1
|
Yu P, Liu B, Dong C, Chang Y. Induced Pluripotent Stem Cells-Based Regenerative Therapies in Treating Human Aging-Related Functional Decline and Diseases. Cells 2025; 14:619. [PMID: 40277944 DOI: 10.3390/cells14080619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
A significant increase in life expectancy worldwide has resulted in a growing aging population, accompanied by a rise in aging-related diseases that pose substantial societal, economic, and medical challenges. This trend has prompted extensive efforts within many scientific and medical communities to develop and enhance therapies aimed at delaying aging processes, mitigating aging-related functional decline, and addressing aging-associated diseases to extend health span. Research in aging biology has focused on unraveling various biochemical and genetic pathways contributing to aging-related changes, including genomic instability, telomere shortening, and cellular senescence. The advent of induced pluripotent stem cells (iPSCs), derived through reprogramming human somatic cells, has revolutionized disease modeling and understanding in humans by addressing the limitations of conventional animal models and primary human cells. iPSCs offer significant advantages over other pluripotent stem cells, such as embryonic stem cells, as they can be obtained without the need for embryo destruction and are not restricted by the availability of healthy donors or patients. These attributes position iPSC technology as a promising avenue for modeling and deciphering mechanisms that underlie aging and associated diseases, as well as for studying drug effects. Moreover, iPSCs exhibit remarkable versatility in differentiating into diverse cell types, making them a promising tool for personalized regenerative therapies aimed at replacing aged or damaged cells with healthy, functional equivalents. This review explores the breadth of research in iPSC-based regenerative therapies and their potential applications in addressing a spectrum of aging-related conditions.
Collapse
Affiliation(s)
- Peijie Yu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Bin Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Cheng Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Yun Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
2
|
Gone GB, Go G, Nam G, Jeong W, Kim H, Lee S, Chung SJ. Exploring the Anti-Diabetic Potential of Quercetagitrin through Dual Inhibition of PTPN6 and PTPN9. Nutrients 2024; 16:647. [PMID: 38474775 DOI: 10.3390/nu16050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Protein tyrosine phosphatases (PTPs) are pivotal contributors to the development of type 2 diabetes (T2DM). Hence, directing interventions towards PTPs emerges as a valuable therapeutic approach for managing type 2 diabetes. In particular, PTPN6 and PTPN9 are targets for anti-diabetic effects. Through high-throughput drug screening, quercetagitrin (QG) was recognized as a dual-target inhibitor of PTPN6 and PTPN9. We observed that QG suppressed the catalytic activity of PTPN6 (IC50 = 1 μM) and PTPN9 (IC50 = 1.7 μM) in vitro and enhanced glucose uptake by mature C2C12 myoblasts. Additionally, QG increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and insulin-dependent phosphorylation of Akt in mature C2C12 myoblasts. It further promoted the phosphorylation of Akt in the presence of palmitic acid, suggesting the attenuation of insulin resistance. In summary, our results indicate QG's role as a potent inhibitor targeting both PTPN6 and PTPN9, showcasing its potential as a promising treatment avenue for T2DM.
