1
|
Li T, Wang A, Zhang X, Feng L, Du P, Gao Y, Ji X, Song H, Zhang C. Effect of age on the efficacy and safety of Panax notoginseng saponins in acute ischemic stroke: a prespecified secondary analysis of the PANDA study. Chin Med 2025; 20:51. [PMID: 40234970 PMCID: PMC11998382 DOI: 10.1186/s13020-025-01101-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/26/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND The therapeutic utility of Panax notoginseng saponins (Xuesaitong soft capsules) for patients with acute ischemic stroke (AIS) was previously demonstrated through the PANax notoginseng Saponins Treatment of aDults with ischemic stroke in ChinA (PANDA) trial, revealing significant gains in functional independence compared to placebo. However, the related variation of older age accepted as the predictors of poor outcome, in response to Panax notoginseng saponins remains unexplored. METHODS We conducted a prespecified analysis of the PANDA trial to evaluate the effect of age on the efficacy and safety of Xuesaitong soft capsules. A multivariable logistic and Cox regression analysis with an interaction term was used to determine whether age (< 65 years vs. ≥ 65 years) affected the treatment effect. The primary outcome of this study was functional independence at the 3-month follow-up, as indicated by a modified Rankin Scale score (mRS) ranging from 0 to 2. RESULTS Between July 1 th, 2018, and June 30 th, 2020, a total of 3072 patients were recruited from 67 medical centers in China. Of these, 2966 patients were incorporated into the intention-to-treat (ITT) analysis and subsequently categorized into two age-based subgroups: (1) 1788 patients (60.28%) aged less than 65 years and (2) 1178 patients (39.72%) aged 65 years or older. Age significantly influenced the proportion of AIS patients attaining functional independence within three months [aged ≥ 65 years, adjusted odds ratio (aOR): 3.15, 95% CI: 2.13-4.67, P < 0.0001; aged < 65 years, aOR: 1.84, 95% CI: 1.33-2.54, P = 0.0002; P for interaction = 0.027]. Notably, a significant interaction was detected between age categories and treatment, with a greater likelihood of achieving functional independence among AIS patients aged ≥ 65 years. Regarding the primary safety outcome, which measured the rate of serious adverse events (SAEs) at 3 months, no significant difference was detected between the treatment and placebo groups across both age categories (aged ≥ 65 years, aOR: 0.32, 95% CI: 0.06-1.69, P = 0.181; aged < 65 years, aOR: 1.76, 95% CI: 0.41-7.47, P = 0.444; P for interaction = 0.132). CONCLUSIONS This prespecified secondary analysis suggests that AIS patients can potentially benefit from Xuesaitong treatment in achieving functional independence, irrespective of age. Furthermore, older individuals may experience more substantial clinical benefits from Xuesaitong soft capsules for AIS.
Collapse
Affiliation(s)
- Tingting Li
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- National Center for Integrative Medicine; Department of Proctology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Anxin Wang
- Department of Neurology, Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xiaoli Zhang
- Department of Neurology, Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Luda Feng
- Department of Nephrology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Peipei Du
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Ying Gao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Haiqing Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chi Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
2
|
Xie XD, Dong SS, Liu RJ, Shi LL, Zhu T. Mechanism of Efferocytosis in Determining Ischaemic Stroke Resolution-Diving into Microglia/Macrophage Functions and Therapeutic Modality. Mol Neurobiol 2024; 61:7583-7602. [PMID: 38409642 DOI: 10.1007/s12035-024-04060-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/17/2024] [Indexed: 02/28/2024]
Abstract
After ischaemic cerebral vascular injury, efferocytosis-a process known as the efficient clearance of apoptotic cells (ACs) by various phagocytes in both physiological and pathological states-is crucial for maintaining central nervous system (CNS) homeostasis and regaining prognosis. The mechanisms of efferocytosis in ischaemic stroke and its influence on preventing inflammation progression from secondary injury were still not fully understood, despite the fact that the fundamental process of efferocytosis has been described in a series of phases, including AC recognition, phagocyte engulfment, and subsequent degradation. The genetic reprogramming of macrophages and brain-resident microglia after an ischaemic stroke has been equated by some researchers to that of the peripheral blood and brain. Based on previous studies, some molecules, such as signal transducer and activator of transcription 6 (STAT6), peroxisome proliferator-activated receptor γ (PPARG), CD300A, and sigma non-opioid intracellular receptor 1 (SIGMAR1), were discovered to be largely associated with aspects of apoptotic cell elimination and accompanying neuroinflammation, such as inflammatory cytokine release, phenotype transformation, and suppressing of antigen presentation. Exacerbated stroke outcomes are brought on by defective efferocytosis and improper modulation of pertinent signalling pathways in blood-borne macrophages and brain microglia, which also results in subsequent tissue inflammatory damage. This review focuses on recent researches which contain a number of recently discovered mechanisms, such as studies on the relationship between benign efferocytosis and the regulation of inflammation in ischaemic stroke, the roles of some risk factors in disease progression, and current immune approaches that aim to promote efferocytosis to treat some autoimmune diseases. Understanding these pathways provides insight into novel pathophysiological processes and fresh characteristics, which can be used to build cerebral ischaemia targeting techniques.
Collapse
Affiliation(s)
- Xiao-Di Xie
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
| | - Shan-Shan Dong
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ru-Juan Liu
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liu-Liu Shi
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ting Zhu
- Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China.
| |
Collapse
|
3
|
Zhao M, Qiao Y, Weiss A, Zhao W. Neuroprotective strategies in acute ischemic stroke: A narrative review of recent advances and clinical outcomes. Brain Circ 2024; 10:296-302. [PMID: 40012592 PMCID: PMC11850939 DOI: 10.4103/bc.bc_165_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/21/2024] [Accepted: 12/11/2024] [Indexed: 02/28/2025] Open
Abstract
Reperfusion therapy, which substantially promotes the vessel recanalization rate and improves clinical outcomes, remains the most effective treatment of acute ischemic stroke (AIS). However, a substantial number of patients are either unsuitable for recanalization therapy or experience limited recovery postreperfusion. There is growing recognition that adjunctive neuroprotective therapies may further improve the outcomes in AIS patients by protecting brain tissue during ischemia. Recent advancements in neuroprotective approaches, including pharmacologic agents such as nerinetide edaravone, and uric acid, as well as nonpharmacological interventions, such as remote ischemic conditioning and normobaric hyperoxia, offer promising potentials in stroke care. This review provides an overview of the current neuroprotective therapies, examines recent clinical evidence, and discusses the strengths and weaknesses of certain clinical trials aimed at cerebral protection.
Collapse
Affiliation(s)
- Min Zhao
- Department of Neurology, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Yue Qiao
- Department of Neurology, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Alexander Weiss
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Wenbo Zhao
- Department of Neurology, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| |
Collapse
|
4
|
Zhang Q, Liang Z, Wang X, Zhang S, Yang Z. Exploring the potential mechanisms of Danshen against COVID-19 via network pharmacology analysis and molecular docking. Sci Rep 2024; 14:12780. [PMID: 38834599 DOI: 10.1038/s41598-024-62363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/16/2024] [Indexed: 06/06/2024] Open
Abstract
Danshen, a prominent herb in traditional Chinese medicine (TCM), is known for its potential to enhance physiological functions such as blood circulation, immune response, and resolve blood stasis. Despite the effectiveness of COVID-19 vaccination efforts, some individuals still face severe complications post-infection, including pulmonary fibrosis, myocarditis arrhythmias and stroke. This study employs a network pharmacology and molecular docking approach to investigate the potential mechanisms underlying the therapeutic effects of candidate components and targets from Danshen in the treatment of complications in COVID-19. Candidate components and targets from Danshen were extracted from the TCMSP Database, while COVID-19-related targets were obtained from Genecards. Venn diagram analysis identified common targets. A Protein-Protein interaction (PPI) network and gene enrichment analysis elucidated potential therapeutic mechanisms. Molecular docking evaluated interactions between core targets and candidate components, followed by molecular dynamics simulations to assess stability. We identified 59 potential candidate components and 123 targets in Danshen for COVID-19 treatment. PPI analysis revealed 12 core targets, and gene enrichment analysis highlighted modulated pathways. Molecular docking showed favorable interactions, with molecular dynamics simulations indicating high stability of key complexes. Receiver operating characteristic (ROC) curves validated the docking protocol. Our study unveils candidate compounds, core targets, and molecular mechanisms of Danshen in COVID-19 treatment. These findings provide a scientific foundation for further research and potential development of therapeutic drugs.
