1
|
Yousaf S, Shahzadi K. Utilizing topological indices in QSPR modeling to identify non-cancer medications with potential anti-cancer properties: a promising strategy for drug repurposing. Front Chem 2024; 12:1410882. [PMID: 39176073 PMCID: PMC11338857 DOI: 10.3389/fchem.2024.1410882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/11/2024] [Indexed: 08/24/2024] Open
Abstract
The exploration of non-cancer medications with potential anti-cancer activity offers a promising avenue for drug repurposing, accelerating the development of new oncological therapies. This study employs Quantitative Structure-Property Relationship (QSPR) modeling to identify and predict the anti-cancer efficacy of various non-cancer drugs, utilizing topological indices as key descriptors. Topological indices, which capture the molecular structure's geometric and topological characteristics, provide critical insights into the pharmacological interactions relevant to anti-cancer activity. By analyzing a comprehensive dataset of non-cancer medications, this research establishes robust QSPR models that correlate topological indices with anti-cancer activity. The models demonstrate significant predictive power, highlighting several non-cancer drugs with potential anti-cancer properties. Further, we will use linear, quadratic and logarithmic regression to understand the structures of anti-cancer drugs and strengthen our ability to manipulate the molecular structures. The findings underscore the utility of topological indices in drug repurposing strategies and pave the way for further experimental validation and clinical trials. This integrative approach enhances our understanding of drug action mechanisms and offers a cost-effective strategy for expanding the repertoire of anti-cancer agents.
Collapse
Affiliation(s)
- Shamaila Yousaf
- Department of Mathematics, University of Gujrat, Gujrat, Pakistan
| | | |
Collapse
|
2
|
Jiang L, Zhang Z, Luo Z, Li L, Yuan S, Cui M, He K, Xiao J. Rupatadine inhibits colorectal cancer cell proliferation through the PIP5K1A/Akt/CDK2 pathway. Biomed Pharmacother 2024; 176:116826. [PMID: 38838507 DOI: 10.1016/j.biopha.2024.116826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Phosphatidylinositol-4-phosphate 5-kinase type 1 alpha (PIP5K1A) acts upstream of the Akt regulatory pathway and is abnormally expressed in many types of malignancies. However, the role and mechanism of PIP5K1A in colorectal cancer (CRC) have not yet been reported. In this study, we aimed to determine the association between PIP5K1A and progression of CRC and assess the efficacy and mechanism by which rupatadine targets PIP5K1A. METHODS Firstly, expression and function of PIP5K1A in CRC were investigated by human colon cancer tissue chip analysis and cell proliferation assay. Next, rupatadine was screened by computational screening and cytotoxicity assay and interactions between PIP5K1A and rupatadine assessed by kinase activity detection assay and bio-layer interferometry analysis. Next, rupatadine's anti-tumor effect was evaluated by in vivo and in vitro pharmacodynamic assays. Finally, rupatadine's anti-tumor mechanism was explored by quantitative real-time reverse-transcription polymerase chain reaction, western blot, and immunofluorescence. RESULTS We found that PIP5K1A exerts tumor-promoting effects as a proto-oncogene in CRC and aberrant PIP5K1A expression correlates with CRC malignancy. We also found that rupatadine down-regulates cyclin-dependent kinase 2 and cyclin D1 protein expression by inhibiting the PIP5K1A/Akt/GSK-3β pathway, induces cell cycle arrest, and inhibits CRC cell proliferation in vitro and in vivo. CONCLUSIONS PIP5K1A is a potential drug target for treating CRC. Rupatadine, which targets PIP5K1A, could serve as a new option for treating CRC, its therapeutic mechanism being related to regulation of the Akt/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Lei Jiang
- China Pharmaceutical University, Nanjing 210000, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Zhibo Zhang
- China Pharmaceutical University, Nanjing 210000, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Zhaofeng Luo
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Luan Li
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Shengtao Yuan
- China Pharmaceutical University, Nanjing 210000, China
| | - Min Cui
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China.
| | - Ke He
- Minimally Invasive Tumor Therapies Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510310, China.