Collapse
Affiliation(s)
- Geetanjali B Gone
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Geonhui Go
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gibeom Nam
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Woojoo Jeong
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyemin Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soah Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang J Chung
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
3
|
Karam-Palos S, Andrés-Blasco I, Campos-Borges C, Zanón-Moreno V, Gallego-Martínez A, Alegre-Ituarte V, García-Medina JJ, Pastor-Idoate S, Sellés-Navarro I, Vila-Arteaga J, Lleó-Perez AV, Pinazo-Durán MD. Oxidative Stress Mediates Epigenetic Modifications and the Expression of miRNAs and Genes Related to Apoptosis in Diabetic Retinopathy Patients. J Clin Med 2023; 13:74. [PMID: 38202081 PMCID: PMC10780047 DOI: 10.3390/jcm13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Knowledge on the underlying mechanisms and molecular targets for managing the ocular complications of type 2 diabetes mellitus (T2DM) remains incomplete. Diabetic retinopathy (DR) is a major cause of irreversible visual disability worldwide. By using ophthalmological and molecular-genetic approaches, we gathered specific information to build a data network for deciphering the crosslink of oxidative stress (OS) and apoptosis (AP) processes, as well as to identify potential epigenetic modifications related to noncoding RNAs in the eyes of patients with T2DM. A total of 120 participants were recruited, being classified into two groups: individuals with T2MD (T2MDG, n = 67), divided into a group of individuals with (+DR, n = 49) and without (-DR, n = 18) DR, and a control group (CG, n = 53). Analyses of compiled data reflected significantly higher plasma levels of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx) and significantly lower total antioxidant capacity (TAC) in the +DR patients compared with the -DR and the CG groups. Furthermore, the plasma caspase-3 (CAS3), highly involved in apoptosis (AP), showed significantly higher values in the +DR group than in the -DR patients. The microRNAs (miR) hsa-miR 10a-5p and hsa-miR 15b-5p, as well as the genes BCL2L2 and TP53 involved in these pathways, were identified in relation to DR clinical changes. Our data suggest an interaction between OS and the above players in DR pathogenesis. Furthermore, potential miRNA-regulated target genes were identified in relation to DR. In this concern, we may raise new diagnostic and therapeutic challenges that hold the potential to significantly improve managing the diabetic eye.
Collapse
Affiliation(s)
- Sarah Karam-Palos
- Ophthalmic Research Unit “Santiago Grisolía”/FISABIO, 46017 Valencia, Spain; (S.K.-P.); (I.A.-B.); (C.C.-B.); (V.A.-I.); (A.V.L.-P.)
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, University of Valencia, 46010 Valencia, Spain
- Department of Ophthalmology, University Hospital “Arnau de Vilanova”, 25196 Valencia, Spain
| | - Irene Andrés-Blasco
- Ophthalmic Research Unit “Santiago Grisolía”/FISABIO, 46017 Valencia, Spain; (S.K.-P.); (I.A.-B.); (C.C.-B.); (V.A.-I.); (A.V.L.-P.)
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, University of Valencia, 46010 Valencia, Spain
- Net of Research in Inflammatory Diseases and Immunopathology of Organs and Systems “REI-RICORS” RD, Institute of Health Carlos III, 28029 Madrid, Spain; (J.J.G.-M.); (S.P.-I.); (I.S.-N.)
| | - Cristina Campos-Borges
- Ophthalmic Research Unit “Santiago Grisolía”/FISABIO, 46017 Valencia, Spain; (S.K.-P.); (I.A.-B.); (C.C.-B.); (V.A.-I.); (A.V.L.-P.)
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, University of Valencia, 46010 Valencia, Spain
- Institute of Biotechnology, University of Porto, 4169-007 Porto, Portugal
| | - Vicente Zanón-Moreno
- Ophthalmic Research Unit “Santiago Grisolía”/FISABIO, 46017 Valencia, Spain; (S.K.-P.); (I.A.-B.); (C.C.-B.); (V.A.-I.); (A.V.L.-P.)
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, University of Valencia, 46010 Valencia, Spain
- Net of Research in Inflammatory Diseases and Immunopathology of Organs and Systems “REI-RICORS” RD, Institute of Health Carlos III, 28029 Madrid, Spain; (J.J.G.-M.); (S.P.-I.); (I.S.-N.)
- Department of Preventive Medicine and Public Health, University of Valencia, 46010 Valencia, Spain
| | - Alex Gallego-Martínez
- Ophthalmic Research Unit “Santiago Grisolía”/FISABIO, 46017 Valencia, Spain; (S.K.-P.); (I.A.-B.); (C.C.-B.); (V.A.-I.); (A.V.L.-P.)
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, University of Valencia, 46010 Valencia, Spain
| | - Victor Alegre-Ituarte
- Ophthalmic Research Unit “Santiago Grisolía”/FISABIO, 46017 Valencia, Spain; (S.K.-P.); (I.A.-B.); (C.C.-B.); (V.A.-I.); (A.V.L.-P.)
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, University of Valencia, 46010 Valencia, Spain
| | - Jose J. García-Medina
- Net of Research in Inflammatory Diseases and Immunopathology of Organs and Systems “REI-RICORS” RD, Institute of Health Carlos III, 28029 Madrid, Spain; (J.J.G.-M.); (S.P.-I.); (I.S.-N.)