Collapse
Affiliation(s)
- Qiang Zhang
- College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zongsuo Liang
- College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaoqing Wang
- School of Art and Design, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Siyu Zhang
- Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd, Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing, 312075, China
| | - Zongqi Yang
- College of Life Sciences, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
5
|
Xia J, Chen C, Sun Y, Li S, Li Y, Cheng BR, Pang Y, Li Y, Li D, Lin Q. Panax quinquefolius saponins and panax notoginseng saponins attenuate myocardial hypoxia-reoxygenation injury by reducing excessive mitophagy. Cell Biochem Biophys 2024; 82:1179-1191. [PMID: 38713401 DOI: 10.1007/s12013-024-01267-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2024] [Indexed: 05/08/2024]
Abstract
OBJECTIVE Panax quinquefolius saponins (PQS) and Panax notoginseng saponins (PNS) are key bioactive compounds in Panax quinquefolius L. and Panax notoginseng, commonly used in the treatment of clinical ischemic heart disease. However, their potential in mitigating myocardial ischemia-reperfusion injury remains uncertain. This study aims to evaluate the protective effects of combined PQS and PNS administration in myocardial hypoxia/reoxygenation (H/R) injury and explore the underlying mechanisms. METHODS To investigate the involvement of HIF-1α/BNIP3 mitophagy pathway in the myocardial protection conferred by PNS and PQS, we employed small interfering BNIP3 (siBNIP3) to silence key proteins of the pathway. H9C2 cells were categorized into four groups: control, H/R, H/R + PQS + PNS, and H/R + PQS + PNS+siBNIP3. Cell viability was assessed by Cell Counting Kit-8, apoptosis rates determined via flow cytometry, mitochondrial membrane potential assessed with the JC-1 fluorescent probes, intracellular reactive oxygen species detected with 2',7'-dichlorodihydrofluorescein diacetate, mitochondrial superoxide production quantified with MitoSOX Red, and autophagic flux monitored with mRFP-GFP-LC3 adenoviral vectors. Autophagosomes and their ultrastructure were visualized through transmission electron microscopy. Moreover, mRNA and protein levels were analyzed via real-time PCR and Western blotting. RESULTS PQS + PNS administration significantly increased cell viability, reduced apoptosis, lowered reactive oxygen species levels and mitochondrial superoxide production, mitigated mitochondrial dysfunction, and induced autophagic flux. Notably, siBNIP3 intervention did not counteract the cardioprotective effect of PQS + PNS. The PQS + PNS group showed downregulated mRNA expression of HIF-1α and BNIP3, along with reduced HIF-1α protein expression compared to the H/R group. CONCLUSIONS PQS + PNS protects against myocardial H/R injury, potentially by downregulating mitophagy through the HIF-1α/BNIP3 pathway.
Collapse
Affiliation(s)
- Junyan Xia
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, 100700, Beijing, China
| | - Cong Chen
- Department of Cardiology, Guanganmen Hospital, China Academy of Chinese Medical Sciences, 100053, Beijing, China
| | - Yanan Sun
- Experimental Research Center, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Sinai Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, 100010, Beijing, China
| | - Yuxuan Li
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, 100078, Beijing, China
| | - Bai-Ru Cheng
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, 100700, Beijing, China
| | - Yanting Pang
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, 100700, Beijing, China
| | - Yan Li
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, 100078, Beijing, China
| | - Dong Li
- Department of Cardiology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, 100078, Beijing, China.
| | - Qian Lin
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, 100700, Beijing, China.
| |
Collapse
|
6
|
Tang J, Song T, Kuang M, Liu H. Analysis of online prescription patterns in Chinese patients with sequelae of cerebral infarction: a real-world study. Sci Rep 2024; 14:11962. [PMID: 38796623 PMCID: PMC11127947 DOI: 10.1038/s41598-024-62923-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/22/2024] [Indexed: 05/28/2024] Open
Abstract
Cerebral infarction (CI) is a common cerebrovascular disease worldwide, and the burden caused by the sequelae of CI has increased significantly. However, current treatment guidelines lack standardized recommendations for pharmacotherapy of sequelae of CI. This retrospective study collected and analyzed 1.98 million prescriptions concerning sequelae of CI from patients admitted to Zhiyun Health Internet Hospital in 2022. The mean age of patients was 66.2 ± 11.4 years, and 52.40% were male. 79.73% had one or more comorbidities. For treatment, the prescriptions of 1-, 2- and ≥ 3-drug accounted for 64.55%, 23.77% and 11.68% respectively. Chinese patent medicine (CPM) prescriptions, western medicine (WM) prescriptions, and CPM and WM combined (CPM + WM) prescriptions accounted for 53.81%, 27.33%, and 18.86% respectively. In CPM prescriptions, the most frequently prescribed medications were Salvia miltiorrhiza (34.81%), Ginkgo biloba (24.96%), Panax notoginseng (20.67%), Gastrodia (7.15%) and Ligusticum Wallichii (4.90%). For WM prescriptions, the most commonly prescribed agents were anti-hypertensive (32.82%), anti-thrombotic (16.06%), vasodilator (15.70%), anti-dementia (10.88%), and lipid-lowering (9.58%) drugs. Among CPM + WM prescriptions, 72.61% had CPM/WM = 1, 21.20% had CPM/WM < 1, and 6.19% had CPM/WM > 1. This research utilized real-world data extracted from internet hospitals in China to present valuable evidence of online prescription patterns among patients experiencing sequelae of CI.
Collapse
Affiliation(s)
- Jia Tang
- Hangzhou Kang Ming Information Technology Co., Ltd, 401 Building 4, Haichuang Park 998 Wenyi West Road, Yuhang District, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Tiantian Song
- Hangzhou Kang Ming Information Technology Co., Ltd, 401 Building 4, Haichuang Park 998 Wenyi West Road, Yuhang District, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Ming Kuang
- Hangzhou Kang Ming Information Technology Co., Ltd, 401 Building 4, Haichuang Park 998 Wenyi West Road, Yuhang District, Hangzhou, 310000, Zhejiang, People's Republic of China
| | - Hongying Liu
- Hangzhou Kang Ming Information Technology Co., Ltd, 401 Building 4, Haichuang Park 998 Wenyi West Road, Yuhang District, Hangzhou, 310000, Zhejiang, People's Republic of China.
| |
Collapse
|
7
|
Zheng Y, Hu Y, Yan F, Wang R, Tao Z, Fan J, Han Z, Zhao H, Liu P, Zhuang W, Luo Y. Dihydroergotamine protects against ischemic stroke by modulating microglial/macrophage polarization and inhibiting inflammation in mice. Neurol Res 2024; 46:367-377. [PMID: 38468466 DOI: 10.1080/01616412.2024.2328481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/03/2024] [Indexed: 03/13/2024]
Abstract
OBJECTIVES The search for drugs that can protect the brain tissue and reduce nerve damage in acute ischemic stroke has emerged as a research hotspot. We investigated the potential protective effects and mechanisms of action of dihydroergotamine against ischemic stroke. METHODS C57BL/6 mice were subjected to middle cerebral artery occlusion (MCAO), and dihydroergotamine at a dose of 10 mg/kg/day was intraperitoneally injected for 14 days. Adhesive removal and beam walking tests were conducted 1, 3, 5, 7, 10, and 14 days after MCAO surgery. Thereafter, the mechanism by which dihydroergotamine regulates microglia/macrophage polarization and inflammation and imparts ischemic stroke protection was studied using enzyme-linked immunosorbent assay, immunofluorescence staining, and western blotting. RESULTS From the perspective of a drug repurposing strategy, dihydroergotamine was found to inhibit oxygen-glucose deprivation damage to neurons, significantly improve cell survival rate, and likely exert a protective effect on ischemic brain injury. Dihydroergotamine significantly improved neural function scores and survival rates and reduced brain injury severity in mice. Furthermore, dihydroergotamine manifests its protective effect on ischemic brain injury by reducing the expression of TNF-α and IL-1β in mouse ischemic brain tissue, inhibiting the polarization of microglia/macrophage toward the M1 phenotype and promoting polarization toward the M2 phenotype. CONCLUSION This study is the first to demonstrate the protective effect of dihydroergotamine, a first-line treatment for migraine, against ischemic nerve injury in vitro and in vivo.
