1
|
Fan Y, Goh ELK, Chan JKY. Neural Cells for Neurodegenerative Diseases in Clinical Trials. Stem Cells Transl Med 2023; 12:510-526. [PMID: 37487111 PMCID: PMC10427968 DOI: 10.1093/stcltm/szad041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/11/2023] [Indexed: 07/26/2023] Open
Abstract
Neurodegenerative diseases (ND) are an entire spectrum of clinical conditions that affect the central and peripheral nervous system. There is no cure currently, with treatment focusing mainly on slowing down progression or symptomatic relief. Cellular therapies with various cell types from different sources are being conducted as clinical trials for several ND diseases. They include neural, mesenchymal and hemopoietic stem cells, and neural cells derived from embryonic stem cells and induced pluripotent stem cells. In this review, we present the list of cellular therapies for ND comprising 33 trials that used neural stem progenitors, 8 that used differentiated neural cells ,and 109 trials that involved non-neural cells in the 7 ND. Encouraging results have been shown in a few early-phase clinical trials that require further investigations in a randomized setting. However, such definitive trials may not be possible given the relative cost of the trials, and in the setting of rare diseases.
Collapse
Affiliation(s)
- Yiping Fan
- Department of Reproductive Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore, Singapore
| | - Eyleen L K Goh
- Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
2
|
Xu Z, Jiang J, Xu S, Xie Z, He P, Jiang S, Xu R. Nerve Growth Factor is a Potential Treated Target in Tg(SOD1*G93A)1Gur Mice. Cell Mol Neurobiol 2022; 42:1035-1046. [PMID: 33236288 PMCID: PMC11441269 DOI: 10.1007/s10571-020-00993-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
Nerve growth factor (NGF) is a protective factor of neural cells; the possible relationship between the NGF and the pathogenesis of amyotrophic lateral sclerosis (ALS) hasn't been completely known. In this study, we observed and analyzed the expression and distribution of NGF, as well as the possible relationship between the NGF expression and distribution and the neural cell death in both SOD1 wild-type (WT) and Tg(SOD1*G93A)1Gur (TG) mice applying the fluorescence immunohistochemistry method. The results showed that the expression and distribution of NGF in the anterior horn (AH), the lateral horn (LH), and the surrounding central canal (CC) significantly increased at the supper early stage of ALS (Pre-onset stage) and the early stage (Onset stage), but the NGF expression and distribution in the AH, the LH, and the surrounding CC significantly reduced at the progression stage. The astrocyte, neuron, and oligodendrocyte produced the NGF and the neural precursor cells (NPCs) produced the NGF. The neural cell death gradually increased accompanying with the reduction of NGF expression and distribution. Our data suggested that the NGF was a protective factor of neural cells, because the neural cells in the AH, the LH, and the surrounding CC produced more NGF at the supper early and early stage of ALS; moreover, the NPCs produced the NGF. It implied that the NGF exerted the protective effect of neural cells, prevented from the neural cell death and aroused the potential of self-repair in the development of ALS.
Collapse
Affiliation(s)
- Zhenzhen Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jianxiang Jiang
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shengyuan Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Zunchun Xie
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Pei He
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shishi Jiang
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
3
|
Mentis AFA, Bougea AM, Chrousos GP. Amyotrophic lateral sclerosis (ALS) and the endocrine system: Are there any further ties to be explored? AGING BRAIN 2021; 1:100024. [PMID: 36911507 PMCID: PMC9997134 DOI: 10.1016/j.nbas.2021.100024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/20/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) belongs to the family of neurodegenerative disorders and is classified as fronto-temporal dementia (FTD), progressive muscular atrophy, primary lateral sclerosis, and pseudobulbar palsy. Even though endocrine dysfunction independently impacts the ALS-related survival rate, the complex connection between ALS and the endocrine system has not been studied in depth. Here we review earlier and recent findings on how ALS interacts with hormones a) of the hypothalamus and pituitary gland, b) the thyroid gland, c) the pancreas, d) the adipose tissue, e) the parathyroid glands, f) the bones, g) the adrenal glands, and h) the gonads (ovaries and testes). Of note, endocrine issues should always be explored in patients with ALS, especially those with low skeletal muscle and bone mass, vitamin D deficiency, and decreased insulin sensitivity (diabetes mellitus). Because ALS is a progressively deteriorating disease, addressing any potential endocrine co-morbidities in patients with this malady is quite important for decreasing the overall ALS-associated disease burden. Importantly, as this burden is estimated to increase globally in the decades to follow, in part because of an increasingly aging population, it is high time for future multi-center, multi-ethnic studies to assess the link between ALS and the endocrine system in significantly larger patient populations. Last, the psychosocial stress experienced by patients with ALS and its psycho-neuro-endocrinological sequelae, including hypothalamic-pituitaryadrenal dysregulation, should become an area of intensive study in the future.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Anastasia M Bougea