- Department of Ophthalmology, University Hospital “Morales Meseguer”, 30008 Murcia, Spain
- Department of Surgery, Pediatrics, Obstetrics and Ginecology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | - Salvador Pastor-Idoate
- Net of Research in Inflammatory Diseases and Immunopathology of Organs and Systems “REI-RICORS” RD, Institute of Health Carlos III, 28029 Madrid, Spain; (J.J.G.-M.); (S.P.-I.); (I.S.-N.)
- Institute of Applied Ophthalmobiology “IOBA”, University of Valladolid, 47002 Valladolid, Spain
- Department of Ophthalmology, University Clinic Hospital of Valladolid, 47003 Valladolid, Spain
| | - Inmaculada Sellés-Navarro
- Net of Research in Inflammatory Diseases and Immunopathology of Organs and Systems “REI-RICORS” RD, Institute of Health Carlos III, 28029 Madrid, Spain; (J.J.G.-M.); (S.P.-I.); (I.S.-N.)
- Department of Surgery, Pediatrics, Obstetrics and Ginecology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
- Department of Ophthalmology, University Hospital “Reina Sofia”, 30003 Murcia, Spain
| | - Jorge Vila-Arteaga
- Department of Ophthalmology, University and Polyclinic Hospital “La Fé”, 46026 Valencia, Spain;
- Innova Ocular Vila Clinic, 46004 Valencia, Spain
| | - Antonio V. Lleó-Perez
- Ophthalmic Research Unit “Santiago Grisolía”/FISABIO, 46017 Valencia, Spain; (S.K.-P.); (I.A.-B.); (C.C.-B.); (V.A.-I.); (A.V.L.-P.)
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, University of Valencia, 46010 Valencia, Spain
- Department of Ophthalmology, University Hospital “Arnau de Vilanova”, 25196 Valencia, Spain
| | - Maria D. Pinazo-Durán
- Ophthalmic Research Unit “Santiago Grisolía”/FISABIO, 46017 Valencia, Spain; (S.K.-P.); (I.A.-B.); (C.C.-B.); (V.A.-I.); (A.V.L.-P.)
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, University of Valencia, 46010 Valencia, Spain
- Net of Research in Inflammatory Diseases and Immunopathology of Organs and Systems “REI-RICORS” RD, Institute of Health Carlos III, 28029 Madrid, Spain; (J.J.G.-M.); (S.P.-I.); (I.S.-N.)
| |
Collapse
|
4
|
Wang Y, Zhou W, Liu D, Zhang Z, Xu Y, Wan X, Yu H, Yan S. Exploration of the molecular mechanism of insulin resistance in adipose tissue of patients with type 2 diabetes mellitus through a bioinformatic analysis. Minerva Endocrinol (Torino) 2023; 48:440-446. [PMID: 37534872 DOI: 10.23736/s2724-6507.22.03771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
BACKGROUND We aimed to determine the cis-expression Quantitative Trait Loci (cis-eQTL) and trans-eQTL of differentially expressed genes (DEGs) in insulin resistance (IR) related pathways. METHODS The expression profile data for insulin sensitivity (IS) and IR in the adipose tissue of patients with type 2 diabetes mellitus (T2DM) were acquired from the Gene Expression Omnibus databases. Then, the Gene set enrichment analysis (GSEA) and Gene set variation analysis (GSVA) methods were performed to identify the significant enrichment of potential Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways between IS and IR groups, and the Wilcoxon rank sum test was carried out to identify the DEGs related to KEGG pathways. Finally, the cis-eQTLs and trans-eQTLs that can affect the expression of DEGs were screened from the eQTLGen database. RESULTS The GSEA and GSVA analysis indicated that the mTOR signaling pathway, insulin signaling pathway and T2DM had a strong correlation with the pathological process of T2DM. Furthermore, six genes (ACACA, GYS2, PCK1, PRKAR1A, SLC2A4, and VEGFA) were found to be significantly differentially expressed in IR-related pathways. Finally, we have identified a total of 1073 cis-eQTLs and 24 trans-eQTLs. CONCLUSIONS We screened out six genes that were significantly differentially expressed in IR-related pathways, including ACACA, GYS2, PCK1, PRKAR1A, SLC2A4, and VEGFA. Moreover, we discovered that these six genes were affected by 1073 cis-eQTLs and 24 trans-eQTLs.