Collapse
Affiliation(s)
- Yangmin Zheng
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Yue Hu
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Feng Yan
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Rongliang Wang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Zhen Tao
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Junfen Fan
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Ziping Han
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Haiping Zhao
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Ping Liu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wei Zhuang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
8
|
Dordoe C, Huang W, Bwalya C, Wang X, Shen B, Wang H, Wang J, Ye S, Wang P, Xiaoyan B, Li X, Lin L. The role of microglial activation on ischemic stroke: Modulation by fibroblast growth factors. Cytokine Growth Factor Rev 2023; 74:122-133. [PMID: 37573252 DOI: 10.1016/j.cytogfr.2023.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/14/2023]
Abstract
Stroke is one of the devastating clinical conditions that causes death and permanent disability. Its occurrence causes the reduction of oxygen and glucose supply, resulting in events such as inflammatory response, oxidative stress, and apoptosis in the brain. Microglia are brain-resident immune cells in the central nervous system (CNS) that exert diverse roles and respond to pathological process after an ischemic insult. The discovery of fibroblast growth factors (FGFs) in mammals, resulted to the findings that they can treat experimental models of stroke in animals effectively. FGFs function as homeostatic factors that control cells and hormones involved in metabolism, and they also regulate the secretion of proinflammatory (M1) and anti-inflammatory (M2) cytokines after stroke. In this review, we outline current evidence of microglia activation in experimental models of stroke focusing on its ability to exacerbate damage or repair tissue. Also, our review sheds light on the pharmacological actions of FGFs on multiple targets to regulate microglial modulation and highlighted their theoretical molecular mechanisms to provide possible therapeutic targets, as well as their limitations for the treatment of stroke. DATA AVAILABILITY: Not applicable.
Collapse
Affiliation(s)
- Confidence Dordoe
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenting Huang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Canol Bwalya
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xue Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bixin Shen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hao Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jing Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shasha Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Peng Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bao Xiaoyan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, Zhejiang 325035, China.
| | - Li Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
9
|
Zheng Y, Zhao F, Hu Y, Yan F, Tian Y, Wang R, Huang Y, Zhong L, Luo Y, Ma Q. LC-MS/MS metabolomic profiling of the protective butylphthalide effect in cerebral ischemia/reperfusion mice. J Stroke Cerebrovasc Dis 2023; 32:107347. [PMID: 37716103 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/23/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023] Open
Abstract
OBJECTIVES This study was designed to investigate metabolic biomarker changes and related metabolic pathways of Butylphthalide (NBP) on cerebral ischemia/reperfusion. METHODS In this study, a mouse cerebral ischemia/reperfusion (I/R) model was prepared using the middle cerebral artery occlusion method, and neurobehavioral score and 2, 3, 5-triphenyltetrazolium chloride (TTC) staining experiments were used to confirm the obvious NBP anti-cerebral ischemia effect. The protective effect of NBP in the mouse cerebral I/R model and its metabolic pathway and mechanism were investigated using mouse blood samples. RESULTS The metabolic profiles of mice in the I/R+NBP, I/R, and sham groups were significantly different. Under the condition that I/R vs. sham was downregulated and I/R + NBP vs. I/R was upregulated, 88 differential metabolites, including estradiol, ubiquinone-2, 2-oxoarginine, and L-histidine trimethylbetaine, were screened and identified. The related metabolic pathways involved arginine and proline metabolism, oxidative phosphorylation, ubiquitin and other terpenoid-quinone biosynthesis, and estrogen signaling. CONCLUSIONS Metabolomics was used to elucidate the NBP mechanism in cerebral ischemia treatment in mice, revealing synergistic NBP pharmacological characteristics with multiple targets.
Collapse
Affiliation(s)
- Yangmin Zheng
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Fangfang Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yue Hu
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Feng Yan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Yue Tian
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Rongliang Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Yuyou Huang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Liyuan Zhong
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.
| | - Qingfeng Ma
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
10
|
Shi X, Feng L, Li Y, Qin M, Li T, Cheng Z, Zhang X, Zhou C, Cheng S, Zhang C, Gao Y. Efficacy and safety of Panax notoginseng saponins (Xuesaitong) for patients with acute ischemic stroke: a systematic review and meta-analysis of randomized controlled trials. Front Pharmacol 2023; 14:1280559. [PMID: 37908976 PMCID: PMC10614024 DOI: 10.3389/fphar.2023.1280559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023] Open
Abstract
Background: Stroke is the major cause of mortality and permanent disability and is associated with an astonishing economic burden worldwide. In the past few decades, accumulated evidence has indicated that Xuesaitong (XST) has therapeutic benefits in cases of acute ischemic stroke (AIS). Our study aimed to provide the best current body of evidence of the efficacy and safety of XST for patients with AIS. Methods: This is a systematic review and meta-analysis of randomized controlled trials (RCTs). We searched eight electronic databases from inception to 17 July 2023 for relevant RCTs. The investigators independently screened trials, extracted data, and assessed the risk of bias. A meta-analysis was conducted using RevMan 5.3 and STATA 16.0 software. Results: In total, 46 RCTs involving 7,957 patients were included. The results showed that XST improved the long-term functional outcomes with lower modified Rankin Scale (mRS) scores (MD = -0.67; 95% CI [-0.92 to -0.42]; p < 0.00001) and a higher proportion of functional independence (mRS ≤2) (RR = 1.08; 95% CI [1.05 to 1.12]; p < 0.00001). Low-quality evidence indicated that XST improved the activities of daily living (MD = 10.17; 95% CI [7.28 to 13.06]; p < 0.00001), improved the neurological impairment (MD = -3.39; 95% CI [-3.94 to -2.84]; p < 0.00001), and enhanced the total efficiency rate (RR = 1.19; 95% CI [1.15 to 1.23]; p < 0.00001). No significant difference was found in the all-cause mortality or incidence of adverse events between the XST and control groups. The certainty of evidence was estimated as moderate to very low. Conclusion: Presently, the administration of XST within 14 days of AIS is associated with favorable long-term functional outcomes. In addition, XST can improve activities of daily living, alleviate neurological deficits, and has shown good tolerability. However, the current evidence is too weak, and the confidence of evidence synthesis was restricted by the high risk of bias. Given the insufficient evidence, appropriately sized and powered RCTs investigating the efficacy and safety of XST for patients with AIS are warranted. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=446208, CRD42023446208.
