1
|
Radwan IT, El-Sherbiny IM, Selim AM, Metwally NH. Design, synthesis of some novel coumarins and their nanoformulations into lipid-chitosan nanocapsule as unique antimicrobial agents. Sci Rep 2024; 14:30598. [PMID: 39715779 DOI: 10.1038/s41598-024-79861-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/13/2024] [Indexed: 12/25/2024] Open
Abstract
Developing and creating novel antibiotics is one of the most important targets in treating infectious diseases. Novel coumarins were synthesized and characterized using different spectroscopic techniques such as Fourier Transform Infrared (FTIR), Nuclear magnetic resonance1H and 13C and mass spectroscopy (MS). All of the synthesized compounds have been tested for activity and sensitivity against the microbial strains of B. subtilis, S. aureus, E. coli, P. aeruginosa, S. typhi, and C. albicans. All compounds showed substantial results against the tested microbes except S. typhi, which was not affected in any way by these coumarins. Exceptional results were shown by compounds 4, 6d, and 8b, which made them the best candidates for loading to the vicinity of nanostructure lipid carrier and coated by chitosan nanocapsule (NLC-Cs). Transmission electron microscope (TEM) confirmed spherical morphology with particles size less than 500 nm. Also, dynamic light scattering (DLS) were utilized to measure the average particle size (between 100 and 200 nm) and the stability assessed by zeta potential were found to be more positive confirming the chitosan encapsulation. Antimicrobial activity assessments were performed for both synthetic compounds and their NLCs analogues. The nanoformulation of 4-NLC-Cs, 6d-NLC-Cs, and 8b-NLC-Cs manifested unique biological results, especially 8b-NLC-Cs, which revealed powerful effects over all the tested organisms including S. typhi. The increasing biological effect of the drugs in their nanoscale form is reflected in the increasing value of inhibition zone diameter and suppressing the value of MIC to reach record levels like 8b-NLC-Cs disclosed MIC = 0.48 and 0.24 µg/ml against S. aureus and C. albicans, respectively, by the mean 8b-NLC-Cs nanoformulation suppressed the MIC by 65 folds of its initial value before nano. In continuation, it was proven that the compounds 4, 6d and 8b were found to make noticeable changes on the DNA-Gyrase levels with reduced IC50 values particularly 8b showed excellent inhibitory effect with IC50 = 4.56 µM. TEM was used to pursue the morphological changes that occur in bacterial cells of P. aeruginosa. The weakness of the cell wall in most bacterial cells treated with nanomaterials, 8b-NLC-Cs, has reached the point of the cell wall rupture and the cell components spilling out of the cells causing necrotic cell death.
Collapse
Affiliation(s)
- Ibrahim Taha Radwan
- Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, 11835, Egypt
| | - Ibrahim M El-Sherbiny
- Center for Materials Science (CMS), Zewail City of Science and Technology, 6th October City, 12578, Giza, Egypt
| | - Abdelfattah M Selim
- Department of Animal Medicine (Infectious Diseases), College of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
| | | |
Collapse
|
2
|
Othman SA, Abou-Ghadir OF, Menon V, Ramadan WS, Mostafa YA, El-Awady R, Abdu-Allah HHM. Combining lavendustin C and 5-arylidenethiazolin-4-one-based pharmacophores toward multitarget anticancer hybrids. Bioorg Chem 2024; 153:107884. [PMID: 39423773 DOI: 10.1016/j.bioorg.2024.107884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Lavendustin C, a natural-product derived anticancer lead compound, was modified at its carboxylic group by esterification or amidation (compounds 6-10) and at its amino group by introducing 5-arylidenethiazolin-4-ones (14a-c to 17a-c, 18a and 18b). Two strategies were used to combine these moieties and to optimize the yield. These new compounds were evaluated for their antiproliferative activities against a panel of nine cancer cell lines. The results clearly show that 5-arylidenethiazolin-4-one moiety contributes substantially to the activity. Also, methyl esters are more potent than amides, while N-ethylamides are the most potent among amides. 14b showed the highest potency against all tested cancer cell lines with IC50 1.4-2.5 µM, while against normal cell line IC50 > 50 µM. It showed arrest of HeLa cells at G0/G1, S phases and reduction of the percent of cells in G2/M. Moreover, 14b triggered death of HeLa cancer cells via apoptosis induction. EGFR inhibitory potency of 14b was found to be comparable to that of erlotinib. Computational docking and in silico pharmacokinetic studies were performed and discussed. In conclusion, 14b might serve as a multitarget lead compound for further development of anticancer agents.
