1
|
George Warren W, Osborn M, Yates A, O'Sullivan SE. The emerging role of fatty acid binding protein 7 (FABP7) in cancers. Drug Discov Today 2024; 29:103980. [PMID: 38614160 DOI: 10.1016/j.drudis.2024.103980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Fatty acid binding protein 7 (FABP7) is an intracellular protein involved in the uptake, transportation, metabolism, and storage of fatty acids (FAs). FABP7 is upregulated up to 20-fold in multiple cancers, usually correlated with poor prognosis. FABP7 silencing or pharmacological inhibition suggest FABP7 promotes cell growth, migration, invasion, colony and spheroid formation/increased size, lipid uptake, and lipid droplet formation. Xenograft studies show that suppression of FABP7 inhibits tumour formation and tumour growth, and improves host survival. The molecular mechanisms involve promotion of FA uptake, lipid droplets, signalling [focal adhesion kinase (FAK), proto-oncogene tyrosine-protein kinase Src (Src), mitogen-activated protein kinase kinase/p-extracellular signal-regulated kinase (MEK/ERK), and Wnt/β-catenin], hypoxia-inducible factor 1-alpha (Hif1α), vascular endothelial growth factor A/prolyl 4-hydroxylase subunit alpha-1 (VEGFA/P4HA1), snail family zinc finger 1 (Snail1), and twist-related protein 1 (Twist1). The oncogenic capacity of FABP7 makes it a promising pharmacological target for future cancer treatments.
Collapse
Affiliation(s)
| | - Myles Osborn
- Artelo Biosciences Limited, Alderley Park, Cheshire, UK
| | - Andrew Yates
- Artelo Biosciences Limited, Alderley Park, Cheshire, UK
| | | |
Collapse
|
2
|
Kong Y, Li J, Liang X, Zhou X. MIB2 promotes the progression of non-small cell lung cancer by regulating cell cycle control pathways. Genes Genomics 2023; 45:1143-1152. [PMID: 37436668 PMCID: PMC10435422 DOI: 10.1007/s13258-023-01423-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Although numerous measures have been used to improve the outcome of lung cancer patients, lung cancer, as the second most common diagnosed cancer, is still the main cause of cancer death. It becomes increasingly urgent for us to deeply deplore the molecular mechanism of lung cancer and to discover the potential therapeutic targets. In our study, we are dedicated to discovering the role of MIB2 in lung cancer development. METHODS The public databases were used to compare the expression level of MIB2 in cancer and non-cancer tissue. We analyzed the expression of MIB2 in lung cancer samples by performing Rt-PCR and western blot. We carried out CCK8 and clone assays to study the influence of MIB2 in lung cancer proliferation. The transwell assays and wound healing assays were implemented to study the function of MIB2 in metastasis and invasion. Proteins of cell cycle control pathways are detected to verify the potential mechanism of MIB2 in lung cancer progression. RESULTS MIB2 is up regulated in lung cancer tissue compared to adjacent normal lung tissue according to both public databases and our clinical lung cancer samples. Knockdown of MIB2 inhibits proliferation, metastasis, and invasion of lung cancer cell lines. Cyclins and cyclin dependent kinases (CDK) including CDK2, CDK4, and cyclinB1 were down regulated in MIB2 knockdown cells. CONCLUSION Our results prove that MIB2 acts as a driver in NSCLC tumorigenesis by regulating cell cycle control pathways.
Collapse
Affiliation(s)
- Yiru Kong
- ¹Department of Oncology, Huashan Hospital Fudan University, 12 Middle Urumqi Road, Shanghai, 200000, China
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jing Li
- ¹Department of Oncology, Huashan Hospital Fudan University, 12 Middle Urumqi Road, Shanghai, 200000, China
| | - Xiaohua Liang
- ¹Department of Oncology, Huashan Hospital Fudan University, 12 Middle Urumqi Road, Shanghai, 200000, China
| | - Xinli Zhou
- Department of Oncology, Huashan Hospital Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China.
| |
Collapse
|
3
|
Li B, Ge N, Pan Z, Hou C, Xie K, Wang D, Liu J, Wan J, Deng F, Li M, Luo S. KCNJ14 knockdown significantly inhibited the proliferation and migration of colorectal cells. BMC Med Genomics 2022; 15:194. [PMID: 36100894 PMCID: PMC9472386 DOI: 10.1186/s12920-022-01351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 07/25/2022] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
This study attempted to verify the potential of KCNJ14 as a biomarker in colorectal cancer (CRC).