Collapse
Affiliation(s)
- Xinyi Shi
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Luda Feng
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yixuan Li
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mingzhen Qin
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Li
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Zixin Cheng
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xuebin Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Congren Zhou
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Sisong Cheng
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chi Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Gao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Wang H, Li J, Zhang H, Wang M, Xiao L, Wang Y, Cheng Q. Regulation of microglia polarization after cerebral ischemia. Front Cell Neurosci 2023; 17:1182621. [PMID: 37361996 PMCID: PMC10285223 DOI: 10.3389/fncel.2023.1182621] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Stroke ranks second as a leading cause of death and permanent disability globally. Microglia, innate immune cells in the brain, respond rapidly to ischemic injury, triggering a robust and persistent neuroinflammatory reaction throughout the disease's progression. Neuroinflammation plays a critical role in the mechanism of secondary injury in ischemic stroke and is a significant controllable factor. Microglia activation takes on two general phenotypes: the pro-inflammatory M1 type and the anti-inflammatory M2 type, although the reality is more complex. The regulation of microglia phenotype is crucial to controlling the neuroinflammatory response. This review summarized the key molecules and mechanisms of microglia polarization, function, and phenotypic transformation following cerebral ischemia, with a focus on the influence of autophagy on microglia polarization. The goal is to provide a reference for the development of new targets for the treatment for ischemic stroke treatment based on the regulation of microglia polarization.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Jingjing Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Han Zhang
- School of Medicine, Nantong University, Nantong, China
| | - Mengyao Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Lifang Xiao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Yitong Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Qiong Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| |
Collapse
|
12
|
Qiao C, Liu Z, Qie S. The Implications of Microglial Regulation in Neuroplasticity-Dependent Stroke Recovery. Biomolecules 2023; 13:biom13030571. [PMID: 36979506 PMCID: PMC10046452 DOI: 10.3390/biom13030571] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Stroke causes varying degrees of neurological deficits, leading to corresponding dysfunctions. There are different therapeutic principles for each stage of pathological development. Neuroprotection is the main treatment in the acute phase, and functional recovery becomes primary in the subacute and chronic phases. Neuroplasticity is considered the basis of functional restoration and neurological rehabilitation after stroke, including the remodeling of dendrites and dendritic spines, axonal sprouting, myelin regeneration, synapse shaping, and neurogenesis. Spatiotemporal development affects the spontaneous rewiring of neural circuits and brain networks. Microglia are resident immune cells in the brain that contribute to homeostasis under physiological conditions. Microglia are activated immediately after stroke, and phenotypic polarization changes and phagocytic function are crucial for regulating focal and global brain inflammation and neurological recovery. We have previously shown that the development of neuroplasticity is spatiotemporally consistent with microglial activation, suggesting that microglia may have a profound impact on neuroplasticity after stroke and may be a key therapeutic target for post-stroke rehabilitation. In this review, we explore the impact of neuroplasticity on post-stroke restoration as well as the functions and mechanisms of microglial activation, polarization, and phagocytosis. This is followed by a summary of microglia-targeted rehabilitative interventions that influence neuroplasticity and promote stroke recovery.
Collapse
Affiliation(s)
- Chenye Qiao
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Shuyan Qie
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| |
Collapse
|
13
|
Hao DL, Li JM, Xie R, Huo HR, Xiong XJ, Sui F, Wang PQ. The role of traditional herbal medicine for ischemic stroke: from bench to clinic-A critical review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154609. [PMID: 36610141 DOI: 10.1016/j.phymed.2022.154609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/29/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ischemic stroke (IS) is a leading cause of death and severe long-term disability worldwide. Over the past few decades, considerable progress has been made in anti-ischemic therapies. However, IS remains a tremendous challenge, with favourable clinical outcomes being generally difficult to achieve from candidate drugs in preclinical phase testing. Traditional herbal medicine (THM) has been used to treat stroke for over 2,000 years in China. In modern times, THM as an alternative and complementary therapy have been prescribed in other Asian countries and have gained increasing attention for their therapeutic effects. These millennia of clinical experience allow THM to be a promising avenue for improving clinical efficacy and accelerating drug discovery. PURPOSE To summarise the clinical evidence and potential mechanisms of THMs in IS. METHODS A comprehensive literature search was conducted in seven electronic databases, including PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, the Chinese National Knowledge Infrastructure, the VIP Information Database, the Chinese Biomedical Literature Database, and the Wanfang Database, from inception to 17 June 2022 to examine the efficacy and safety of THM for IS, and to investigate experimental studies regarding potential mechanisms. RESULTS THM is widely prescribed for IS alone or as adjuvant therapy. In clinical trials, THM is generally administered within 72 h of stroke onset and are continuously prescribed for over 3 months. Compared with Western medicine (WM), THM combined with routine WM can significantly improve neurological function defect scores, promote clinical total effective rate, and accelerate the recovery time of stroke with fewer adverse effects (AEs). These effects can be attributed to multiple mechanisms, mainly anti-inflammation, antioxidative stress, anti-apoptosis, brain blood barrier (BBB) modulation, inhibition of platelet activation and thrombus formation, and promotion of neurogenesis and angiogenesis. CONCLUSIONS THM may be a promising candidate for IS management to guide clinical applications and as a reference for drug development.
Collapse
Affiliation(s)
- Dan-Li Hao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jia-Meng Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ran Xie
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hai-Ru Huo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xing-Jiang Xiong
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Peng-Qian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
14
|
Zhu T, Wan Q. Pharmacological properties and mechanisms of Notoginsenoside R1 in ischemia-reperfusion injury. Chin J Traumatol 2023; 26:20-26. [PMID: 35922249 PMCID: PMC9912185 DOI: 10.1016/j.cjtee.2022.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/25/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Panax notoginseng is an ancient Chinese medicinal plant that has great clinical value in regulating cardiovascular disease in China. As a single component of panax notoginosides, notoginsenoside R1 (NGR1) belongs to the panaxatriol group. Many reports have demonstrated that NGR1 exerts multiple pharmacological effects in ischemic stroke, myocardial infarction, acute renal injury, and intestinal injury. Here, we outline the available reports on the pharmacological effects of NGR1 in ischemia-reperfusion (I/R) injury. We also discuss the chemistry, composition and molecular mechanism underlying the anti-I/R injury effects of NGR1. NGR1 had significant effects on reducing cerebral infarct size and neurological deficits in cerebral I/R injury, ameliorating the impaired mitochondrial morphology in myocardial I/R injury, decreasing kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin in renal I/R injury and attenuating jejunal mucosal epithelium injury in intestinal I/R injury. The various organ anti-I/R injury effects of NGR1 are mainly through the suppression of oxidative stress, apoptosis, inflammation, endoplasmic reticulum stress and promotion of angiogenesis and neurogenesis. These findings provide a reference basis for future research of NGR1 on I/R injury.
Collapse
Affiliation(s)
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China.
| |
Collapse
|
15
|
Zheng Y, Hu Y, Han Z, Yan F, Zhang S, Yang Z, Zhao F, Li L, Fan J, Wang R, Luo Y. Lomitapide ameliorates middle cerebral artery occlusion-induced cerebral ischemia/reperfusion injury by promoting neuronal autophagy and inhibiting microglial migration. CNS Neurosci Ther 2022; 28:2183-2194. [PMID: 36052650 PMCID: PMC9627359 DOI: 10.1111/cns.13961] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS Stroke has a high incidence and is a disabling condition that can lead to severe cognitive, motor, and sensory dysfunction. In this study, we employed a drug repurposing strategy to investigate the neuroprotective effect of lomitapide on focal ischemic brain injury and explore its potential mechanism of action. METHODS Experimental cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in adult male C57BL/6 mice and simulated by oxygen-glucose deprivation in N2a-BV2 cells in co-cultivation. RESULTS Lomitapide significantly increased the survival rate, reduced the neuronal tissue loss, and improved the neurological function after MCAO. Furthermore, lomitapide could increase the expression of LC3-II, reduce the expression of P62 and LAMP2, promote autophagic flux, and inhibit apoptosis by increasing and inhibiting the expression of the apoptosis-associated proteins Bcl-2 and Bax, respectively. In addition, lomitapide inhibited the migration of pro-inflammatory microglia. CONCLUSION Lomitapide is a lipid-lowering drug, and this is the first study to explore its protective effect on ischemic nerve injury in vitro and in vivo. Our results suggest that lomitapide can be repositioned as a potential therapeutic drug for the treatment of stroke.