- Memory & Movement Disorders Clinic, 1st Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
4
|
Luo F, Sandhu AF, Rungratanawanich W, Williams GE, Akbar M, Zhou S, Song BJ, Wang X. Melatonin and Autophagy in Aging-Related Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21197174. [PMID: 32998479 PMCID: PMC7584015 DOI: 10.3390/ijms21197174] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
With aging, the nervous system gradually undergoes degeneration. Increased oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction, and cell death are considered to be common pathophysiological mechanisms of various neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), organophosphate-induced delayed neuropathy (OPIDN), and amyotrophic lateral sclerosis (ALS). Autophagy is a cellular basic metabolic process that degrades the aggregated or misfolded proteins and abnormal organelles in cells. The abnormal regulation of neuronal autophagy is accompanied by the accumulation and deposition of irregular proteins, leading to changes in neuron homeostasis and neurodegeneration. Autophagy exhibits both a protective mechanism and a damage pathway related to programmed cell death. Because of its "double-edged sword", autophagy plays an important role in neurological damage and NDDs including AD, PD, HD, OPIDN, and ALS. Melatonin is a neuroendocrine hormone mainly synthesized in the pineal gland and exhibits a wide range of biological functions, such as sleep control, regulating circadian rhythm, immune enhancement, metabolism regulation, antioxidant, anti-aging, and anti-tumor effects. It can prevent cell death, reduce inflammation, block calcium channels, etc. In this review, we briefly discuss the neuroprotective role of melatonin against various NDDs via regulating autophagy, which could be a new field for future translational research and clinical studies to discover preventive or therapeutic agents for many NDDs.
Collapse
Affiliation(s)
- Fang Luo
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.L.); (A.F.S.); (G.E.W.)
| | - Aaron F. Sandhu
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.L.); (A.F.S.); (G.E.W.)
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (W.R.); (B.-J.S.)
| | - George E. Williams
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.L.); (A.F.S.); (G.E.W.)
| | - Mohammed Akbar
- Division of Neuroscience & Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Shuanhu Zhou
- Departments of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (W.R.); (B.-J.S.)
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.L.); (A.F.S.); (G.E.W.)
- Correspondence:
| |
Collapse
|
5
|
Peng B, Yang Q, B Joshi R, Liu Y, Akbar M, Song BJ, Zhou S, Wang X. Role of Alcohol Drinking in Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis. Int J Mol Sci 2020; 21:ijms21072316. [PMID: 32230811 PMCID: PMC7177420 DOI: 10.3390/ijms21072316] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS), increase as the population ages around the world. Environmental factors also play an important role in most cases. Alcohol consumption exists extensively and it acts as one of the environmental factors that promotes these neurodegenerative diseases. The brain is a major target for the actions of alcohol, and heavy alcohol consumption has long been associated with brain damage. Chronic alcohol intake leads to elevated glutamate-induced excitotoxicity, oxidative stress and permanent neuronal damage associated with malnutrition. The relationship and contributing mechanisms of alcohol with these three diseases are different. Epidemiological studies have reported a reduction in the prevalence of Alzheimer’s disease in individuals who drink low amounts of alcohol; low or moderate concentrations of ethanol protect against β-amyloid (Aβ) toxicity in hippocampal neurons; and excessive amounts of ethanol increase accumulation of Aβ and Tau phosphorylation. Alcohol has been suggested to be either protective of, or not associated with, PD. However, experimental animal studies indicate that chronic heavy alcohol consumption may have dopamine neurotoxic effects through the induction of Cytochrome P450 2E1 (CYP2E1) and an increase in the amount of α-Synuclein (αSYN) relevant to PD. The findings on the association between alcohol consumption and ALS are inconsistent; a recent population-based study suggests that alcohol drinking seems to not influence the risk of developing ALS. Additional research is needed to clarify the potential etiological involvement of alcohol intake in causing or resulting in major neurodegenerative diseases, which will eventually lead to potential therapeutics against these alcoholic neurodegenerative diseases.