| | - Jing Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China; Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
3
|
Kadasah SF, Alqahtani AMS, Alkhammash A, Radwan MO. Beyond Psychotropic: Potential Repurposing of Fluoxetine toward Cancer Therapy. Int J Mol Sci 2024; 25:6314. [PMID: 38928021 PMCID: PMC11203592 DOI: 10.3390/ijms25126314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Drug repurposing, rebranding an existing drug for a new therapeutic indication, is deemed a beneficial approach for a quick and cost-effective drug discovery process by skipping preclinical, Phase 1 trials and pharmacokinetic studies. Several psychotropic drugs, including selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCAs), were studied for their potential application in different diseases, especially in cancer therapy. Fluoxetine (FLX) is one of the most prescribed psychotropic agents from the SSRIs class for the treatment of several neuropsychiatric disorders with a favorable safety profile. FLX exhibited different oncolytic effects via mechanisms distinct from its main serotonergic activity. Taking advantage of its ability to rapidly penetrate the blood-brain barrier, FLX could be particularly useful in brain tumors. This was proved by different in vitro and in vivo experiments using FLX as a monotherapy or combination with temozolomide (TMZ) or radiotherapy. In this review of the literature, we summarize the potential pleiotropic oncolytic roles of FLX against different cancers, highlighting the multifaceted activities of FLX and its ability to interrupt cancer proliferation via several molecular mechanisms and even surmount multidrug resistance (MDR). We elaborated on the successful synergistic combinations such as FXR/temozolomide and FXR/raloxifene for the treatment of glioblastoma and breast cancer, respectively. We showcased beneficial pharmaceutical trials to load FLX onto carriers to enhance its safety and efficacy on cancer cells. This is the first review article extensively summarizing all previous FLX repurposing studies for the management of cancer.
Collapse
Affiliation(s)
- Sultan F. Kadasah
- Department of Biology, Faculty of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Abdulaziz M. S. Alqahtani
- Department of Biology, Faculty of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Abdullah Alkhammash
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Mohamed O. Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| |
Collapse
|
4
|
Kawczak P, Feszak I, Brzeziński P, Bączek T. Structure-Activity Relationships and Therapeutic Applications of Retinoids in View of Potential Benefits from Drug Repurposing Process. Biomedicines 2024; 12:1059. [PMID: 38791021 PMCID: PMC11117600 DOI: 10.3390/biomedicines12051059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Vitamin A, an essential micronutrient, is integral to various biological processes crucial for organismal development and maintenance. Dietary sources of vitamin A encompass preformed retinol, retinyl esters, and provitamin A carotenoids. Retinoic acid (RA), a key component, plays pivotal roles in vision, cell proliferation, apoptosis, immune function, and gene regulation. Drug repurposing, an effective strategy for identifying new therapeutic applications for existing drugs, has gained prominence in recent years. This review seeks to provide a comprehensive overview of the current research landscape surrounding retinoids and drug repurposing. The scope of this review encompasses a comprehensive examination of retinoids and their potential for repurposing in various therapeutic contexts. Despite their efficacy in treating dermatological conditions, concerns about toxicity persist, driving the search for safer and more potent retinoids. The molecular mechanisms underlying retinoid activity involve binding to retinoic acid receptors (RARs) and retinoid X receptors (RXRs), leading to transcriptional regulation of target genes. This review seeks to shed light on the possibilities for repurposing retinoids to cover a wider spectrum of therapeutic uses by exploring recent scientific progress. It also aims to offer a more comprehensive understanding of the therapeutic prospects of retinoids and the broader impact of drug repositioning in contemporary medicine.
Collapse
Affiliation(s)
- Piotr Kawczak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
| | - Igor Feszak
- Department of Nursing, Faculty of Health Sciences, Pomeranian University in Słupsk, 76-200 Słupsk, Poland;
| | - Piotr Brzeziński
- Department of Physiotherapy and Medical Emergency, Institute of Health Sciences, Pomeranian University in Słupsk, 76-200 Słupsk, Poland;
- Department of Dermatology, Voivodeship Specialist Hospital, 76-200 Słupsk, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
- Department of Nursing, Faculty of Health Sciences, Pomeranian University in Słupsk, 76-200 Słupsk, Poland;
| |
Collapse
|
5
|
Khodashahi R, Beiraghdar F, Ferns GA, Ashrafzadeh K, Aliakbarian M, Arjmand MH. The Role of Local Angiotensin II/Angiotensin Type 1-receptor Mechanisms in Adipose Tissue Dysfunction to Promote Pancreatic Cancer. Curr Cancer Drug Targets 2024; 24:1187-1194. [PMID: 38347780 DOI: 10.2174/0115680096281059240103154836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/28/2023] [Accepted: 12/14/2023] [Indexed: 09/25/2024]
Abstract
Obesity and adipose tissue dysfunction are important risk factors for pancreatic cancer. Pancreatic cancer is one of the most lethal cancers globally. The renin-angiotensin system (RAS) is expressed in many tissues, including adipose tissue. Dysregulation of angiotensin II and angiotensin II receptors in adipose tissue through the activation of different signaling pathways leads to adipose tissue dysfunction, including insulin resistance, adipose tissue inflammation, adipocytokines secretion, and metabolic alterations. The pathogenesis of pancreatic cancer remains uncertain. However, there is evidence that dysregulation of local angiotensin II in adipose tissue that occurs in association with obesity is, in part, responsible for the initiation and progression of pancreatic cancer. Due to the role of local angiotensin II in the dysfunction of adipose tissue, angiotensin receptor blockers may be considered a new therapeutic strategy in the amelioration of the complications related to adipose tissue dysfunction and prevention of pancreatic cancer. This review aims to consider the biological roles of local angiotensin II and angiotensin II receptors in adipose tissue dysfunction to promote pancreatic cancer progression with a focus on adipose tissue inflammation and metabolic reprogramming.
