1
|
Sharma N, Kulkarni GT, Bhatt AN, Satija S, Singh L, Sharma A, Dua K, Karwasra R, Khan AA, Ahmad N, Raza K. Therapeutic Options for the SARS-CoV-2 Virus: Is There a Key in Herbal Medicine? Nat Prod Commun 2022. [DOI: 10.1177/1934578x221126303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
SARS-CoV-2 has been responsible for over 500 million cumulative cases all over the world since December 2019 and has marked the third introduction of a highly pathogenic virus after SARS-CoV and MERS-CoV. This virus is in a winning situation because scientists are still racing to explore effective therapeutics, vaccines, and event treatment regimens. In view of progress in current disease management, until now none of the preventive/treatment measures can be considered entirely effective to treat SARS-CoV-2 infection. Therefore, it is required to look up substitute ways for the management of this disease. In this context, herbal medicines could be a good choice. This article emphasizes the antiviral potential of some herbal constituents which further can be a drug of choice in SARS-CoV-2 treatment. This article may be a ready reference for discovering natural lead compounds and targets in SARS-CoV-2 associated works.
Collapse
Affiliation(s)
- Nitin Sharma
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | | | - Anant Narayan Bhatt
- Department of Nuclear Medicine, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, India
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Lubhan Singh
- Department of Pharmacology, KharvelSubharti College of Pharmacy, Swami Vivekanand Subharti University, Meerut, India
| | - Anjana Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, UP, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ritu Karwasra
- Central Council for Research in Unani Medicine (CCRUM), Ministry of AYUSH, Govt of India, New Delhi, India
| | - Asim Ali Khan
- Central Council for Research in Unani Medicine (CCRUM), Ministry of AYUSH, Govt of India, New Delhi, India
| | - Nadeem Ahmad
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
2
|
Cui RT, He HH, Yu DA, Li Z, Jiang CH, Liu DF, Ou-Yang T, Xie N, Yan SS. Single- and repeated-dose toxicity studies on the novel HIV maturation inhibitor QF-036 in Sprague-Dawley rats. Toxicol Lett 2020; 329:26-30. [PMID: 32380124 DOI: 10.1016/j.toxlet.2020.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/23/2020] [Accepted: 04/22/2020] [Indexed: 11/17/2022]
Abstract
QF-036 is a novel human immunodeficiency virus (HIV) maturation inhibitor that is a lupine triterpenoid derivative. The objective of this study was to evaluate the safety of QF-036. A single oral toxicity and a 4-week repeated oral toxicity were investigated in Sprague-Dawley (SD) rats. The single oral toxicity study of QF-036 in SD rats showed that no mortality or visible pathological changes were noted at doses of 100, 300, and 1000 mg/kg. QF-036 exhibited a non-linear toxicokinetic profile over the dose range of 100-1000 mg/kg in the single dose study, and a saturation trend appeared at doses of 100 and 300 mg/kg. In the 4-week oral toxicity and toxicokinetic study, SD rats were given 0, 50, 100, and 200 mg/kg QF-036 once daily for 4 weeks, followed by a 4-week recovery period. No mortality or significant effects on food consumption, body weight, or behavior were observed. In addition, there were no test article-related changes in hematology, clinical biochemistry and histopathology. The no observed adverse effect level (NOAEL) was 200 mg/kg. The toxicokinetic study demonstrated a dose-dependent increase in the systemic exposure to QF-036 after 4 weeks of oral administration. There were no marked sex differences or drug accumulation observed for repeated doses of QF-036.
Collapse
Affiliation(s)
- Rong-Tian Cui
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., Ganzhou, Jiangxi, China; Jiangsu Mabwell Health Pharmaceutical R&D Co., Ltd., Taizhou, Jiangsu, China
| | - Hong-Hong He
- Shanghai Qingrun Pharmaceutical Technology Co., Ltd., Shanghai, China
| | - Dong-An Yu
- Jiangsu Mabwell Health Pharmaceutical R&D Co., Ltd., Taizhou, Jiangsu, China
| | - Zhao Li
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., Ganzhou, Jiangxi, China; Shanghai Qingrun Pharmaceutical Technology Co., Ltd., Shanghai, China
| | - Chun-Hong Jiang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., Ganzhou, Jiangxi, China
| | - Di-Fa Liu
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., Ganzhou, Jiangxi, China
| | - Ting Ou-Yang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., Ganzhou, Jiangxi, China
| | - Ning Xie
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., Ganzhou, Jiangxi, China
| | - Shou-Sheng Yan
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., Ganzhou, Jiangxi, China; Shanghai Qingrun Pharmaceutical Technology Co., Ltd., Shanghai, China.