Collapse
Affiliation(s)
- Yujing Wang
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weiyu Zhou
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dana Liu
- Department of Endocrinology, The First Hospital, Harbin, China
| | - Zhiying Zhang
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuanxin Xu
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaojing Wan
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haiqiao Yu
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuang Yan
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China -
| |
Collapse
|
5
|
Wang Z, Xie J, Wang J, Feng W, Liu N, Liu Y. Association Between a Novel Metabolic Score for Insulin Resistance and Mortality in People With Diabetes. Front Cardiovasc Med 2022; 9:895609. [PMID: 35647046 PMCID: PMC9133456 DOI: 10.3389/fcvm.2022.895609] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Growing studies have shown that insulin resistance (IR) is associated with poor prognoses among patients with diabetes, whereas the association between IR and mortality has not been determined. Hence we aimed to evaluate the associations between IR and all-cause, cardiovascular diseases (CVDs) and cancer-related mortality in patients with diabetes. METHODS We enrolled 2,542 participants with diabetes with an average age of 57.12 ± 0.39 years and 52.8% men from the 1999-2014 National Health and Nutrition Examination Survey (NHANES 1999-2014). A novel metabolic score for insulin resistance (METS-IR) was considered as alternative marker of IR. Mortality data were obtained from the National Death Index records and all participants were followed up until December 31, 2015. Cox proportional hazards regression, restricted cubic spline and Kaplan-Meier survival curves were performed to evaluate the associations between METS-IR and all-cause and cause-specific mortality in patients with diabetes. RESULTS During 17,750 person-years of follow-up [median (months), 95% CI: 90, 87-93], 562 deaths were documented, including 133 CVDs-related deaths and 90 cancer-related deaths. Multivariate Cox regression showed that compared with Quintile 1 (METS-IR ≤ 41), METS-IR in Quintile 2, 3, and 4 was all associated with all-cause mortality (Q2 vs. Q1: HR 0.65, 95% CI 0.49-0.87, P = 0.004; Q3 vs. Q1: HR 0.69, 95% CI 0.50-0.96, P = 0.029; Q4 vs. Q1: HR 0.57, 95% CI 0.36-0.91, P = 0.019; respectively). Restricted cubic spline indicated that METS-IR was non-linearly associated with all-cause and CVDs-related mortality. Threshold effect analyses determined that threshold values of METS-IR for all-cause and CVDs-related mortality were both 33.33. Only METS-IR below the threshold was negatively associated with all-cause and CVDs-related mortality (HR 0.785, 95% CI 0.724-0.850, P < 0.001; HR 0.722, 95% CI 0.654-0.797, P < 0.001; respectively). Sensitivity analyses showed that when excluding participants who died within 1 years of follow-up, the results of threshold effect analyses remained consistent, whereas excluding participants with CVDs, METS-IR below the threshold was only negatively correlated with all-cause mortality. Subgroup analyses indicated that for all-cause mortality, the results were still stable in all subgroups except newly diagnosed diabetes, but for CVDs-related mortality, the association persisted only in participants who were ≤ 65 years, male, White, non-White, already diagnosed diabetes, or uesd oral drugs, insulin, insulin sensitizing drugs. CONCLUSION METS-IR was non-linearly associated with all-cause and CVDs-related mortality in patients with diabetes, and METS-IR below the threshold was negatively associated with all-cause and CVDs-related mortality.