Collapse
Affiliation(s)
- Bin Peng
- Departments of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qiang Yang
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Daye 435100, China
| | - Rachna B Joshi
- Departments of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Internal Medicine, Stafford Medical, PA. 1364 NJ-72, Manahawkin, NJ 08050, USA
| | - Yuancai Liu
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Daye 435100, China
| | - Mohammed Akbar
- Division of Neuroscience & Behavior, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20852, USA;
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA;
| | - Shuanhu Zhou
- Departments of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (S.Z.); (X.W.); Tel.: 1-617-732-5398 (S.Z.); 1-617-732-4186 (X.W.)
| | - Xin Wang
- Departments of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (S.Z.); (X.W.); Tel.: 1-617-732-5398 (S.Z.); 1-617-732-4186 (X.W.)
| |
Collapse
|
6
|
Zhang H, Tong T, Landers J, Wu Z. TFisher: A powerful truncation and weighting procedure for combining $p$-values. Ann Appl Stat 2020. [DOI: 10.1214/19-aoas1302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Zhou Q, Zhu L, Qiu W, Liu Y, Yang F, Chen W, Xu R. Nicotinamide Riboside Enhances Mitochondrial Proteostasis and Adult Neurogenesis through Activation of Mitochondrial Unfolded Protein Response Signaling in the Brain of ALS SOD1 G93A Mice. Int J Biol Sci 2020; 16:284-297. [PMID: 31929756 PMCID: PMC6949147 DOI: 10.7150/ijbs.38487] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/28/2019] [Indexed: 01/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is caused by the progressive degeneration of motor neurons in the spinal cord, the brain stem, and the motor cortex. So far, there is still a lack of effective drugs. Nicotinamide adenine dinucleotide (NAD+) takes part in redox reactions and the NAD-dependent signaling pathway. The NAD+ decline is related with many neurological diseases, leading to the accumulation of neurotoxic protein in the central nervous system. Moreover, the NAD+ supplementation is shown to promote neural stem cells/neuronal precursor cells (NSCs/NPCs) pool maintenance. Regulatory mechanisms and functions of NAD+ metabolism in ALS are still unknown. Thus, we hypothesized the aggregation of human SOD1 toxic protein and the fate of NSCs/NPCs in the ALS disease could be improved by the administration of nicotinamide riboside (NR), an NAD+ precursor. In this study, we treated SOD1G93A transgenic and wild-type mice by the oral administration of 20 mg/ml NR starting at 50 days of age. Effects of NR on the body weight, the motor function, the onset and the survival were assessed during the experiment. The expression of mutant hSOD1 protein, mitochondrial unfolded protein response (UPRmt) related protein, mitophagy markers and NAD+ metabolism related protein were detected by immunoblotting. Effects of NR on the NSCs/NPCs in neurogenic niches of brain were identified by the immunofluorescence staining. Our investigation elucidated that the NR treatment exhibited better hanging wire endurance but did not postpone the onset or extend the life span of SOD1G93A mice. Besides, we observed that the NR repletion promoted the clearance of mitochondrial hSOD1 neurotoxic protein. Meanwhile, the mitochondrial function pathway was disrupted in the brain of SOD1G93A mice. What's more, we demonstrated that the inadequate function of NAD+ salvage synthesis pathway was the primary explanation behind the decline of NAD+, and the NR treatment enhanced the proliferation and migration of NSCs/NPCs in the brain of SOD1G93A mice. At last, we found that levels of UPRmt related protein were significantly increased in the brain of SOD1G93A mice after the NR treatment. In summary, these findings reveal that the administration of NR activates UPRmt signaling, modulates mitochondrial proteostasis and improves the adult neurogenesis in the brain of SOD1G93A mice.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Lei Zhu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Weiwen Qiu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yue Liu
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Fang Yang
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Wenzhi Chen
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Renshi Xu
- ✉ Corresponding author: Prof. Renshi Xu, or , Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, China. Tel: +86 0791-88603798
| |
Collapse
|
8
|
Veeresh P, Kaur H, Sarmah D, Mounica L, Verma G, Kotian V, Kesharwani R, Kalia K, Borah A, Wang X, Dave KR, Rodriguez AM, Yavagal DR, Bhattacharya P. Endoplasmic reticulum-mitochondria crosstalk: from junction to function across neurological disorders. Ann N Y Acad Sci 2019; 1457:41-60. [PMID: 31460675 DOI: 10.1111/nyas.14212] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/12/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
The endoplasmic reticulum (ER) and mitochondria are fundamental organelles highly interconnected with a specialized set of proteins in cells. ER-mitochondrial interconnections form specific microdomains, called mitochondria-associated ER membranes, that have been found to play important roles in calcium signaling and lipid homeostasis, and more recently in mitochondrial dynamics, inflammation, and autophagy. It is not surprising that perturbations in ER-mitochondria connections can result in the progression of disease, especially neurological disorders; hence, their architecture and regulation are crucial in determining the fate of cells and disease. The molecular identity of the specialized proteins regulating ER-mitochondrial crosstalk remains unclear. Our discussion here describes the physical and functional crosstalk between these two dynamic organelles and emphasizes the outcome of altered ER-mitochondrial interconnections in neurological disorders.