| |
Collapse
|
3
|
Dick A, Cocklin S. Recent Advances in HIV-1 Gag Inhibitor Design and Development. Molecules 2020; 25:molecules25071687. [PMID: 32272714 PMCID: PMC7181048 DOI: 10.3390/molecules25071687] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/31/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023] Open
Abstract
Acquired Immune Deficiency Syndrome (AIDS) treatment with combination antiretroviral therapy (cART) has improved the life quality of many patients since its implementation. However, resistance mutations and the accumulation of severe side effects associated with cART remain enormous challenges that need to be addressed with the continual design and redesign of anti-HIV drugs. In this review, we focus on the importance of the HIV-1 Gag polyprotein as the master coordinator of HIV-1 assembly and maturation and as an emerging drug target. Due to its multiple roles in the HIV-1 life cycle, the individual Gag domains are attractive but also challenging targets for inhibitor design. However, recent encouraging developments in targeting the Gag domains such as the capsid protein with highly potent and potentially long-acting inhibitors, as well as the exploration and successful targeting of challenging HIV-1 proteins such as the matrix protein, have demonstrated the therapeutic viability of this important protein. Such Gag-directed inhibitors have great potential for combating the AIDS pandemic and to be useful tools to dissect HIV-1 biology.
Collapse
|
4
|
Chrobak E, Marciniec K, Dąbrowska A, Pęcak P, Bębenek E, Kadela-Tomanek M, Bak A, Jastrzębska M, Boryczka S. New Phosphorus Analogs of Bevirimat: Synthesis, Evaluation of Anti-HIV-1 Activity and Molecular Docking Study. Int J Mol Sci 2019; 20:ijms20205209. [PMID: 31640137 PMCID: PMC6829466 DOI: 10.3390/ijms20205209] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/11/2019] [Accepted: 10/18/2019] [Indexed: 11/16/2022] Open
Abstract
Since the beginning of the human immunodeficiency virus (HIV) epidemic, many groups of drugs characterized by diverse mechanisms of action have been developed, which can suppress HIV viremia. 3-O-(3′,3′-Dimethylsuccinyl) betulinic acid, known as bevirimat (BVM), was the first compound in the class of HIV maturation inhibitors. In the present work, phosphate and phosphonate derivatives of 3-carboxyacylbetulinic acid were synthesized and evaluated for anti-HIV-1 activity. In vitro studies showed that 30-diethylphosphonate analog of BVM (compound 14a) has comparable effects to BVM (half maximal inhibitory concentrations (IC50) equal to 0.02 μM and 0.03 μM, respectively) and is also more selective (selectivity indices: 3450 and 967, respectively). To investigate the possible mechanism of antiviral effect of 14a, molecular docking was carried out on the C-terminal domain (CTD) of HIV-1 capsid (CA)–spacer peptide 1 (SP1) fragment of Gag protein, designated as CTD-SP1, which was described as a molecular target for maturation inhibitors. Compared with interactions between BVM and the protein, an increased number of strong interactions between ligand 14a and protein, generated by the phosphonate group, was observed.
Collapse
Affiliation(s)
- Elwira Chrobak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland.
| | - Krzysztof Marciniec
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland.
| | | | - Paweł Pęcak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland.
| | - Ewa Bębenek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland.
| | - Monika Kadela-Tomanek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland.
| | - Andrzej Bak
- Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-007 Katowice, Poland.
| | - Maria Jastrzębska
- Department of Solid State Physics, Institute of Physics, Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland.
| | - Stanisław Boryczka
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland.