Collapse
Affiliation(s)
- Shimaa A Othman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ola F Abou-Ghadir
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Varsha Menon
- Research Institute for Medical and Health Sciences and College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences and College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Yaser A Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Raafat El-Awady
- Research Institute for Medical and Health Sciences and College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hajjaj H M Abdu-Allah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
3
|
Baz MM, Selim AM, Radwan IT, Alkhaibari AM, Gattan HS, Alruhaili MH, Alasmari SM, Gad ME. Evaluating larvicidal, ovicidal and growth inhibiting activity of five medicinal plant extracts on Culex pipiens (Diptera: Culicidae), the West Nile virus vector. Sci Rep 2024; 14:19660. [PMID: 39191818 PMCID: PMC11350158 DOI: 10.1038/s41598-024-69449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Mosquitoes, one of the deadliest animals on the planet, cause millions of fatalities each year by transmitting several human illnesses. Synthetic pesticides were previously used to prevent the spread of diseases by mosquitoes, which was effective in protecting humans but caused serious human health problems, environmental damage, and developed mosquito pesticide resistance. This research focuses on exploring new, more effective, safer, and environmentally friendly compounds to improve mosquito vector management. Phytochemicals are possible biological agents for controlling pests and many are target-specific, rapidly biodegradable, and eco-friendly. The potential of extracts of Lantana camara, Melia azedarach, Nerium oleander, Ricinus communis, and Withania somnifera against 3rd instar Culex pipiens (Common house mosquito) larvae was evaluated. Methanol extracts had more toxic effects against Cx. pipiens larvae (95-100%, 24 h post-treatment) than aqueous extracts (63-91%, 24 h post-treatment). The methanol extracts of Nerium oleander (LC50 = 158.92 ppm) and Ricinus communis (LC50 = 175.04 ppm) were very effective at killing mosquito larvae, 24 h after treatment. N. oleander (LC50 = 373.29 ppm) showed high efficacy in aqueous plant extracts. Among the different extracts of the five plants screened, the methanol extract of R. communis recorded the highest ovicidal activity of 5% at 800 ppm concentration. Total developmental duration and growth index were highly affected by R. communis and M. azedarach methanol extracts. In field tests it was clear that plant extracts decreased mosquito larval density, especially when mixed with mosquito Bti briquette, with stability up to seven days for N. oleander. GC-MS results showed that the methanol extract had a higher number of chemical compounds, particularly with more terpene compounds. A high-performance liquid chromatography (HPLC) technique was used to detect the existence of non-volatile polyphenols and flavonoids. All five methanol extracts showed high concentrations of active ingredients such as gallic acid, chlorogenic acid (more than 100 μg/ml) and the rosmarinic acid was also found in all the five extracts in addition to 17 active polyphenols and flavonoids presented at moderate to low concentrations. Molecular modeling of 18 active ingredients detected by the HPLC were performed to the vicinity of one of the fatty acid binding proteins of lm-FABP (PDB code: 2FLJ). Rutin, Caffeic acid, coumaric acid and rosmarinic acid which presented densely in R. communis and N. oleander showed multiple and stable intermolecular hydrogen bonding and π-π stacking interactions. The inhibition ability of the fatty acid binding protein, FABP4, was evaluated with remarkable receptor inhibition evident, especially with R. communis and N. oleander having inhibitory concentrations of IC50 = 0.425 and 0.599 µg/mL, respectively. The active phytochemical compounds in the plants suggest promising larvicidal and ovicidal activity, and have potential as a safe and effective alternative to synthetic insecticides.
Collapse
Affiliation(s)
- Mohamed M Baz
- Entomology Department, Faculty of Science, Benha University, Benha, 13518, Qalyubiya, Egypt
| | - Abdelfattah M Selim
- Department of Animal Medicine (Infectious Diseases), College of Veterinary Medicine, Benha University, Toukh, 13736, Egypt.
| | - Ibrahim Taha Radwan
- Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, 11835, Egypt.