Collapse
Affiliation(s)
- Pabbala Veeresh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, India.,Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, Université Paris-Est, UMR-S955, UPEC, Cretéil, France
| | - Leela Mounica
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, India
| | - Geetesh Verma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, India
| | - Vignesh Kotian
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, India
| | - Radhika Kesharwani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kunjan R Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida
| | - Anne-Marie Rodriguez
- Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, Université Paris-Est, UMR-S955, UPEC, Cretéil, France
| | - Dileep R Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
9
|
Nabavi SM, Arab L, Jarooghi N, Bolurieh T, Abbasi F, Mardpour S, Azimyian V, Moeininia F, Maroufizadeh S, Sanjari L, Hosseini SE, Aghdami N. Safety, Feasibility of Intravenous and Intrathecal Injection of Autologous Bone Marrow Derived Mesenchymal Stromal Cells in Patients with Amyotrophic Lateral Sclerosis: An Open Label Phase I Clinical Trial. CELL JOURNAL 2018; 20:592-598. [PMID: 30124008 PMCID: PMC6099146 DOI: 10.22074/cellj.2019.5370] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/28/2018] [Indexed: 12/11/2022]
Abstract
Objective Amyotrophic lateral sclerosis (ALS) is the most severe disorder within the spectrum of motor neuron diseases
(MND) that has no effective treatment and a progressively fatal outcome. We have conducted two clinical trials to assess the
safety and feasibility of intravenous (IV) and intrathecal (IT) injections of bone marrow derived mesenchymal stromal cells
(BM-MSCs) in patients with ALS.
Materials and Methods This is an interventional/experimental study. We enrolled 14 patients that met the following inclusion
criteria: definitive diagnosis of sporadic ALS, ALS Functional Rating Scale (ALS-FRS) ≥24, and ≥40% predicted forced vital
capacity (FVC). All patients underwent bone marrow (BM) aspiration to obtain an adequate sample for cell isolation and
culture. Patients in group 1 (n=6) received an IV and patients in group 2 (n=8) received an IT injection of the cell suspension. All
patients in both groups were followed at 24 hours and 2, 4, 6, and 12 months after the injection with ALS-FRS, FVC, laboratory
tests, check list of side effects and brain/spinal cord magnetic resonance imaging (MRI). In each group, one patient was lost to
follow up one month after cell injection and one patient from IV group died due to severe respiratory insufficiency and infection.
Results During the follow up there were no reports of adverse events in terms of clinical and laboratory assessments.
In MRI, there was not any new abnormal finding. The ALS-FRS score and FVC percentage significantly reduced in all
patients from both groups.
Conclusion This study has shown that IV and IT transplantation of BM-derived stromal cells is safe and feasible (Registration
numbers: NCT01759797 and NCT01771640).