| |
Collapse
|
5
|
Urano E, Timilsina U, Kaplan JA, Ablan S, Ghimire D, Pham P, Kuruppu N, Mandt R, Durell SR, Nitz TJ, Martin DE, Wild CT, Gaur R, Freed EO. Resistance to Second-Generation HIV-1 Maturation Inhibitors. J Virol 2019; 93:e02017-18. [PMID: 30567982 PMCID: PMC6401422 DOI: 10.1128/jvi.02017-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022] Open
Abstract
A betulinic acid-based compound, bevirimat (BVM), inhibits HIV-1 maturation by blocking a late step in protease-mediated Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA. Previous studies showed that mutations conferring resistance to BVM cluster around the CA-SP1 cleavage site. Single amino acid polymorphisms in the SP1 region of Gag and the C terminus of CA reduced HIV-1 susceptibility to BVM, leading to the discontinuation of BVM's clinical development. We recently reported a series of "second-generation" BVM analogs that display markedly improved potency and breadth of activity relative to the parent molecule. Here, we demonstrate that viral clones bearing BVM resistance mutations near the C terminus of CA are potently inhibited by second-generation BVM analogs. We performed de novo selection experiments to identify mutations that confer resistance to these novel compounds. Selection experiments with subtype B HIV-1 identified an Ala-to-Val mutation at SP1 residue 1 and a Pro-to-Ala mutation at CA residue 157 within the major homology region (MHR). In selection experiments with subtype C HIV-1, we identified mutations at CA residue 230 (CA-V230M) and SP1 residue 1 (SP1-A1V), residue 5 (SP1-S5N), and residue 10 (SP1-G10R). The positions at which resistance mutations arose are highly conserved across multiple subtypes of HIV-1. We demonstrate that the mutations confer modest to high-level maturation inhibitor resistance. In most cases, resistance was not associated with a detectable increase in the kinetics of CA-SP1 processing. These results identify mutations that confer resistance to second-generation maturation inhibitors and provide novel insights into the mechanism of resistance.IMPORTANCE HIV-1 maturation inhibitors are a class of small-molecule compounds that block a late step in the viral protease-mediated processing of the Gag polyprotein precursor, the viral protein responsible for the formation of virus particles. The first-in-class HIV-1 maturation inhibitor bevirimat was highly effective in blocking HIV-1 replication, but its activity was compromised by naturally occurring sequence polymorphisms within Gag. Recently developed bevirimat analogs, referred to as "second-generation" maturation inhibitors, overcome this issue. To understand more about how these second-generation compounds block HIV-1 maturation, here we selected for HIV-1 mutants that are resistant to these compounds. Selections were performed in the context of two different subtypes of HIV-1. We identified a small set of mutations at highly conserved positions within the capsid and spacer peptide 1 domains of Gag that confer resistance. Identification and analysis of these maturation inhibitor-resistant mutants provide insights into the mechanisms of resistance to these compounds.
Collapse
Affiliation(s)
- Emiko Urano
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Uddhav Timilsina
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Justin A Kaplan
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Sherimay Ablan
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Dibya Ghimire
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Phuong Pham
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Nishani Kuruppu
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Rebecca Mandt
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Stewart R Durell
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | - Ritu Gaur
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
6
|
Insight into the mechanism of action of EP-39, a bevirimat derivative that inhibits HIV-1 maturation. Antiviral Res 2019; 164:162-175. [PMID: 30825471 DOI: 10.1016/j.antiviral.2019.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 12/15/2022]
Abstract
Maturation of human immunodeficiency virus type 1 (HIV-1) particles is a key step for viral infectivity. This process can be blocked using maturation inhibitors (MIs) that affect the cleavage of the capsid-spacer peptide 1 (CA-SP1) junction. Here, we investigated the mechanisms underlying the activity of EP-39, a bevirimat (BVM) derivative with better hydrosolubility. To this aim, we selected in vitro EP-39- and BVM-resistant mutants. We found that EP-39-resistant viruses have four mutations within the CA domain (CA-A194T, CA-T200N, CA-V230I, and CA-V230A) and one in the first residue of SP1 (SP1-A1V). We also identified six mutations that confer BVM resistance (CA-A194T, CA-L231F, CA-L231M, SP1-A1V, SP1-S5N and SP1-V7A). To characterize the EP-39 and BVM-resistant mutants, we studied EP-39 effects on mutant virus replication and performed a biochemical analysis with both MIs. We observed common and distinct characteristics, suggesting that, although EP-39 and BVM share the same chemical skeleton, they could interact in a different way with the Gag polyprotein precursor (Pr55Gag). Using an in silico approach, we observed that EP-39 and BVM present different predicted positions on the hexameric crystal structure of the CACTD-SP1 Gag fragment. To clearly understand the relationship between assembly and maturation, we investigated the impact of all identified mutations on virus assembly by expressing Pr55Gag mutants. Finally, using NMR, we have shown that the interaction of EP-39 with a peptide carrying the SP1-A1V mutation (CA-SP1(A1V)-NC) is almost suppressed in comparison with the wild type peptide. These results suggest that EP-39 and BVM could interact differently with the Pr55Gag lattice and that the mutation of the first SP1 residue induces a loss of interaction between Pr55Gag and EP-39.