| | - Abeer Mousa Alkhaibari
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Hattan S Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Mohammed H Alruhaili
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King AbdulAziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Saeed M Alasmari
- Department of Biology, Faculty of Science and Arts, Najran University, 1988, Najran, Saudi Arabia
| | - Mohammed E Gad
- Department of Zoology and Entomology, Faculty of Science, Al Azhar University, Nasr City, 11884, Cairo, Egypt
| |
Collapse
|
4
|
Radwan IT, Ghazawy NAR, Alkhaibari AM, Gattan HS, Alruhaili MH, Selim A, Salem ME, AbdelFattah EA, Hamama HM. Nanostructure Lipid Carrier of Curcumin Co-Delivered with Linalool and Geraniol Monoterpenes as Acetylcholinesterase Inhibitor of Culex pipiens. Molecules 2024; 29:271. [PMID: 38202854 PMCID: PMC10780757 DOI: 10.3390/molecules29010271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
(1) Background: A molecular hybridization docking approach was employed to develop and detect a new category of naturally activated compounds against Culex pipiens as acetylcholinesterase inhibitors via designing a one-pot multicomponent nano-delivery system. (2) Methods: A nanostructure lipid carrier (NLC), as a second generation of solid lipid nanoparticles, was used as a carrier to deliver the active components of curcumin (Cur), geraniol (G), and linalool (L) in one nanoformulation after studying their applicability in replacing the co-crystallized ligand imidacloprid. (3) Results: The prepared nanostructure showed spherical-shaped, polydisperse particles ranging in size from 50 nm to 300 nm, as found using a transmission electron microscope. Additionally, dynamic light scattering confirmed an average size of 169 nm and a highly stable dispersed solution, as indicated by the zeta potential (-38 mV). The prepared NLC-Cur-LG displayed competitive, high-malignancy insecticidal activity against fourth instar C. pipiens with an elevated rate of death of 0.649 µg/mL. The treatment, due to the prepared nanostructure, affects oxidative stress enzymes, e.g., hydrogen peroxide (4 ppm), superoxide dismutase (SOD) (0.03 OD/mg), and protein carbonyl (0.08 OD/mg), and there are observable upward and downward fluctuations when using different concentrations of NLC-Cur-LG, suggesting significant problems in its foreseeable insecticidal activity. The acetylcholinesterase activity was assessed by an enzyme inhibition assay, and strengthened inhibition occurred due to the encapsulated NLCs (IC50 = 1.95 µg/mL). An investigation of the gene expression by Western blotting, due to treatment with NLC-Cur-LG, revealed a severe reduction of nearly a quarter of what was seen in the untreated group. As a preliminary safety step, the nanoformulation's toxicity against normal cell lines was tested, and a reassuring result was obtained of IC50 = 158.1 µg/mL for the normal lung fibroblast cell line. (4) Conclusions: the synthesized nanoformulation, NLC-Cur-LG, is a useful insecticide in field conditions.
Collapse
Affiliation(s)
- Ibrahim Taha Radwan
- Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo 11835, Egypt
| | | | - Abeer Mousa Alkhaibari
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hattan S. Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia;
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21362, Saudi Arabia
| | - Mohammed H. Alruhaili
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21362, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Mostafa E. Salem
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
| | | | - Heba M. Hamama
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
5
|
Ghazawy NAR, Afify A, Radwan IT, Ghabban H, Alkhaibari AM, Gattan HS, Alruhaili MH, Selim A, Saad MMA. The Effect of Abamectin on Locusta Migratoria Neurosecretory Cells and Mid Gut, Using Ultrastructure Examination, Oxidative Stress Study, and In-Silico Molecular Docking. Molecules 2023; 28:6956. [PMID: 37836800 PMCID: PMC10574411 DOI: 10.3390/molecules28196956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
(1) Background: Few studies have been carried out to appraise abamectin toxicity toward Locusta migratoria nymphs. (2) Methods: This study aimed to evaluate the cytotoxic effect of abamectin as an insecticide through examining the changes and damage caused by this drug, in both neurosecretory cells and midgut, using L. migratoria nymphs as a model of the cytotoxic effect. Histopathological change in the brain was examined in both normal and abamectin-treated fifth-instar nymphs. Neurosecretory cells (NSCs) were also examined where there were loosely disintegrated cells or vacuolated cytoplasm. (3) Results: The results showed distinct histological changes in the gastrointestinal tract of L. migratoria nymphs treated with abamectin, with significant cellular damage and disorganization, i.e., characteristic symptoms of cell necrosis, a destroyed epithelium, enlarged cells, and reduced nuclei. The observed biochemical changes included an elevation in all measured oxidative stress parameters compared to untreated controls. The malondialdehyde activities (MDAs) of the treated nymphs had a five- to six-fold increase, with a ten-fold increase in superoxide dismutase (SOD), nine-fold increase in glutathione-S-transferase (GST), and four-fold increase in nitric oxide (NO). (4) Conclusions: To further investigate the theoretical method of action, a molecular docking simulation was performed, examining the possibility that abamectin is an inhibitor of the fatty acid-binding protein Lm-FABP (2FLJ) and that it binds with two successive electrostatic hydrogen bonds.