Collapse
Affiliation(s)
- Yangmin Zheng
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Yue Hu
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Ziping Han
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Feng Yan
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Sijia Zhang
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Zhenhong Yang
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Fangfang Zhao
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Lingzhi Li
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Junfen Fan
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Rongliang Wang
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| |
Collapse
|
16
|
Wicks EE, Ran KR, Kim JE, Xu R, Lee RP, Jackson CM. The Translational Potential of Microglia and Monocyte-Derived Macrophages in Ischemic Stroke. Front Immunol 2022; 13:897022. [PMID: 35795678 PMCID: PMC9251541 DOI: 10.3389/fimmu.2022.897022] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The immune response to ischemic stroke is an area of study that is at the forefront of stroke research and presents promising new avenues for treatment development. Upon cerebral vessel occlusion, the innate immune system is activated by danger-associated molecular signals from stressed and dying neurons. Microglia, an immune cell population within the central nervous system which phagocytose cell debris and modulate the immune response via cytokine signaling, are the first cell population to become activated. Soon after, monocytes arrive from the peripheral immune system, differentiate into macrophages, and further aid in the immune response. Upon activation, both microglia and monocyte-derived macrophages are capable of polarizing into phenotypes which can either promote or attenuate the inflammatory response. Phenotypes which promote the inflammatory response are hypothesized to increase neuronal damage and impair recovery of neuronal function during the later phases of ischemic stroke. Therefore, modulating neuroimmune cells to adopt an anti-inflammatory response post ischemic stroke is an area of current research interest and potential treatment development. In this review, we outline the biology of microglia and monocyte-derived macrophages, further explain their roles in the acute, subacute, and chronic stages of ischemic stroke, and highlight current treatment development efforts which target these cells in the context of ischemic stroke.
Collapse
|
17
|
Zhang L, Zhou H, Wang S, Guan Y, Zhang C, Fang D. Changes in microglia during drug treatment of stroke. IBRAIN 2022; 8:227-240. [PMID: 37786889 PMCID: PMC10528798 DOI: 10.1002/ibra.12037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/07/2022] [Accepted: 04/20/2022] [Indexed: 10/04/2023]
Abstract
Microglia are the main immune cells in the brain and the first defense barrier of the nervous system. Microglia play a complex role in the process of stroke. A growing number of studies focus on the mechanism of action of drugs functions and how to regulate microglia. Therefore, we talk about the pathophysiological mechanisms of stroke and elaborate on the microglia signaling pathways of drug action in stroke models and how these drugs play a role in stroke treatment in this review. Understanding how drugs modulate proinflammatory and anti-inflammatory responses of microglia may be critical to implementing therapeutic strategies using immune interventions in stroke.
Collapse
Affiliation(s)
- Ling‐Jing Zhang
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouChina
| | - Hong‐Su Zhou
- Department of AnesthesiaGraduate School of Zunyi Medical UniversityZunyiGuizhouChina
| | - Shi‐Ya Wang
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouChina
| | - Yi‐Huan Guan
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouChina
| | - Chao Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - De‐Rong Fang
- Department of Family PlanningAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
18
|
Li G, Xie H, Cao X, Ma C, Li Y, Chen L. Ginsenoside Rg1 exerts anti‑apoptotic effects on non‑alcoholic fatty liver cells by downregulating the expression of SGPL1. Mol Med Rep 2022; 25:178. [PMID: 35322862 PMCID: PMC8972265 DOI: 10.3892/mmr.2022.12694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/28/2022] [Indexed: 11/05/2022] Open
Abstract
Non‑alcoholic fatty liver disease (NAFLD) has a high incidence, and can lead to liver cirrhosis and even hepatocellular carcinoma in severe cases. To the best of our knowledge, there is currently no safe and effective treatment for the management of this disease. Ginsenoside Rg1 (Rg1) is an active monomer derived from ginseng and notoginseng. In the present study, HHL‑5 hepatocytes were used to establish an in vitro cell model of NAFLD by medium‑ and long‑chain fat emulsion treatment, and the effects of Rg1 on adipose accumulation, apoptosis and the expression levels of apoptosis‑related proteins in HHL‑5 hepatocytes were examined. The results demonstrated that Rg1 inhibited the accumulation of fat in HHL‑5 cells, while inhibiting apoptosis, and Rg1 downregulated the expression levels of the pro‑apoptotic protein Bax and upregulated the expression levels of the anti‑apoptotic protein Bcl‑2, indicating that Rg1 could promote the stability or integrity of mitochondria and exert an anti‑apoptotic effect by regulating Bcl‑2 family proteins. In addition, Rg1 markedly downregulated the expression levels of sphingosine‑1‑phosphate lyase 1 (SGPL1), a key enzyme in the sphingosine signaling pathway, in HHL‑5 cells with steatosis, and increased the expression levels of the downstream pro‑survival signals phosphorylated (p‑)Akt and p‑Erk1/2. Furthermore, overexpression of SGPL1 abolished the anti‑apoptotic effect of Rg1 on SGPL1‑overexpressing HHL‑5 cells with steatosis, and downregulated the expression levels of pro‑survival proteins, such as Bcl‑2, p‑Akt and p‑Erk1/2, whereas the expression levels of pro‑apoptotic Bax were markedly increased. In conclusion, although there are some reports regarding the protective effect of Rg1 on fatty liver cells, to the best of our knowledge, the present study is the first to report that Rg1 may exert an anti‑apoptotic effect on fatty liver cells by regulating SGPL1 in the sphingosine signaling pathway. Rg1 is the main component of the prescription drug Xuesaitong in China; therefore, the findings of the present study may provide a theoretical molecular basis for the use of Rg1 or Xuesaitong in the treatment of patients with NAFLD.
Collapse
Affiliation(s)
- Guiming Li
- Department of Geriatrics, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650100, P.R. China
| | - Hongqing Xie
- Department of Geriatrics, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650100, P.R. China
| | - Xiaodie Cao
- Department of Pathophysiology, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Chong Ma
- Department of Pathophysiology, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Yan Li
- Department of Geriatrics, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650100, P.R. China
| | - Li Chen
- Department of Geriatrics, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650100, P.R. China
| |
Collapse
|
19
|
Li Y, Meng L, Li B, Huang D, Huang X, Lin C, Li D, Qiu S, Wu Y, Wei Z, Li X. Isoginkgetin attenuates endoplasmic reticulum stress-induced autophagy of brain after ischemic reperfusion injury. Bioengineered 2021; 13:14889-14902. [PMID: 34787074 PMCID: PMC10156416 DOI: 10.1080/21655979.2021.1997564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Isoginkgetin is characterized by properties of potent anticancer and anti-inflammation. To explore its effect on ischemic stroke, a rat model of ischemia/reperfusion (I/R) injury was established and induced by transient middle cerebral artery occlusion/reperfusion (MCAO/R). Different doses of isoginkgetin were intraperitoneally injected into each rat. Expressions of ER stress activation-related makers including phosphorylated inositol-requiring enzyme 1 (IRE1), phosphorylated protein kinase RNA-like endoplasmic reticulum kinase (p-PERK), activating transcription factor-6 (ATF6), and two autophagy markers (ratio of LC3II/I and Beclin-1) were detected by western blot. Infarct volume, neurological deficits, and brain water content were detected. The results showed that ER stress and autophagy were activated by cerebral (I/R) injury, which could be effectively attenuated following pre-ischemia isoginkgetin administration. Moreover, autophagy induced by ER stress was triggered by the activation of PERK and IRE1 pathways. ER stress inhibitor (4-PBA) and ER related signaling inhibitors including PERK, GSK, IRE1, and DBSA markedly inhibited ER stress and autophagy induced by I/R. In addition, isoginkgetin markedly mitigated cerebral infarction, edema, neuronal apoptosis as well as neurological impairment induced by I/R injury, while tunicamycin (ER stress activator TM) and rapamycin (autophagy activator RAPA) could eliminate these lesions. This research identified a novel therapeutic agent isoginkgetin, which could effectively attenuate I/R injury by blocking autophagy induced by ER stress.