Collapse
|
7
|
Tsai CW, Tsai RT, Liu SP, Chen CS, Tsai MC, Chien SH, Hung HS, Lin SZ, Shyu WC, Fu RH. Neuroprotective Effects of Betulin in Pharmacological and Transgenic Caenorhabditis elegans Models of Parkinson's Disease. Cell Transplant 2018; 26:1903-1918. [PMID: 29390878 PMCID: PMC5802634 DOI: 10.1177/0963689717738785] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common degenerative disorder of the central nervous system in the elderly. It is characterized by progressive loss of dopaminergic neurons in the substantia nigra pars compacta, as well as by motor dysfunction. Although the causes of PD are not well understood, aggregation of α-synuclein (α-syn) in neurons contributes to this disease. Current therapeutics for PD provides satisfactory symptom relief but not a cure. Treatment strategies include attempts to identify new drugs that will prevent or arrest the progressive course of PD by correcting disease-specific pathogenic process. Betulin is derived from the bark of birch trees and possesses anticancer, antimicrobial, and anti-inflammatory properties. The aim of the present study was to evaluate the potential for betulin to ameliorate PD features in Caenorhabditis elegans (C. elegans) models. We demonstrated that betulin diminished α-syn accumulation in the transgenic C. elegans model. Betulin also reduced 6-hydroxydopamine-induced dopaminergic neuron degeneration, reduced food-sensing behavioral abnormalities, and reversed life-span decreases in a pharmacological C. elegans model. Moreover, we found that the enhancement of proteasomes activity by promoting rpn1 expression and downregulation of the apoptosis pathway gene, egl-1, may be the molecular mechanism for betulin-mediated protection against PD pathology. Together, these findings support betulin as a possible treatment for PD and encourage further investigations of betulin as an antineurodegenerative agent.
Collapse
Affiliation(s)
- Chia-Wen Tsai
- 1 Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Rong-Tzong Tsai
- 2 Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Shih-Ping Liu
- 3 Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,4 Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Chang-Shi Chen
- 5 Department of Biochemical and Molecular Biology, National Cheng Kung University, Tainan, Taiwan
| | - Min-Chen Tsai
- 3 Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Shao-Hsuan Chien
- 3 Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Huey-Shan Hung
- 3 Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,4 Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Shinn-Zong Lin
- 6 Bioinnovation Center, Tzu Chi foundation, Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - Woei-Cherng Shyu
- 3 Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,4 Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Ru-Huei Fu
- 3 Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,4 Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan.,7 Department of Psychology, Asia University, Taichung, Taiwan
| |
Collapse
|
8
|
Structure and Anti-HIV Activity of Betulinic Acid Analogues. Curr Med Sci 2018; 38:387-397. [PMID: 30074203 DOI: 10.1007/s11596-018-1891-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/13/2017] [Indexed: 10/28/2022]
Abstract
Firstly discovered in 1980s, human immunodeficiency virus (HIV) continues to affect more and more people. However, there is no effective drug available for the therapy of HIV infection. Betulinic acid existing in various medicinal herbs and fruits exhibits multiple biological effects, especially its outstanding anti-HIV activity, which has drawn the attentions of many pharmacists. Among the derivatives of betulinic acid, some compounds exhibited inhibitory activities at the nanomolar concentration, and have entered phase II clinical trials. This paper summarizes the current investigations on the anti-HIV activity of betulinic acid analogues, and provides valuable data for subsequent researches.
Collapse
|
9
|
Tang J, Jones SA, Jeffrey JL, Miranda SR, Galardi CM, Irlbeck DM, Brown KW, McDanal CB, Johns BA. Discovery of a novel and potent class of anti-HIV-1 maturation inhibitors with improved virology profile against gag polymorphisms. Bioorg Med Chem Lett 2017; 27:2689-2694. [PMID: 28454672 DOI: 10.1016/j.bmcl.2017.04.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 12/27/2022]
Abstract
A new class of betulin-derived α-keto amides was identified as HIV-1 maturation inhibitors. Through lead optimization, GSK8999 was identified with IC50 values of 17nM, 23nM, 25nM, and 8nM for wild type, Q369H, V370A, and T371A respectively. When tested in a panel of 62 HIV-1 isolates covering a diversity of CA-SP1 genotypes including A, AE, B, C, and G using a PBMC based assay, GSK8999 was potent against 57 of 62 isolates demonstrating an improvement over the first generation maturation inhibitor BVM. The data disclosed here also demonstrated that the new α-keto amide GSK8999 has a mechanism of action consistent with inhibition of the proteolytic cleavage of CA-SP1.