Collapse
Affiliation(s)
- Zhenwei Wang
- Department of Cardiology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jing Xie
- College of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Junjie Wang
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Wei Feng
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Naifeng Liu
- Department of Cardiology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
- College of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yun Liu
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
- Institute of Medical Informatics and Management, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Lack of association between methylation status of CpG in the MCP-1 promoter and type 2 diabetes mellitus and its complications in a Moroccan population. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Tu P, Huang B, Li M, Zhang Y, Bao S, Tu N, Yang Y, Lu J. Exendin-4 may improve type 2 diabetes by modulating the epigenetic modifications of pancreatic histone H3 in STZ-induced diabetic C57BL/6 J mice. J Physiol Biochem 2021; 78:51-59. [PMID: 34410626 DOI: 10.1007/s13105-021-00835-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/05/2021] [Indexed: 01/01/2023]
Abstract
Type 2 diabetes (T2D) is a complicated systemic disease that might be improved by exendin-4, although the epigenetic role remains unclear. In the current study, C57BL/6 J mice were used to generate a T2D model, followed by treatment with exendin-4 (10 μg/kg). Histone H3K9 and H3K23 acetylation, H3K4 mono-methylation, and H3K9 di-methylation were explored by western blot analysis of pancreatic histone extracts. Real-time polymerase chain reaction (PCR) was used to examine the expression levels of pancreatic beta cell development-related genes, and chromatin immunoprecipitation (ChIP) was applied to analyze H3 and H3K9 acetylation, H3K4 mono-methylation, and H3K9 di-methylation in the promoter region of the pancreatic and duodenal homeobox 1 (Pdx1) gene. The results showed that total H3K9 di-methylation and H3K9 and H3K23 acetylation increased in pancreatic tissues of diabetic mice, whereas H3K4 mono-methylation was reduced. All of these changes could be abrogated by treatment with exendin-4. Our data indicated that T2D progression might be improved by exendin-4 treatment through the reversal of global pancreatic histone H3K9 and H3K23 acetylation, H3K4 mono-methylation, and H3K9 di-methylation. A better understanding of these epigenetic alterations may, therefore, lead to novel therapeutic strategies for T2D.
Collapse
Affiliation(s)
- Peipei Tu
- Department of Microbiology and Bioengineering, College of Life Science, Anhui Medical University, Hefei, 230032, Anhui, China.,Department of Immunology, College of Basic Medical Science, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Bin Huang
- Department of Orthopedic, Huaibei Miner General Hospital, Huaibei, 235000, Anhui, China
| | - Minggang Li
- Institute of Molecular Biology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Yaofang Zhang
- Department of Basic, Tianjin Agricultural University, Tianjin, 300384, China
| | - Shixiang Bao
- Department of Microbiology and Bioengineering, College of Life Science, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Na Tu
- Department of Immunology, College of Basic Medical Science, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yanan Yang
- Department of Immunology, College of Basic Medical Science, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Jingtao Lu
- Department of Microbiology and Bioengineering, College of Life Science, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
8
|
Wang L, Wang J, Lin C, Wang F, Li X, Liu W. Simultaneous Quantification of Pioglitazone and Omarigliptin in Rat Plasma by UHPLC-MS/MS and Its Application to Pharmacokinetic Study after Coadministration of the Two Drugs. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:6693366. [PMID: 34211797 PMCID: PMC8205603 DOI: 10.1155/2021/6693366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/16/2021] [Indexed: 06/13/2023]
Abstract
Combination therapy is a common approach for clinical treatment of type 2 diabetes mellitus, especially for patients with poor monotherapy. Meta-analysis suggested that omarigliptin, a long-acting DPP-4 inhibitor, combined with pioglitazone might improve the side effects of pioglitazone. However, little is known about the pharmacokinetic properties after a coadministration. In this study, a rapid and reliable method for the simultaneous determination of the pioglitazone and omarigliptin in rat plasma by UHPLC-MS/MS was established and validated for the first time. An exsil mono C18 column (2.0 × 50 mm, 3 μm) was used to separate the analytes and the column temperature was kept at 30°C. Sitagliptin was selected as the internal standard. 0.02% formic acid aqueous solution (A) and methanol-acetonitrile (B) were used as mobile phases with gradient elution at a flow rate of 0.3 mL/min. The elution procedure was as follows: 20%B (0-0.1 min), 80%B (0.1-0.3 min), 80%B (0.3-2.0 min), and 20%B (2.1-3.0 min). A multiple reaction monitor (MRM) was used under positive ionization mode with electrospray ion source to detect pioglitazone (357.1 ⟶ 134.1), omarigliptin (399.2 ⟶ 153.0), and sitagliptin (408.2 ⟶ 235.0). The linear ranges of pioglitazone and omarigliptin were 5-2000 ng/mL and 10-4000 ng/mL, respectively. Good linear relationships were exhibited in the corresponding linear ranges (r ≥ 0.9944). The bioanalytical method was validated, and the selectivity, linearity, sensitivity, accuracy, precision, stability, recovery, and matrix effect were acceptable. The validated method was then successfully applied to pharmacokinetic study of pioglitazone combined with omarigliptin in rats. Results suggested that the combination of the two drugs had little effect on the pharmacokinetic parameters of each other in rats.