Collapse
Affiliation(s)
- Rozita Khodashahi
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Beiraghdar
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gorgon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Kiayash Ashrafzadeh
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Aliakbarian
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad-Hassan Arjmand
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Mohan S, Hakami MA, Dailah HG, Khalid A, Najmi A, Zoghebi K, Halawi MA. The emerging role of noncoding RNAs in the EGFR signaling pathway in lung cancer. Pathol Res Pract 2024; 253:155016. [PMID: 38070221 DOI: 10.1016/j.prp.2023.155016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 01/24/2024]
Abstract
Noncoding ribonucleic acids (ncRNAs) have surfaced as essential orchestrators within the intricate system of neoplastic biology. Specifically, the epidermal growth factor receptor (EGFR) signalling cascade shows a central role in the etiological underpinnings of pulmonary carcinoma. Pulmonary malignancy persists as a preeminent contributor to worldwide mortality attributable to malignant neoplasms, with non-small cell lung carcinoma (NSCLC) emerging as the most predominant histopathological subcategory. EGFR is a key driver of NSCLC, and its dysregulation is frequently associated with tumorigenesis, metastasis, and resistance to therapy. Over the past decade, researchers have unveiled a complex network of ncRNAs, encompassing microRNAs, long noncoding RNAs, and circular RNAs, which intricately regulate EGFR signalling. MicroRNAs, as versatile post-transcriptional regulators, have been shown to target various components of the EGFR pathway, influencing cancer cell proliferation, migration, and apoptosis. Additionally, ncRNAs have emerged as critical modulators of EGFR signalling, with their potential to act as scaffolds, decoys, or guides for EGFR-related proteins. Circular RNAs, a relatively recent addition to the ncRNA family, have also been implicated in EGFR signalling regulation. The clinical implications of ncRNAs in EGFR-driven lung cancer are substantial. These molecules exhibit diagnostic potential as robust biomarkers for early cancer detection and personalized treatment. Furthermore, their predictive value extends to predicting disease progression and therapeutic outcomes. Targeting ncRNAs in the EGFR pathway represents a novel therapeutic approach with promising results in preclinical and early clinical studies. This review explores the increasing evidence supporting the significant role of ncRNAs in modulating EGFR signalling in lung cancer, shedding light on their potential diagnostic, prognostic, and therapeutic implications.
Collapse
Affiliation(s)
- Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Maryam A Halawi
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
7
|
Mokhtari M, Khoshbakht S, Akbari ME, Moravveji SS. BMC3PM: bioinformatics multidrug combination protocol for personalized precision medicine and its application in cancer treatment. BMC Med Genomics 2023; 16:328. [PMID: 38087279 PMCID: PMC10717810 DOI: 10.1186/s12920-023-01745-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND In recent years, drug screening has been one of the most significant challenges in the field of personalized medicine, particularly in cancer treatment. However, several new platforms have been introduced to address this issue, providing reliable solutions for personalized drug validation and safety testing. In this study, we developed a personalized drug combination protocol as the primary input to such platforms. METHODS To achieve this, we utilized data from whole-genome expression profiles of 6173 breast cancer patients, 312 healthy individuals, and 691 drugs. Our approach involved developing an individual pattern of perturbed gene expression (IPPGE) for each patient, which was used as the basis for drug selection. An algorithm was designed to extract personalized drug combinations by comparing the IPPGE and drug signatures. Additionally, we employed the concept of drug repurposing, searching for new benefits of existing drugs that may regulate the desired genes. RESULTS Our study revealed that drug combinations obtained from both specialized and non-specialized cancer medicines were more effective than those extracted from only specialized medicines. Furthermore, we observed that the individual pattern of perturbed gene expression (IPPGE) was unique to each patient, akin to a fingerprint. CONCLUSIONS The personalized drug combination protocol developed in this study offers a methodological interface between drug repurposing and combination drug therapy in cancer treatment. This protocol enables personalized drug combinations to be extracted from hundreds of drugs and thousands of drug combinations, potentially offering more effective treatment options for cancer patients.
Collapse
Affiliation(s)
- Majid Mokhtari
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran.
| | - Samane Khoshbakht
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
- Duke Molecular Physiology Institute, Duke University School of Medicine-Cardiology, Durham, NC, 27701, USA
| | | | - Sayyed Sajjad Moravveji
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| |
Collapse
|
8
|
Boisgerault N, Bertrand P. Inside PD-1/PD-L1,2 with their inhibitors. Eur J Med Chem 2023; 256:115465. [PMID: 37196547 DOI: 10.1016/j.ejmech.2023.115465] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
This review summarizes current knowledge in the development of immune checkpoint inhibitors, including antibodies and small molecules.