Collapse
Affiliation(s)
- Yueyong Li
- Department of Interventional Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China.,Department of Interventional Medicine, the First Affiliated Hospital of Jinan University, Guangzhou City, Guangdong Province, 510630, PR. China
| | - Lingzhang Meng
- Center for Systemic Inflammation Research, School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China
| | - Baosheng Li
- Department of radiology Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China
| | - Deyou Huang
- Department of radiology Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China
| | - Xiaohua Huang
- Department of Interventional Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China.,Department of Interventional Medicine, the First Affiliated Hospital of Jinan University, Guangzhou City, Guangdong Province, 510630, PR. China
| | - Cheng Lin
- Department of Interventional Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China
| | - Dong Li
- Department of Interventional Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China
| | - Shaocai Qiu
- Department of Interventional Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China
| | - Yingning Wu
- Department of radiology Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China
| | - Zhongheng Wei
- Department of Interventional Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China
| | - Xuebin Li
- Center for Clinical Research, School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise City, Guangxi Province, 533000, PR. China
| |
Collapse
|
20
|
Zhao L, Tan S, Liao Q, Li X, Ke T, Li S. The neuroprotective effect and RNA-sequence analysis of postconditioning on the ischemic stroke with diabetes mellitus tree shrew model. Brain Behav 2021; 11:e2354. [PMID: 34559467 PMCID: PMC8613421 DOI: 10.1002/brb3.2354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION Patients with comorbidity of ischemic stroke (IS) and diabetes mellitus (DM) show poor neurological functional recovery, and ischemic postconditioning (IPOC) should be considered a powerful neuroprotective method for IS. However, whether it should be introduced for patients with IS and DM remains controversial. This study established a DM with IS (DMIS) tree shrew model, which was intervened by IPOC to assess its neuroprotective effects and also to analyze the relevant mechanism by RNA-sequence and bioinformatics analysis. METHODS Fifty-four tree shrews were randomly divided into a sham operation control group, a DMIS group, and an IPOC group (DMIS model), with 18 tree shrews per group. Triphenyl tetrazolium chloride (TTC), hematoxylin-eosin (HE) staining, transmission electron microscopy (TEM), and RNA-sequence analysis were performed to assess the IPOC effect. RESULTS IPOC reduced infarct size and reduced nerve cell injury in IS tree shrews with DM. RNA-seq analysis showed that IPOC significantly increased the expression of the homeobox protein SIX3, while downregulating the expression of HLA class II histocompatibility antigens DQ beta 1 chain, CAS1 domain-containing protein 1, and cytokine receptor-like factor 2. The most downregulated signaling pathways include the NF-κB signaling pathway, TNF signaling pathway, and Fc gamma R-mediated phagocytosis. CONCLUSIONS IPOCs have a neuroprotective effect in a DMIS animal model that reduces infarct size and nerve cell injury. This mechanism might be related to reducing inflammation and stress responses that decreases the activity of TNF and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Ling Zhao
- Department of EndocrinologyThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Shufen Tan
- Department of Gynecologic OncologyThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Qiwei Liao
- Department of CardiologyThe Yan‐an Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Xia Li
- Department of PathophysiologyKunming Medical UniversityKunmingChina
| | - Tingyu Ke
- Department of EndocrinologyThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Shuqing Li
- Department of PathophysiologyKunming Medical UniversityKunmingChina
| |
Collapse
|
21
|
Jurcau A, Simion A. Oxidative Stress in the Pathogenesis of Alzheimer's Disease and Cerebrovascular Disease with Therapeutic Implications. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:94-108. [PMID: 32124703 DOI: 10.2174/1871527319666200303121016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 01/18/2020] [Accepted: 01/28/2020] [Indexed: 12/15/2022]
Abstract
The significant gain in life expectancy led to an increase in the incidence and prevalence of dementia. Although vascular risk factors have long and repeatedly been shown to increase the risk of Alzheimer's Disease (AD), translating these findings into effective preventive measures has failed. In addition, the finding that incident ischemic stroke approximately doubles the risk of a patient to develop AD has been recently reinforced. Current knowledge and pathogenetic hypotheses of AD are discussed. The implication of oxidative stress in the development of AD is reviewed, with special emphasis on its sudden burst in the setting of acute ischemic stroke and the possible link between this increase in oxidative stress and consequent cognitive impairment. Current knowledge and future directions in the prevention and treatment of AD are discussed outlining the hypothesis of a possible beneficial effect of antioxidant treatment in acute ischemic stroke in delaying the onset/progression of dementia.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Faculty of Medicine and Pharmacy, University of Oradea, 410154 Oradea, Romania.,Clinical Municipal Hospital "Dr. G Curteanu", Neurology Ward, Oradea, Romania
| | - Aurel Simion
- Faculty of Medicine and Pharmacy, University of Oradea, 410154 Oradea, Romania.,Clinical Municipal Hospital "Dr. G Curteanu", Neurological Rehabilitation Ward, Oradea, Romania
| |
Collapse
|
22
|
Zhang JL, Li WX, Li Y, Wong MS, Wang YJ, Zhang Y. Therapeutic options of TCM for organ injuries associated with COVID-19 and the underlying mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153297. [PMID: 32798019 PMCID: PMC7405862 DOI: 10.1016/j.phymed.2020.153297] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/15/2020] [Accepted: 07/31/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Coronavirus disease-2019 (COVID-19) caused by infection with severe acute respiratory coronavirus-2 (SARS-CoV-2) has been spreading rapidly throughout China and in other countries since the end of 2019. The World Health Organization (WHO) has declared that the epidemic is a public health emergency of international concerns. The timely and appropriate measures for treating COVID-19 in China, which are inseparable from the contribution of traditional Chinese medicine (TCM), have won much praise of the world. PURPOSE This review aimed to summarize and discuss the essential role of TCM in protecting tissues from injuries associated with COVID-19, and accordingly to clarify the possible action mechanisms of TCM from the perspectives of anti-inflammatory, antioxidant and anti-apoptotic effects. METHODS Electronic databases such as Pubmed, ResearchGate, Science Direct, Web of Science, medRixv and Wiley were used to search scientific literatures. RESULTS The present review found that traditional Chinese herbs commonly used for the clinical treatment of organ damages caused by COVID-19, such as Scutellaria baicalensis, Salvia miltiorrhizaSalvia miltiorrhiza, and ginseng, could act on multiple signaling pathways involved in inflammation, oxidative stress and apoptosis. CONCLUSION TCM could protect COVID-19 patients from tissue injuries, a protection that might be, at least partially, attributed to the anti-inflammatory, antioxidant and anti-apoptotic effects of the TCM under investigation. This review provides evidence and support for clinical treatment and novel drug research using TCM.