Methods
Data on transcriptomics and DNA methylation and the clinical information of CRC patients were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases. Biological information analysis methods were conducted to determine the role of KCNJ14 in the prognosis, diagnosis, immune cell infiltration, and regulation mechanism of CRC patients. The effect of KCNJ14 on the proliferation and migration of HCT116 and SW480 CRC cell lines was verified by in vitro experiments (MTT, colony-forming, wound healing, and transwell assays). Western blotting was performed to detect the effect of KCNJ14 on the levels of mTOR signalling pathway-related proteins.
Results
KCNJ14 expression was remarkably increased in CRC tissues and cell lines, which reduced the overall survival time of patients. KCNJ14 mRNA was negatively regulated by its methylation site cg17660703, which can also endanger the prognosis of patients with CRC. Functional enrichment analysis suggested that KCNJ14 is involved in the mTOR, NOD-like receptor, and VEGF signalling pathways. KCNJ14 expression was positively correlated with the number of CD4 + T cells and negatively correlated with that of CD8 + T cells in the immune microenvironment. KCNJ14 knockdown significantly reduced not only the proliferation and migration of CRC cell lines but also the levels of mTOR signalling pathway-related proteins.
Conclusions
This study not only increases the molecular understanding of KCNJ14 but also provides a potentially valuable biological target for the treatment of colorectal cancer.
Collapse
|
4
|
Sahar T, Nigam A, Anjum S, Gupta N, Wajid S. Secretome Profiling and Computational Biology of Human Leiomyoma Samples Unravel Molecular Signatures with Potential for Diagnostic and Therapeutic Interventions. Reprod Sci 2021; 28:2672-2684. [PMID: 33905083 DOI: 10.1007/s43032-021-00580-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/11/2021] [Indexed: 10/21/2022]
Abstract
In recent years, significant advancements have been made in the way the complex proteome samples are compared but the ultimate goal of routine biomarker discovery has yet to be achieved. Based on reverse genetic strategy, our study involved the spotting of genes showing expressional variability in uterine leiomyoma females. Serum samples were taken from uterine leiomyomas subjects (n=6) and healthy control subjects (n=6) for proteomic studies. Additionally, leiomyoma tissue samples (n=25) and normal myometrium samples (n=25) were taken for validation studies. In this study, we profiled the proteomes of uterine leiomyoma patient's serum and healthy control, along with relative quantification using Nano LC-MS/MS analysis. A total of 146 proteins were reported to be significantly differentially expressed (P value less than 0.05) in case and control sample. Statistical analysis identified a number of molecular signatures distinguishing healthy from diseased serum. Among these, five proteins lumican, ficolin, MASP2, EMSY, and kallistatin were further chosen according to their function for validation. Kallistatin was downregulated while ficolin, MASP2, lumican, and EMSY were found to be upregulated in the diseased sample. The expression modulations in the identified genes were further validated in twenty-five cases. Interactions among the differentially expressed proteins were identified followed with network analysis. Network analysis emphasized important pathways that are highly deregulated in myoma, and functional significance of these pathways in the pathology of the disease was discussed. Comparative expression analysis reveals distinct molecular signatures and their probable role in diagnosis of the disease.