Collapse
Affiliation(s)
- Seyed Massood Nabavi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Leila Arab
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Neda Jarooghi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Tina Bolurieh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh Abbasi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Soura Mardpour
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Vajihe Azimyian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh Moeininia
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saman Maroufizadeh
- Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Medicine, ACECR, Tehran, Iran
| | - Leila Sanjari
- Intensive Care Unit, Mostafa Khomeini Hospital, Tehran, Iran
| | - Seyedeh Esmat Hosseini
- Student Research Committee, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.Electronic Address:
| |
Collapse
|
10
|
Zhou F, Zhang C, Guan Y, Chen Y, Lu Q, Jie L, Gao H, Du H, Zhang H, Liu Y, Wang X. Screening the expression characteristics of several miRNAs in G93A-SOD1
transgenic mouse: altered expression of miRNA-124 is associated with astrocyte differentiation by targeting Sox2 and Sox9. J Neurochem 2017; 145:51-67. [DOI: 10.1111/jnc.14229] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/18/2017] [Accepted: 09/23/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Fenghua Zhou
- Department of Pathology; Weifang Medical University; Weifang Shandong China
| | - Caixia Zhang
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Yingjun Guan
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Yanchun Chen
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
- Department of Neurosurgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
| | - Qiang Lu
- Department of Pathology; Weifang Medical University; Weifang Shandong China
| | - Linlin Jie
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Hailing Gao
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Hongmei Du
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Haoyun Zhang
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Yongxin Liu
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
| | - Xin Wang
- Department of Histology and Embryology; Weifang Medical University; Weifang Shandong China
- Department of Neurosurgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
| |
Collapse
|
11
|
Browne EC, Abbott BM. Recent progress towards an effective treatment of amyotrophic lateral sclerosis using the SOD1 mouse model in a preclinical setting. Eur J Med Chem 2016; 121:918-925. [PMID: 27012524 DOI: 10.1016/j.ejmech.2016.02.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 02/18/2016] [Accepted: 02/18/2016] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal and incurable neurodegenerative disorder. Motor neurone degeneration can be caused by genetic mutation but the exact etiology of the disease, particularly for sporadic illness, still remains unclear. Therapeutics which target known pathogenic mechanisms involved in ALS, such as protein aggregation, oxidative stress, apoptosis, inflammation, endoplasmic reticulum stress and mitochondria dysfunction, are currently being pursued in order to provide neuroprotection which may be able to slow down, or perhaps even halt, disease progression. This present review focuses on the compounds which have been recently evaluated using the SOD1 mouse model, the most widely used preclinical model for ALS research.
Collapse
Affiliation(s)
- Elisse C Browne
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Belinda M Abbott
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
12
|
Hill J, Cave J. Targeting the vasculature to improve neural progenitor transplant survival. Transl Neurosci 2015; 6:162-167. [PMID: 28123800 PMCID: PMC4936624 DOI: 10.1515/tnsci-2015-0016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/05/2015] [Indexed: 12/18/2022] Open
Abstract
Neural progenitor transplantation is a promising therapeutic option for several neurological diseases and injuries. In nearly all human clinical trials and animal models that have tested this strategy, the low survival rate of progenitors after engraftment remains a significant challenge to overcome. Developing methods to improve the survival rate will reduce the number of cells required for transplant and will likely enhance functional improvements produced by the procedure. Here we briefly review the close relationship between the blood vasculature and neural progenitors in both the embryo and adult nervous system. We also discuss previous studies that have explored the role of the vasculature and hypoxic pre-conditioning in neural transplants. From these studies, we suggest that hypoxic pre-conditioning of a progenitor pool containing both neural and endothelial cells will improve engrafted transplanted neuronal survival rates.
