0.085 and 0.108 µM, respectively, compared to erlotinib (IC50 = 0.037 µM). Compounds 11h and 11j were additionally investigated for inhibition of comparable kinases, PDGFR-β and B-Raf, where results assessed adequate selectivity of both compounds toward the VEGFR-2 and EGFR kinases. Furthermore, the wound healing assay of compound 11h manifested a percent wound closure of 65.18% in MCF-7 cells compared to doxorubicin (58.51%) and untreated cells (97.77%), proving its antiangiogenic activity. The cell cycle assay of MCF-7 cells treated with 11h demonstrated cell cycle arrest at the S phase. Moreover, compound 11h induced apoptosis with a 44-fold increase compared to that induced in the control MCF-7 cells. Molecular docking results of compounds 11h and 11j established their efficacies, and in silico studies showed convenient safety profiles with drug-likeness properties.
Collapse
Affiliation(s)
- Mohamed A Zeidan
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Dina I A Othman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Pharmacy Center of Scientific Excellence, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Fatma E Goda
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Amany S Mostafa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Pharmacy Center of Scientific Excellence, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Ali AM, Tawfik SS, Mostafa AS, Massoud MAM. Benzimidazole-Based Protein Kinase Inhibitors: Current Perspectives in Targeted Cancer Therapy. Chem Biol Drug Des 2022; 100:656-673. [PMID: 35962624 DOI: 10.1111/cbdd.14130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/31/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
Targeted therapy has emerged to be the cornerstone of advanced cancer treatment, allowing for more selectivity and avoiding the common drug toxicity and resistance. Identification of potential targets having vital role in growth and survival of cancer cells got much easier with the aid of the recent advances in high throughput screening approaches. Various protein kinases came into focus as valuable targets in cancer therapy. Meanwhile, benzimidazole-based scaffolds have gained significant attention as promising protein kinase inhibitors with high potency and varied selectivity. Great diversity of these scaffolds has inspired the medicinal chemists to inspect the effect of structural changes upon inhibitory activity on the molecular level through modeling studies. The present review gathers all the considerable attempts to develop benzimidazole-based compounds; designed as protein kinase inhibitors with anticancer activity since 2015; that target aurora kinase, CDK, CK2, EGFR, FGFR, and VEGFR-2; to allow further development and progression regarding benzimidazoles.
Collapse
Affiliation(s)
- Alaa M Ali
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Samar S Tawfik
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Amany S Mostafa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohammed A M Massoud
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
6
|
Thabit MG, Mostafa AS, Selim KB, Elsayed MAA, Nasr MNA. Insights into modulating the monastrol scaffold: Development of new pyrimidinones as Eg5 inhibitors with anticancer activity. Arch Pharm (Weinheim) 2022; 355:e2200029. [DOI: 10.1002/ardp.202200029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Mohamed G. Thabit
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy Mansoura University Mansoura Egypt
| | - Amany S. Mostafa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy Mansoura University Mansoura Egypt
| | - Khalid B. Selim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy Mansoura University Mansoura Egypt
| | - Magda A. A. Elsayed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy Mansoura University Mansoura Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy Horus University New Dammeitta Egypt
| | - Magda N. A. Nasr
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy Mansoura University Mansoura Egypt
| |
Collapse
|