Collapse
Affiliation(s)
- Jia-Li Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wen-Xiong Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yue Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Man-Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen 518057, China
| | - Yong-Jun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, China
| | - Yan Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai 200032, China.
| |
Collapse
|
23
|
Xue Y, Nie D, Wang LJ, Qiu HC, Ma L, Dong MX, Tu WJ, Zhao J. Microglial Polarization: Novel Therapeutic Strategy against Ischemic Stroke. Aging Dis 2021; 12:466-479. [PMID: 33815877 PMCID: PMC7990355 DOI: 10.14336/ad.2020.0701] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke, which is the second highest cause of death and the leading cause of disability, represents ~71% of all strokes globally. Some studies have found that the key elements of the pathobiology of stroke is immunity and inflammation. Microglia are the first line of defense in the nervous system. After stroke, the activated microglia become a double-edged sword, with distinct phenotypic changes to the deleterious M1 types and neuroprotective M2 types. Therefore, ways to promote microglial polarization toward M2 phenotype after stroke have become the focus of attention in recent years. In this review, we discuss the process of microglial polarization, summarize the alternation of signaling pathways and epigenetic regulation that control microglial polarization in ischemic stroke, aiming to find the potential mechanisms by which microglia can be transformed into the M2 polarized phenotype.
Collapse
Affiliation(s)
- Yimeng Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
| | - Ding Nie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Lin-Jian Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
| | - Han-Cheng Qiu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Long Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Ming-Xin Dong
- Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China.
| | - Wen-Jun Tu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China.
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| |
Collapse
|
24
|
Wang R, Wang M, Zhou J, Wu D, Ye J, Sun G, Sun X. Saponins in Chinese Herbal Medicine Exerts Protection in Myocardial Ischemia-Reperfusion Injury: Possible Mechanism and Target Analysis. Front Pharmacol 2021; 11:570867. [PMID: 33597866 PMCID: PMC7883640 DOI: 10.3389/fphar.2020.570867] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022] Open
Abstract
Myocardial ischemia is a high-risk disease among middle-aged and senior individuals. After thrombolytic therapy, heart tissue can potentially suffer further damage, which is called myocardial ischemia-reperfusion injury (MIRI). At present, the treatment methods and drugs for MIRI are scarce and cannot meet the current clinical needs. The mechanism of MIRI involves the interaction of multiple factors, and the current research hotspots mainly include oxidative stress, inflammation, calcium overload, energy metabolism disorders, pyroptosis, and ferroptosis. Traditional Chinese medicine (TCM) has multiple targets and few toxic side effects; clinical preparations containing Panax ginseng C. A. Mey., Panax notoginseng (Burk.) F. H. Chen, Aralia chinensis L., cardioprotection, and other Chinese herbal medicines have been used to treat patients with coronary heart disease, angina pectoris, and other cardiovascular diseases. Studies have shown that saponins are the main active substances in TCMs containing Panax ginseng C. A. Mey., Panax notoginseng (Burk.) F. H. Chen, Aralia chinensis L., and Radix astragali. In the present review, we sorted the saponin components with anti-MIRI effects and their regulatory mechanisms. Each saponin can play a cardioprotective role via multiple mechanisms, and the signaling pathways involved in different saponins are not the same. We found that more active saponins in Panax ginseng C. A. Mey. are mainly dammar-type structures and have a strong regulatory effect on energy metabolism. The highly active saponin components of Aralia chinensis L. are oleanolic acid structures, which have significant regulatory effects on calcium homeostasis. Therefore, saponins in Chinese herbal medicine provide a broad application prospect for the development of highly effective and low-toxicity anti-MIRI drugs.
Collapse
Affiliation(s)
- Ruiying Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiahui Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Daoshun Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingxue Ye
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Zhang W, Tian T, Gong SX, Huang WQ, Zhou QY, Wang AP, Tian Y. Microglia-associated neuroinflammation is a potential therapeutic target for ischemic stroke. Neural Regen Res 2021; 16:6-11. [PMID: 32788440 PMCID: PMC7818879 DOI: 10.4103/1673-5374.286954] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Microglia-associated neuroinflammation plays an important role in the pathophysiology of ischemic stroke. Microglial activation and polarization, and the inflammatory response mediated by these cells play important roles in the development, progression and outcome of brain injury after ischemic stroke. Currently, there is no effective strategy for treating ischemic stroke in clinical practice. Therefore, it is clinically important to study the role and regulation of microglia in stroke. In this review, we discuss the involvement of microglia in the neuroinflammatory process in ischemic stroke, with the aim of providing a better understanding of the relationship between ischemic stroke and microglia.
Collapse
Affiliation(s)
- Wan Zhang
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan Province, China
| | - Tian Tian
- Department of Clinical Laboratory, the First Hospital of Changsha, Changsha, Hunan Province, China
| | - Shao-Xin Gong
- Department of Pathology, the First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Wen-Qian Huang
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan Province, China
| | - Qin-Yi Zhou
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan Province, China
| | - Ai-Ping Wang
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan Province, China
| | - Ying Tian
- Institute of Clinical Research, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan Province, China
| |
Collapse
|
26
|
Lin J, Liang P, Huang Q, Jian C, Huang J, Tang X, Li X, Liao Y, Huang X, Huang W, Su L, Meng L. Using mRNA deep sequencing to analyze differentially expressed genes during Panax notoginseng saponin treatment of ischemic stroke. Mol Med Rep 2020; 22:4743-4753. [PMID: 33173991 PMCID: PMC7646891 DOI: 10.3892/mmr.2020.11550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 08/10/2020] [Indexed: 01/08/2023] Open
Abstract
Treatment with Panax notoginseng saponin (PNS) can prevent neurological damage in middle cerebral artery occlusion model rats to promote recovery after a stroke. However, the exact molecular mechanisms are unknown and require further study. In the present study, mRNA sequencing was employed to investigate differential gene expression between model and sham groups, and between model and PNS‑treated groups. Enrichment of gene data was performed using Gene Ontology analysis and the Kyoto Encyclopedia of Genes and Genomes database. Hub genes were identified and networks were constructed using Cytoscape that were further verified by reverse transcription‑quantitative PCR. A total of 1,104 genes of interest were found, which included 690 upregulated and 414 downregulated genes that were identified when the model was compared with the sham group. Additionally, 817 genes of interest, which included 390 upregulated and 427 downregulated genes, were identified when the PNS‑treated group was compared with the model group. There were 303 overlapping genes of interest between the analysis of model to sham groups, and the analysis of model to PNS‑treated groups. The top 10 genes from the 303 aberrantly expressed genes of interest included ubiquitin conjugating enzyme E2 variant 2, small ubiquitin‑related modifier 1, small RNA binding exonuclease protection factor La, Finkel‑Biskis‑Reilly murine sarcoma virus (FBR‑MuSV) ubiquitously expressed, centrosomal protein 290 kDa, DNA‑directed RNA polymerase II subunit K, cullin‑4B, matrin‑3 and vascular endothelial growth factor receptor 2. In conclusion, these genes may be important in the underlying mechanism of PNS treatment in ischemic stroke. Additionally, the present data provided novel insight into the pathogenesis of ischemic stroke.
Collapse
Affiliation(s)
- Jun Lin
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Ping Liang
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Qing Huang
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Chongdong Jian
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Jianmin Huang
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Xionglin Tang
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Xuebin Li
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Yanling Liao
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Xiaohua Huang
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Wenhua Huang
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Li Su
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Lanqing Meng
- Department of Neurology, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| |
Collapse
|
27
|
Zheng Y, Han Z, Zhao H, Luo Y. MAPK: A Key Player in the Development and Progression of Stroke. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:248-256. [PMID: 32533818 DOI: 10.2174/1871527319666200613223018] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/13/2022]
Abstract
Conclusion:
Stroke is a complex disease caused by genetic and environmental factors, and its etiological
mechanism has not been fully clarified yet, which brings great challenges to its effective prevention
and treatment. MAPK signaling pathway regulates gene expression of eukaryotic cells and basic cellular
processes such as cell proliferation, differentiation, migration, metabolism and apoptosis, which are
considered as therapeutic targets for many diseases. Up to now, mounting evidence has shown that
MAPK signaling pathway is involved in the pathogenesis and development of ischemic stroke. However,
the upstream kinase and downstream kinase of MAPK signaling pathway are complex and the
influencing factors are numerous, the exact role of MAPK signaling pathway in the pathogenesis of
ischemic stroke has not been fully elucidated. MAPK signaling molecules in different cell types in the
brain respond variously after stroke injury, therefore, the present review article is committed to summarizing
the pathological process of different cell types participating in stroke, discussed the mechanism
of MAPK participating in stroke. We further elucidated that MAPK signaling pathway molecules
can be used as therapeutic targets for stroke, thus promoting the prevention and treatment of stroke.