Collapse
Affiliation(s)
- Justin Hill
- Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Burke Rehabilitation Hospital, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Ave, New York, NY 10605, USA
| | - John Cave
- Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Ave, New York, NY 10605, USA
| |
Collapse
|
13
|
Li W, Fotinos A, Wu Q, Chen Y, Zhu Y, Baranov S, Tu Y, Zhou EW, Sinha B, Kristal BS, Wang X. N-acetyl-l-tryptophan delays disease onset and extends survival in an amyotrophic lateral sclerosis transgenic mouse model. Neurobiol Dis 2015; 80:93-103. [DOI: 10.1016/j.nbd.2015.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 04/25/2015] [Accepted: 05/08/2015] [Indexed: 12/14/2022] Open
|
14
|
Sirianni AC, Jiang J, Zeng J, Mao LL, Zhou S, Sugarbaker P, Zhang X, Li W, Friedlander RM, Wang X. N-acetyl-l
-tryptophan, but not N-acetyl-d
-tryptophan, rescues neuronal cell death in models of amyotrophic lateral sclerosis. J Neurochem 2015; 134:956-68. [DOI: 10.1111/jnc.13190] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/22/2015] [Accepted: 05/27/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Ana C. Sirianni
- Department of Neurosurgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
| | - Jiying Jiang
- Department of Neurosurgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
- Department of Anatomy; Weifang Medical University; Weifang Shandong China
| | - Jiang Zeng
- Institute of Analytical Chemistry for Life Science; School of Public Health; Nantong University; Nantong Jiangsu China
| | - Lilly L. Mao
- Aimcan Pharma Research & Technologies; Guelph Canada
| | - Shuanhu Zhou
- Department of Orthopedic Surgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
| | - Peter Sugarbaker
- Department of Neurosurgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
| | - Xinmu Zhang
- Department of Neurosurgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
| | - Wei Li
- Department of Neurosurgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
| | - Robert M. Friedlander
- Department of Neurosurgery; University of Pittsburgh Medical Center; Pittsburgh PA USA
| | - Xin Wang
- Department of Neurosurgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
| |
Collapse
|
15
|
Yacila G, Sari Y. Potential therapeutic drugs and methods for the treatment of amyotrophic lateral sclerosis. Curr Med Chem 2015; 21:3583-93. [PMID: 24934355 DOI: 10.2174/0929867321666140601162710] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 04/08/2014] [Accepted: 05/26/2014] [Indexed: 12/13/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder caused by damage of motoneurons leading to paralysis state and long term disability. Riluzole is currently the only FDA-approved drug for the treatment of ALS. The proposed mechanisms of ALS include glutamate excitotoxicity, oxidative stress, mitochondrial dysfunction, protein aggregation, SOD1 accumulations, and neuronal death. In this review, we discuss potential biomarkers for the identification of patients with ALS. We further emphasize potential therapy involving the uses of neurotrophic factors such as IGFI, GDNF, VEGF, ADNF-9, colivelin and angiogenin in the treatment of ALS. Moreover, we described several existing drugs such as talampanel, ceftriaxone, pramipexole, dexpramipexole and arimoclomol potential compounds for the treatment of ALS. Interestingly, the uses of stem cell therapy and immunotherapy are promising for the treatment of ALS.
Collapse
Affiliation(s)
| | - Y Sari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, Health Science Campus, 3000 Arlington Avenue, Toledo, OH 43614. USA.
| |
Collapse
|
16
|
Pronto-Laborinho AC, Pinto S, de Carvalho M. Roles of vascular endothelial growth factor in amyotrophic lateral sclerosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:947513. [PMID: 24987705 PMCID: PMC4022172 DOI: 10.1155/2014/947513] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/24/2014] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal devastating neurodegenerative disorder, involving progressive degeneration of motor neurons in spinal cord, brainstem, and motor cortex. Riluzole is the only drug approved in ALS but it only confers a modest improvement in survival. In spite of a high number of clinical trials no other drug has proved effectiveness. Recent studies support that vascular endothelial growth factor (VEGF), originally described as a key angiogenic factor, also plays a key role in the nervous system, including neurogenesis, neuronal survival, neuronal migration, and axon guidance. VEGF has been used in exploratory clinical studies with promising results in ALS and other neurological disorders. Although VEGF is a very promising compound, translating the basic science breakthroughs into clinical practice is the major challenge ahead. VEGF-B, presenting a single safety profile, protects motor neurons from degeneration in ALS animal models and, therefore, it will be particularly interesting to test its effects in ALS patients. In the present paper the authors make a brief description of the molecular properties of VEGF and its receptors and review its different features and therapeutic potential in the nervous system/neurodegenerative disease, particularly in ALS.
Collapse
Affiliation(s)
- Ana Catarina Pronto-Laborinho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Instituto de Medicina Molecular (IMM), Translational Clinical Physiology Unit, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Susana Pinto
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Instituto de Medicina Molecular (IMM), Translational Clinical Physiology Unit, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Mamede de Carvalho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Instituto de Medicina Molecular (IMM), Translational Clinical Physiology Unit, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Department of Neurosciences, Hospital Santa Maria, Centro Hospitalar Lisboa Norte, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| |
Collapse
|
17
|
Kobeleva X, Petri S. Barriers to novel therapeutics in amyotrophic lateral sclerosis. Neurodegener Dis Manag 2013. [DOI: 10.2217/nmt.13.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Amyotrophic lateral sclerosis is a devastating neurodegenerative condition primarily involving the motor system in the cerebral cortex, brain stem and spinal cord, but can, in later disease stages, also affect distinct extramotor brain regions. In this article, we discuss the prevalent barriers, including clinical and genetic variability of amyotrophic lateral sclerosis, frailty of the current mouse model and inadequateness of clinical trials, in the search for novel therapeutics. Approaches in terms of understanding the pathogenesis, and the search for biomarkers to initiate early or even presymptomatic treatment and monitor treatment effects are highlighted.