Collapse
Affiliation(s)
- Nicolas Boisgerault
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université D'Angers, CRCI2NA, LabEx IGO, F-44000, Nantes, France
| | - Philippe Bertrand
- University of Poitiers, IC2MP UMR 7285 CNRS, 4 Rue Michel Brunet B27, TSA 51106, 86073 Poitiers Cedex 9, France.
| |
Collapse
|
9
|
Miglitol, an Oral Antidiabetic Drug, Downregulates Melanogenesis in B16F10 Melanoma Cells through the PKA, MAPK, and GSK3β/β-Catenin Signaling Pathways. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010115. [PMID: 36615308 PMCID: PMC9822252 DOI: 10.3390/molecules28010115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Hyperpigmentation is a common condition that causes darker spots or patches on the skin, which often look brown, black, gray, red, or pink. This results in unresolved psychological impact due to high anxiety, depression, and somatoform disorder. We aimed to repurpose an antidiabetic drug, miglitol, as an effective compound against hyperpigmentation when applied as a cosmeceutical agent. The present study investigated the antimelanogenic effects of miglitol and the trehalase inhibitor validamycin A. Miglitol in isolation exhibited no cytotoxicity and significantly reduced the melanin production and intracellular tyrosinase activity in B16F10 melanoma cells. The Western blotting results showed that miglitol reduces the expression of melanogenic regulatory factors, including tyrosinase, tyrosinase-related protein (TRP)-1, TRP-2, and microphthalmia-associated transcription factor (MITF). Mechanistically, miglitol appears to suppress melanin synthesis through cAMP-dependent protein kinase (PKA)-dependent downregulation of MITF, a master transcription factor in melanogenesis. The antimelanogenic effects of miglitol was mediated by downregulation of the p38 signaling pathway and upregulation of extracellular signal-regulated kinase (ERK). Moreover, miglitol decreases P-GSK3β and β-catenin levels compared to those in the untreated group. However, miglitol activated P-β-catenin expression compared to that in the untreated group. Finally, we tested the potential of miglitol in topical application through primary human skin irritation tests on the normal skin (upper back) of 33 volunteers. In these assays, miglitol (125 and 250 μM) did not induce any adverse reactions. Taken together, these findings suggest that the regulation of melanogenesis by miglitol may be mediated by the PKA, MAPK, and GSK3β/β-Catenin signaling pathways and that miglitol might provide new insights into drug repurposing for the treatment of hyperpigmentation symptoms.
Collapse
|
10
|
Thuru X, Magnez R, El-Bouazzati H, Vergoten G, Quesnel B, Bailly C. Drug Repurposing to Enhance Antitumor Response to PD-1/PD-L1 Immune Checkpoint Inhibitors. Cancers (Basel) 2022; 14:3368. [PMID: 35884428 PMCID: PMC9322126 DOI: 10.3390/cancers14143368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/26/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022] Open
Abstract
Monoclonal antibodies targeting the PD-1/PD-L1 immune checkpoint have considerably improved the treatment of some cancers, but novel drugs, new combinations, and treatment modalities are needed to reinvigorate immunosurveillance in immune-refractory tumors. An option to elicit antitumor immunity against cancer consists of using approved and marketed drugs known for their capacity to modulate the expression and functioning of the PD-1/PD-L1 checkpoint. Here, we have reviewed several types of drugs known to alter the checkpoint, either directly via the blockade of PD-L1 or indirectly via an action on upstream effectors (such as STAT3) to suppress PD-L1 transcription or to induce its proteasomal degradation. Specifically, the repositioning of the approved drugs liothyronine, azelnidipine (and related dihydropyridine calcium channel blockers), niclosamide, albendazole/flubendazole, and a few other modulators of the PD-1/PD-L1 checkpoint (repaglinide, pimozide, fenofibrate, lonazolac, propranolol) is presented. Their capacity to bind to PD-L1 or to repress its expression and function offer novel perspectives for combination with PD-1 targeted biotherapeutics. These known and affordable drugs could be useful to improve the therapy of cancer.
Collapse
Affiliation(s)
- Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (X.T.); (R.M.); (H.E.-B.); (B.Q.)
| | - Romain Magnez
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (X.T.); (R.M.); (H.E.-B.); (B.Q.)
| | - Hassiba El-Bouazzati
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (X.T.); (R.M.); (H.E.-B.); (B.Q.)
| | - Gérard Vergoten
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, Inserm, INFINITE—U1286, 3 Rue du Professeur Laguesse, BP-83, F-59006 Lille, France;
| | - Bruno Quesnel
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (X.T.); (R.M.); (H.E.-B.); (B.Q.)
| | | |
Collapse
|