Collapse
Affiliation(s)
- Yangmin Zheng
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ziping Han
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Haiping Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Hong G, Yan Y, Zhong Y, Chen J, Tong F, Ma Q. Combined Ischemic Preconditioning and Resveratrol Improved Bloodbrain Barrier Breakdown via Hippo/YAP/TAZ Signaling Pathway. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:713-722. [PMID: 31642795 DOI: 10.2174/1871527318666191021144126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Transient Ischemia/Reperfusion (I/R) is the main reason for brain injury and results in disruption of the Blood-Brain Barrier (BBB). It had been reported that BBB injury is one of the main risk factors for early death in patients with cerebral ischemia. Numerous investigations focus on the study of BBB injury which have been carried out. OBJECTIVE The objective of this study was to investigate the treatment function of the activation of the Hippo/Yes-Associated Protein (YAP) signaling pathway by combined Ischemic Preconditioning (IPC) and resveratrol (RES) before brain Ischemia/Reperfusion (BI/R) improves Blood-Brain Barrier (BBB) disruption in rats. METHODS Sprague-Dawley (SD) rats were pretreated with 20 mg/kg RES and IPC and then subjected to 2 h of ischemia and 22 h of reperfusion. The cerebral tissues were collected; the cerebral infarct volume was determined; the Evans Blue (EB) level, the brain Water Content (BWC), and apoptosis were assessed; and the expressions of YAP and TAZ were investigated in cerebral tissues. RESULTS Both IPC and RES preconditioning reduced the cerebral infarct size, improved BBB permeability, lessened apoptosis, and upregulated expressions of YAP and transcriptional co-activator with PDZ-binding motif (TAZ) compared to the Ischemia/Reperfusion (I/R) group, while combined IPC and RES significantly enhanced this action. CONCLUSION combined ischemic preconditioning and resveratrol improved blood-brain barrier breakdown via Hippo/YAP/TAZ signaling pathway.
Collapse
Affiliation(s)
- Ganji Hong
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ying Yan
- Department of Rehabilitation Medicine, Zhejiang Chinese Medical University, The Third Clinical Medicine, Hangzhou, Zhejiang, China
| | - Yali Zhong
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Jianer Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Fei Tong
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology and Pathophysiology, Provincial Key Discipline of Pharmacology, Jiaxing University Medical College, Jiaxing, China.,Department of Endocrinology and Diabetes, The First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Qilin Ma
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
29
|
Li Y, Sun J, Wu R, Bai J, Hou Y, Zeng Y, Zhang Y, Wang X, Wang Z, Meng X. Mitochondrial MPTP: A Novel Target of Ethnomedicine for Stroke Treatment by Apoptosis Inhibition. Front Pharmacol 2020; 11:352. [PMID: 32269527 PMCID: PMC7109312 DOI: 10.3389/fphar.2020.00352] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/09/2020] [Indexed: 12/31/2022] Open
Abstract
Mammalian mitochondrial permeability transition pore (MPTP), across the inner and outer membranes of mitochondria, is a nonspecific channel for signal transduction or material transfer between mitochondrial matrix and cytoplasm such as maintenance of Ca2+ homeostasis, regulation of oxidative stress signals, and protein translocation evoked by some of stimuli. Continuous MPTP opening has been proved to stimulate neuronal apoptosis in ischemic stroke. Meanwhile, inhibition of MPTP overopening-induced apoptosis has shown excellent efficacy in the treatment of ischemic stroke. Among of which, the potential molecular mechanisms of drug therapy for stroke has also been gradually revealed by researchers. The characteristics of multi-components or multi-targets for ethnic drugs also provide the possibility to treat stroke from the perspective of mitochondrial MPTP. The advantages mentioned above make it necessary for us to explore and clarify the new perspective of ethnic medicine in treating stroke and to determine the specific molecular mechanisms through advanced technologies as much as possible. In this review, we attempt to uncover the relationship between abnormal MPTP opening and neuronal apoptosis in ischemic stroke. We further summarized currently authorized drugs, ethnic medicine prescriptions, herbs, and identified monomer compounds for inhibition of MPTP overopening-induced ischemic neuron apoptosis. Finally, we strive to provide a new perspective and enlightenment for ethnic medicine in the prevention and treatment of stroke by inhibition of MPTP overopening-induced neuronal apoptosis.
Collapse
Affiliation(s)
- Yangxin Li
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruixia Wu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinrong Bai
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya Hou
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Zeng
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaobo Wang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Wang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
30
|
Xue R, Zhai R, Xie L, Zheng Z, Jian G, Chen T, Su J, Gao C, Wang N, Yang X, Xu Y, Gui D. Xuesaitong Protects Podocytes from Apoptosis in Diabetic Rats through Modulating PTEN-PDK1-Akt-mTOR Pathway. J Diabetes Res 2020; 2020:9309768. [PMID: 32051833 PMCID: PMC6995497 DOI: 10.1155/2020/9309768] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/14/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease (DKD) is a major cause of end-stage renal disease (ESRD), and therapeutic strategies for delaying its progression are limited. Loss of podocytes by apoptosis characterizes the early stages of DKD. To identify novel therapeutic options, we investigated the effects of Xuesaitong (XST), consisting of total saponins from Panax notoginseng, on podocyte apoptosis in streptozotocin- (STZ-) induced diabetic rats. XST (5 mg/kg·d) or Losartan (10 mg/kg·d) was given to diabetic rats for 12 weeks. Albuminuria, renal function markers, and renal histopathology morphological changes were examined. Podocyte apoptosis was determined by triple immunofluorescence labelling including a TUNEL assay, WT1, and DAPI. Renal expression of Nox4, miRNA-214, PTEN, PDK1, phosphorylated Akt, mTOR, and mTORC1 was detected. In diabetic rats, severe hyperglycaemia and albuminuria developed, and apoptotic podocytes were markedly increased in diabetic kidneys. However, XST attenuated albuminuria, mesangial expansion, podocyte apoptosis, and morphological changes of podocytes in diabetic rats. Decreased expression of PTEN, as well as increased expression of Nox4, miRNA-214, PDK1, phosphorylated Akt, mTOR, and mTORC1, was detected. These abnormalities were partially restored by XST treatment. Thus, XST ameliorated podocyte apoptosis partly through modulating the PTEN-PDK1-Akt-mTOR pathway. These novel findings might point the way to a natural therapeutic strategy for treating DKD.
Collapse
Affiliation(s)
- Rui Xue
- Department of Nephrology, Shanghai Jiao Tong University Affiliated to Sixth People's Hospital, Shanghai 200233, China
| | - Ruonan Zhai
- Department of Nephrology, Shanghai Jiao Tong University Affiliated to Sixth People's Hospital, Shanghai 200233, China
| | - Ling Xie
- Shanghai Ocean University, Shanghai 201306, China
| | - Zening Zheng
- Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, China
| | - Guihua Jian
- Department of Nephrology, Shanghai Jiao Tong University Affiliated to Sixth People's Hospital, Shanghai 200233, China
| | - Teng Chen
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jun Su
- Department of Nephrology, Shanghai Jiao Tong University Affiliated to Sixth People's Hospital, Shanghai 200233, China
| | - Chongting Gao
- Department of Nephrology, Shanghai Jiao Tong University Affiliated to Sixth People's Hospital, Shanghai 200233, China
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated to Sixth People's Hospital, Shanghai 200233, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Dingkun Gui
- Department of Nephrology, Shanghai Jiao Tong University Affiliated to Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|