Collapse
Affiliation(s)
- Xenia Kobeleva
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
18
|
Pandya RS, Zhu H, Li W, Bowser R, Friedlander RM, Wang X. Therapeutic neuroprotective agents for amyotrophic lateral sclerosis. Cell Mol Life Sci 2013; 70:4729-45. [PMID: 23864030 PMCID: PMC4172456 DOI: 10.1007/s00018-013-1415-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 06/06/2013] [Accepted: 06/24/2013] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal chronic neurodegenerative disease whose hallmark is proteinaceous, ubiquitinated, cytoplasmic inclusions in motor neurons and surrounding cells. Multiple mechanisms proposed as responsible for ALS pathogenesis include dysfunction of protein degradation, glutamate excitotoxicity, mitochondrial dysfunction, apoptosis, oxidative stress, and inflammation. It is therefore essential to gain a better understanding of the underlying disease etiology and search for neuroprotective agents that might delay disease onset, slow progression, prolong survival, and ultimately reduce the burden of disease. Because riluzole, the only Food and Drug Administration (FDA)-approved treatment, prolongs the ALS patient's life by only 3 months, new therapeutic agents are urgently needed. In this review, we focus on studies of various small pharmacological compounds targeting the proposed pathogenic mechanisms of ALS and discuss their impact on disease progression.
Collapse
Affiliation(s)
- Rachna S. Pandya
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536 USA
| | - Wei Li
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Robert Bowser
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013 USA
| | - Robert M. Friedlander
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
19
|
Zhou F, Guan Y, Chen Y, Zhang C, Yu L, Gao H, Du H, Liu B, Wang X. miRNA-9 expression is upregulated in the spinal cord of G93A-SOD1 transgenic mice. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:1826-1838. [PMID: 24040447 PMCID: PMC3759489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 08/03/2013] [Indexed: 06/02/2023]
Abstract
The pathogenesis of amyotrophic lateral sclerosis (ALS) remains unclear. Accumulating evidence indicates that various miRNAs expressed in a spatially and temporally controlled manner in the nervous system have an important function in the development of neurodegenerative diseases. The present study aimed to determine the expression and cellular distribution of miRNA-9 in the spinal cord of G93A-SOD1 mutant mice at different time points (post-natal 95, 108 and 122 d). miRNA expression was evaluated by microarray analysis; differentially expressed miRNAs were validated by RT-qPCR. The cellular distribution of miRNA-9 was analyzed by in-situ hybridization. Microarray results indicated for the first time that various miRNAs were differentially expressed between the G93A-SOD1 mutant mice and the littermate control mice. miRNA-9 expression was upregulated at 95, 108, and 122 d as validated by microarray analysis, RT-qPCR, and ISH. ISH results also showed that the miRNA-9-positive cells mainly expressed in the cytoplasm were located in the dorsal horn and the ventral horn of the spinal cord. The majority of miRNA-9-positive cells were located in the ventral horn of the gray matter, the locus of neurodegeneration. These results indicated that the differential expression of miRNA-9 may have an important function in the pathogenesis of G93A-SOD1 transgenic mice.