Collapse
Affiliation(s)
- Lin Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jiaxi Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Chao Lin
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Furong Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Xiangping Li
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Wanhui Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
- ShanDong Luye Pharmaceut Co Ltd, Yantai 264000, Shandong, China
| |
Collapse
|
9
|
You X, Huang X, Bi L, Li R, Zheng L, Xin C. Clinical and molecular features of two diabetes families carrying mitochondrial ND1 T3394C mutation. Ir J Med Sci 2021; 191:749-758. [PMID: 33840063 DOI: 10.1007/s11845-021-02620-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/04/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Mutations in mitochondrial DNA (mtDNA) are found to be associated with type 2 diabetes mellitus (T2DM). However, the molecular pathogenesis of these mutations in T2DM is still poorly understood. METHODS In this study, we report here the molecular features of two Han Chinese families with maternally transmitted T2DM. The matrilineal relatives are undergoing clinical, biochemical, genetic evaluations, and molecular analysis. Furthermore, the entire mitochondrial genomes of these matrilineal relatives are screened by PCR-Sanger sequencing. RESULTS The age at onset of T2DM of these participants varies from 28 to 71 years, with an average of 43 years. Molecular analysis of mitochondrial genomes identifies the existence of ND1 T3394C mutation in both families, together with sets of variants belonging to mitochondrial haplogroup Y2 and M9a. The m.T3394C mutation is localized at very conserved tyrosine at position 30 of ND1, may result the failure in ND1 mRNA metabolism, and lead to mitochondrial dysfunction. Moreover, sequence analysis of matrilineal relatives in Family 1 identifies the m.A14693G mutation which occurs in the TΨC-loop of tRNAGlu (position 54), and is critical to the structural formation and stabilization of this tRNA. Thus, m.A14693G mutation may cause the impairment in tRNA metabolism, thereby worsens the mitochondrial dysfunction caused by ND1 T3394C mutation. However, no functional mtDNA variants are identified in Family 2 which suggest that mitochondrial haplogroup may not play an important role in diabetes expression. CONCLUSIONS Our study indicates that mitochondrial ND1 T3394C mutation is involved in the pathogenesis of maternally inherited T2DM in these families.
Collapse
Affiliation(s)
- Xiaohong You
- Department of Obstetrics and Gynecology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xueming Huang
- Department of Emergency, Luzhou Maternal and Child Health and Family Planning Service Center, Luzhou, 646000, China
| | - Luowen Bi
- Department of Obstetrics and Gynecology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Rui Li
- Department of Obstetrics and Gynecology, South Hospital of Fujian Provincial Hospital, Fuzhou, 350007, China
| | - Lin Zheng
- Department of Obstetrics and Gynecology, South Hospital of Fujian Provincial Hospital, Fuzhou, 350007, China
| | - Changzheng Xin
- Department of Obstetrics and Gynecology, South Hospital of Fujian Provincial Hospital, Fuzhou, 350007, China.
| |
Collapse
|
10
|
METABOLIC POLYORGANIC DISORDERS IN RATS WITH INSULIN RESISTANCE ON THE BACKGROUND OF IODINE DEFICIENCY. WORLD OF MEDICINE AND BIOLOGY 2021. [DOI: 10.26724/2079-8334-2021-3-77-208-214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Alam F, Kamal MA, Islam MA, Banu S. Current Genetic and Epigenetic Insights into Type 2 Diabetes Mellitus. Endocr Metab Immune Disord Drug Targets 2019; 19:717-718. [PMID: 31530259 DOI: 10.2174/187153031906190724104004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Fahmida Alam
- Human Genome Centre, School of Medical Sciences, University Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia.,Novel Global Community Educational Foundation, Australia
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, University Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | | |
Collapse
|