1
|
Robert M, Laperrousaz B, Piedrahita D, Gautier EF, Nemkov T, Dupuy F, Nader E, Salnot V, Mayeux P, D'Alessandro A, Lavazec C, Joly P, Scheer A, Connes P, Cibiel A. Multiparametric characterization of red blood cell physiology after hypotonic dialysis based drug encapsulation process. Acta Pharm Sin B 2022; 12:2089-2102. [PMID: 35847505 PMCID: PMC9279626 DOI: 10.1016/j.apsb.2021.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/21/2021] [Accepted: 10/12/2021] [Indexed: 11/06/2022] Open
Abstract
Red blood cells (RBCs) can act as carriers for therapeutic agents and can substantially improve the safety, pharmacokinetics, and pharmacodynamics of many drugs. Maintaining RBCs integrity and lifespan is important for the efficacy of RBCs as drug carrier. We investigated the impact of drug encapsulation by hypotonic dialysis on RBCs physiology and integrity. Several parameters were compared between processed RBCs loaded with l-asparaginase ("eryaspase"), processed RBCs without drug and non-processed RBCs. Processed RBCs were less hydrated and displayed a reduction of intracellular content. We observed a change in the metabolomic but not in the proteomic profile of processed RBCs. Encapsulation process caused moderate morphological changes and was accompanied by an increase of RBCs-derived Extracellular Vesicles release. Despite a decrease in deformability, processed RBCs were not mechanically retained in a spleen-mimicking device and had increased surface-to-volume ratio and osmotic resistance. Processed RBCs half-life was not significantly affected in a mouse model and our previous phase 1 clinical study showed that encapsulation of asparaginase in RBCs prolonged its in vivo half-life compared to free forms. Our study demonstrated that encapsulation by hypotonic dialysis may affect certain characteristics of RBCs but does not significantly affect the in vivo longevity of RBCs or their drug carrier function.
Collapse
Affiliation(s)
- Mélanie Robert
- Erytech Pharma, Lyon 69008, France
- Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon 69008, France
- Labex GR-Ex, Paris 75015, France
| | | | | | - Emilie-Fleur Gautier
- Labex GR-Ex, Paris 75015, France
- 3P5 proteom'IC facility, Université de Paris, Institut Cochin, INSERM, CNRS, Paris 75014, France
| | - Travis Nemkov
- University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
- Omix Technologies, Inc., Aurora, CO 80045, USA
| | - Florian Dupuy
- Labex GR-Ex, Paris 75015, France
- Inserm U1016, CNRS 8104, Université de Paris, Institut Cochin, Paris 75014, France
| | - Elie Nader
- Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon 69008, France
- Labex GR-Ex, Paris 75015, France
| | - Virginie Salnot
- 3P5 proteom'IC facility, Université de Paris, Institut Cochin, INSERM, CNRS, Paris 75014, France
| | - Patrick Mayeux
- Labex GR-Ex, Paris 75015, France
- 3P5 proteom'IC facility, Université de Paris, Institut Cochin, INSERM, CNRS, Paris 75014, France
| | - Angelo D'Alessandro
- University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
- Omix Technologies, Inc., Aurora, CO 80045, USA
| | - Catherine Lavazec
- Labex GR-Ex, Paris 75015, France
- Inserm U1016, CNRS 8104, Université de Paris, Institut Cochin, Paris 75014, France
| | - Philippe Joly
- Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon 69008, France
- Labex GR-Ex, Paris 75015, France
- Laboratoire de Biochimie et de Biologie Moléculaire, UF de biochimie des pathologies érythrocytaires, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Bron 69500, France
| | | | - Philippe Connes
- Laboratoire interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team « Vascular Biology and Red Blood Cell », Université Claude Bernard Lyon 1, Université de Lyon, Lyon 69008, France
- Labex GR-Ex, Paris 75015, France
| | | |
Collapse
|
3
|
Novel engineering: Biomimicking erythrocyte as a revolutionary platform for drugs and vaccines delivery. Eur J Pharmacol 2021; 900:174009. [PMID: 33722591 DOI: 10.1016/j.ejphar.2021.174009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 02/07/2023]
Abstract
Over the years, extensive studies on erythrocytes, also known as red blood cells (RBCs), as a mechanism for drug delivery, have been explored mainly because the cell itself is the most abundant and has astonishing properties such as a long life span of 100-120 days, low immunogenicity, good biocompatibility, and flexibility. There are various types of RBC-based systems for drug delivery, including those that are genetically engineered, non-genetically engineered RBCs, as well as employing erythrocyte as nanocarriers for drug loading. Although promising, these systems are still in an early development stage. In this review, we aimed to highlight the development of biomimicking RBC-based drug and vaccine delivery systems, as well as the loading methods with illustrative examples. Drug-erythrocyte associations will also be discussed and highlighted in this review. We have highlighted the possibility of exploiting erythrocytes for the sustained delivery of drugs and vaccines, encapsulation of these biological agents within the erythrocyte or coupling to the surface of carrier erythrocytes, and provided insights on genetically- and non-genetically engineered erythrocytes-based strategies. Erythrocytes have been known as effective cellular carriers for therapeutic moieties for several years. Herein, we outline various loading methods that can be used to reap the benefits of these natural carriers. It has been shown that drugs and vaccines can be delivered via erythrocytes but it is important to select appropriate methods for increasing the drug encapsulated or conjugated on the surface of the erythrocyte membrane. The outlined examples will guide the selection of the most effective method as well as the impact of using erythrocytes as delivery systems for drugs and vaccines.
Collapse
|