Collapse
Affiliation(s)
- Fenghua Zhou
- Department of Pathology, Weifang Medical UniversityWeifang, Shandong, P. R. China
| | - Yingjun Guan
- Department of Histology and Embryology, Weifang Medical UniversityWeifang, Shandong, P. R. China
| | - Yanchun Chen
- Department of Histology and Embryology, Weifang Medical UniversityWeifang, Shandong, P. R. China
| | - Caixia Zhang
- Department of Histology and Embryology, Weifang Medical UniversityWeifang, Shandong, P. R. China
| | - Li Yu
- Department of Histology and Embryology, Weifang Medical UniversityWeifang, Shandong, P. R. China
| | - Hailing Gao
- Department of Histology and Embryology, Weifang Medical UniversityWeifang, Shandong, P. R. China
| | - Hongmei Du
- Department of Histology and Embryology, Weifang Medical UniversityWeifang, Shandong, P. R. China
| | - Bing Liu
- Department of Histology and Embryology, Weifang Medical UniversityWeifang, Shandong, P. R. China
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
20
|
Gordon P, Corcia P, Meininger V. New therapy options for amyotrophic lateral sclerosis. Expert Opin Pharmacother 2013; 14:1907-17. [PMID: 23855817 DOI: 10.1517/14656566.2013.819344] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease leading almost irrevocably to paralysis and death within 5 years after the first symptoms. Since the approval of riluzole, all other therapeutic trials have been negative, including many that followed hopeful preclinical and early clinical data. New approaches are needed to uncover effective treatments for this still-devastating disease. AREAS COVERED The review summarizes the current approaches to clinical drug development in ALS. It focuses on several new trials listed on PubMed Central or the National Institutes of Health online trial registry. New targets for therapeutic intervention in ALS include skeletal muscle, energetic metabolism and cell replacement. Two different approaches are directed at muscle: interventions that influence proteins near the neuromuscular junction such as Nogo-A; in contrast to drugs pointed toward disease physiology, therapies that directly increase strength. Other trials are evaluating nutritional interventions. Current cell therapy strategies utilize various types of stem cells to study disease pathophysiology, support neurons or surrounding cells through gene therapy or release of neurotrophic factors, or directly replace cells. The review includes a section on known genetic influences in ALS and future directions for the field. EXPERT OPINION These new interventions have important implications for the direction of ALS research. Investigators are focusing less on physiological mechanisms inside the neuron, a process that has proved unfruitful for nearly two decades, and more on concepts that have not been examined previously. These studies will surely add to the overall understanding of ALS. Future research will test ways to reduce gene expression in those with known mutations, as well as means to reduce the spread of aggregated protein.
Collapse
Affiliation(s)
- Paul Gordon
- Northern Navajo Medical Center, Department of Medicine , Shiprock, NM , USA
| | | | | |
Collapse
|
21
|
Abstract
OBJECTIVE Suicidal ideation and behavior have been associated with a variety of neurological illnesses. Studies are ongoing in combat veterans and other groups to examine possible mechanisms and pathways that account for such associations. METHOD This article provides a review of the literature on suicide ideation and suicidal behavior in patients with neurological illnesses including publications on veteran's health and military medicine. Studies of suicide attempts and deaths in people with neurological illnesses are also reviewed. RESULTS The studies summarized in this review indicate that there are important linkages between suicidal ideation and behavior and neurological conditions, including epilepsy, multiple sclerosis, and amyotrophic lateral sclerosis. CONCLUSION Additional studies are needed to further clarify why suicide ideation and suicidal behavior are associated with neurological diseases, in order to improve quality of life, alleviate patient distress, and prevent nonfatal and fatal suicide attempts in veteran and non-veteran populations.
Collapse
Affiliation(s)
- Steven S Coughlin
- Post-Deployment Health Epidemiology Program, Office of Public Health, Department of Veterans Affairs, Washington, DC, USA
| | - Leo Sher
- James J. Peters Veterans’ Affairs Medical Center, New York, USA
- Mount Sinai School of Medicine, New York, USA
| |
Collapse
|
22
|
Redox regulation of cysteine-dependent enzymes in neurodegeneration. Int J Cell Biol 2012; 2012:703164. [PMID: 22829832 PMCID: PMC3398591 DOI: 10.1155/2012/703164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/10/2012] [Indexed: 11/17/2022] Open
Abstract
Evidence of increased oxidative stress has been found in various neurodegenerative diseases and conditions. While it is unclear whether oxidative stress is a cause or effect, protein, lipid, and DNA have all been found to be susceptible to oxidant-induced modifications that alter their function. Results of clinical trials based on the oxidative-stress theory have been mixed, though data continues to indicate that prevention of high levels of oxidative stress is beneficial for health and increases longevity. Due to the highly reactive nature of the sulfhydryl group, the focus of this paper is on the impact of oxidative stress on cysteine-dependent enzymes and how oxidative stress may contribute to neurological dysfunction through this selected group of proteins.
Collapse
|