Collapse
Affiliation(s)
| | - Amira Afify
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ibrahim Taha Radwan
- Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo 11835, Egypt
| | - Hanaa Ghabban
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Abeer Mousa Alkhaibari
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hattan S. Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21363, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21362, Saudi Arabia
| | - Mohammed H. Alruhaili
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21362, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King AbdulAziz University, Jeddah 21362, Saudi Arabia
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Mona M. Ali Saad
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
6
|
Othman SA, Abou-Ghadir OF, Ramadan WS, Mostafa YA, El-Awady R, Abdu-Allah HHM. The design, synthesis, biological evaluation, and molecular docking of new 5-aminosalicylamide-4-thiazolinone hybrids as anticancer agents. Arch Pharm (Weinheim) 2023; 356:e2300315. [PMID: 37551741 DOI: 10.1002/ardp.202300315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023]
Abstract
New 5-aminosalicylamide-4-thiazolinone hybrids (27) were efficiently synthesized, characterized, and evaluated to explore their structure-activity relationship as anticancer agents. The antiproliferative activities of the new hybrids were evaluated against eight cancer cell lines using the sulforhodamine B assay. The most potent compound (24b) possessed high selectivity on the tested cell lines in the low micromolar range, with much lower effects on normal fibroblast cells (IC50 > 50 µM). The cell lines derived from leukemia (Jurkat), cervix (HeLa), and colon (HCT116) cancers appeared to be the most sensitive, with IC50 of 2 µM. 24b is the N-ethylamide derivative with p-dimethylaminobenzylidene at position 5 of the 4-thiazolinone moiety. Other N-substituents or arylidene derivatives showed lower activity. Hybrids with salicylamides showed lower activity than with methyl salicylate. The results clearly show that the modifications of the carboxy group and arylidene moiety greatly affect the activity. Investigating the possible molecular mechanisms of these hybrids revealed that they act through cell-cycle arrest and induction of apoptosis and epidermal growth factor receptor (EGFR) inhibition. Molecular docking studies rationalize the molecular interactions of 24b with EGFR. This work expands our knowledge of the structural requirements to improve the anticancer activity of 5-aminosalicylic-thiazolinone hybrids and pave the way toward multitarget anticancer salicylates.
Collapse
Affiliation(s)
- Shimaa A Othman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Ola F Abou-Ghadir
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences and College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Yaser A Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Raafat El-Awady
- Research Institute for Medical and Health Sciences and College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Hajjaj H M Abdu-Allah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
7
|
Radwan IT, Sayed-Ahmed MZ, Ghazawy NA, Alqahtani SS, Ahmad S, Alam N, Alkhaibari AM, Ali MS, Selim A, AbdelFattah EA. Effect of nanostructure lipid carrier of methylene blue and monoterpenes as enzymes inhibitor for Culex pipiens. Sci Rep 2023; 13:12522. [PMID: 37532732 PMCID: PMC10397322 DOI: 10.1038/s41598-023-39385-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Solid lipid nanoparticles second generation, nanostructure lipid carrier (NLC), is one of the most important biodegradable nanoparticles. Nanostructure Lipid carrier (NLC) was used to encapsulate methylene blue (MB) dye, carvacrol and citronellal and their efficacy as insecticidal against Culex pipiens (Cx. pipiens) were distinguished. The prepared nanoformulation revealed very good physicochemical properties, especially the homogeneity of the particle size. Transmission electron microscope showed spherical shaped nanoparticles within range less than 200 nm. The prepared NLC-MB-MT system showed a very competitive insecticidal activity and high virulence against the mosquito larvae with higher mortality rate of LC50 of 0.141 µl/mL, in addition to high level of Oxidative stress parameters obtained through all the tested enzymes including hydrogen peroxide (4.8 ppm), protein carbonyl amount (0.12 OD/mg protein), ascorbic acid (0.15 mg) and Superoxide dismutase (SOD) showed strong increasing (0.09 OD/mg protein/min) at 6 µg/mL, respectively. Whereas paradoxical results of the oxidative stress enzymes were obtained from different concentration of nanoformulation that introduce a convenient reason for their potential insecticidal effect. The cytotoxic effect of NLC-MB-MT was evaluated using WI38 human lung cell lines, the LC50 was 6.4 mg/mL. The low cytotoxic reactivity towards the tested cell line makes the NLC-MB-MT nanoformulation has its promising insecticidal efficacy. Molecular docking study for each component were done against acetylcholine esterase protein and accepted binding modes achieved by the three compounds.
Collapse
Affiliation(s)
- Ibrahim Taha Radwan
- Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, 11835, Egypt.
| | - Mohamed Z Sayed-Ahmed
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia.
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | | | - Saad S Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Sarfaraz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia
| | - Nawazish Alam
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia
| | - Abeer Mousa Alkhaibari
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Md Sajid Ali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Kingdom of Saudi Arabia
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt.
| | | |
Collapse
|
8
|
Radwan IT, Elwahy AH, Darweesh AF, Sharaky M, Bagato N, Khater HF, Salem ME. Design, synthesis, docking study, and anticancer evaluation of novel bis-thiazole derivatives linked to benzofuran or benzothiazole moieties as PI3k inhibitors and apoptosis inducers. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|