Collapse
Affiliation(s)
- Tahreem Sahar
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Aruna Nigam
- Department of Obstetrics and Gynecology, HIMSR and HAH Centenary Hospital, Jamia Hamdard, New Delhi, 110062, India
| | - Shadab Anjum
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Nimisha Gupta
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
5
|
Ye Z, Zou S, Niu Z, Xu Z, Hu Y. A Novel Risk Model Based on Lipid Metabolism-Associated Genes Predicts Prognosis and Indicates Immune Microenvironment in Breast Cancer. Front Cell Dev Biol 2021; 9:691676. [PMID: 34195202 PMCID: PMC8236894 DOI: 10.3389/fcell.2021.691676] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/07/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Breast cancer (BRCA) is the most common tumor in women, and lipid metabolism involvement has been demonstrated in its tumorigenesis and development. However, the role of lipid metabolism-associated genes (LMAGs) in the immune microenvironment and prognosis of BRCA remains unclear. METHODS A total of 1076 patients with BRCA were extracted from The Cancer Genome Atlas database and randomly assigned to the training cohort (n = 760) or validation cohort (n = 316). Kaplan-Meier analysis was used to assess differences in survival. Consensus clustering was performed to categorize the patients with BRCA into subtypes. Using multivariate Cox regression analysis, an LMAG-based prognostic risk model was constructed from the training cohort and validated using the validation cohort. The immune microenvironment was evaluated using the ESTIMATE and tumor immune estimation resource algorithms, CIBERSORT, and single sample gene set enrichment analyses. RESULTS Consensus clustering classified the patients with BRCA into two subgroups with significantly different overall survival rates and immune microenvironments. Better prognosis was associated with high immune infiltration. The prognostic risk model, based on four LMAGs (MED10, PLA2G2D, CYP4F11, and GPS2), successfully stratified the patients into high- and low-risk groups in both the training and validation sets. High risk scores predicted poor prognosis and indicated low immune status. Subgroup analysis suggested that the risk model was an independent predictor of prognosis in BRCA. CONCLUSION This study demonstrated, for the first time, that LMAG expression plays a crucial role in BRCA. The LMAG-based risk model successfully predicted the prognosis and indicated the immune microenvironment of patients with BRCA. Our study may provide inspiration for further research on BRCA pathomechanisms.
Collapse
Affiliation(s)
- Zhimin Ye
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Shengmei Zou
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiyuan Niu
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yongbin Hu
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Taunk K, Kalita B, Kale V, Chanukuppa V, Naiya T, Zingde SM, Rapole S. The development and clinical applications of proteomics: an Indian perspective. Expert Rev Proteomics 2020; 17:433-451. [PMID: 32576061 DOI: 10.1080/14789450.2020.1787157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Proteomic research has been extensively used to identify potential biomarkers or targets for various diseases. Advances in mass spectrometry along with data analytics have led proteomics to become a powerful tool for exploring the critical molecular players associated with diseases, thereby, playing a significant role in the development of proteomic applications for the clinic. AREAS COVERED This review presents recent advances in the development and clinical applications of proteomics in India toward understanding various diseases including cancer, metabolic diseases, and reproductive diseases. Keywords combined with 'clinical proteomics in India' 'proteomic research in India' and 'mass spectrometry' were used to search PubMed. EXPERT OPINION The past decade has seen a significant increase in research in clinical proteomics in India. This approach has resulted in the development of proteomics-based marker technologies for disease management in the country. The majority of these investigations are still in the discovery phase and efforts have to be made to address the intended clinical use so that the identified potential biomarkers reach the clinic. To move toward this necessity, there is a pressing need to establish some key infrastructure requirements and meaningful collaborations between the clinicians and scientists which will enable more effective solutions to address health issues specific to India.
Collapse
Affiliation(s)
- Khushman Taunk
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India.,Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal , Haringhata, West Bengal, India
| | - Bhargab Kalita
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| | - Vaikhari Kale
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| | | | - Tufan Naiya
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal , Haringhata, West Bengal, India
| | - Surekha M Zingde
- CH3-53, Kendriya Vihar, Sector 11, Kharghar , Navi Mumbai, Maharashtra, India
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| |
Collapse
|