Collapse
Affiliation(s)
- Jun Tang
- GlaxoSmithKline Research & Development, Infectious Diseases Therapy Area Unit, Research Triangle Park, NC 27709, USA.
| | - Stacey A Jones
- GlaxoSmithKline Research & Development, Infectious Diseases Therapy Area Unit, Research Triangle Park, NC 27709, USA
| | - Jerry L Jeffrey
- GlaxoSmithKline Research & Development, Infectious Diseases Therapy Area Unit, Research Triangle Park, NC 27709, USA
| | - Sonia R Miranda
- GlaxoSmithKline Research & Development, Infectious Diseases Therapy Area Unit, Research Triangle Park, NC 27709, USA
| | - Cristin M Galardi
- GlaxoSmithKline Research & Development, Infectious Diseases Therapy Area Unit, Research Triangle Park, NC 27709, USA
| | - David M Irlbeck
- GlaxoSmithKline Research & Development, Infectious Diseases Therapy Area Unit, Research Triangle Park, NC 27709, USA
| | - Kevin W Brown
- GlaxoSmithKline Research & Development, Infectious Diseases Therapy Area Unit, Research Triangle Park, NC 27709, USA
| | - Charlene B McDanal
- GlaxoSmithKline Research & Development, Infectious Diseases Therapy Area Unit, Research Triangle Park, NC 27709, USA
| | - Brian A Johns
- GlaxoSmithKline Research & Development, Infectious Diseases Therapy Area Unit, Research Triangle Park, NC 27709, USA
| |
Collapse
|
10
|
Kumar D, Dubey KK. Chapter 8 Betulin Biotransformation toward Its Antitumor Activities. Microb Biotechnol 2016. [DOI: 10.1201/9781315367880-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
11
|
Zhao Y, Gu Q, Morris-Natschke SL, Chen CH, Lee KH. Incorporation of Privileged Structures into Bevirimat Can Improve Activity against Wild-Type and Bevirimat-Resistant HIV-1. J Med Chem 2016; 59:9262-9268. [PMID: 27676157 DOI: 10.1021/acs.jmedchem.6b00461] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two "privileged fragments", caffeic acid and piperazine, were integrated into bevirimat producing new derivatives with improved activity against HIV-1/NL4-3 and NL4-3/V370A carrying the most prevalent bevirimat-resistant polymorphism. The activity of one of these, 18c, was increased by 3-fold against NL4-3 and 51-fold against NL4-3/V370A. Moreover, 18c is a maturation inhibitor with improved metabolic stability. Our study suggested that integration of privileged motifs into promising natural product skeletons is an effective strategy for discovering potent derivatives.
Collapse
Affiliation(s)
- Yu Zhao
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599-7568, United States
| | - Qiong Gu
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599-7568, United States.,Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, People's Republic of China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599-7568, United States
| | - Chin-Ho Chen
- Surgical Oncology Research Facility, Duke University Medical Center , Box 2926, Durham, North Carolina 27710, United States
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599-7568, United States.,Chinese Medicine Research and Development Center, China Medical University and Hospital , 404 Taichung, Taiwan
| |
Collapse
|
12
|
Sun L, Gao P, Zhan P, Liu X. Pyrazolo[1,5-a]pyrimidine-based macrocycles as novel HIV-1 inhibitors: a patent evaluation of WO2015123182. Expert Opin Ther Pat 2016; 26:979-86. [PMID: 27398994 DOI: 10.1080/13543776.2016.1210127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The emergence of drug resistance in Combination Antiretroviral Therapy (cART) confirms a continuing need to investigate novel HIV-1 inhibitors with unexplored mechanisms of action. Recently, a series of pyrazolopyrimidine-based macrocyclic compounds were reported as inhibitors of HIV-1 replication disclosed in the patent WO2015123182. Most of the disclosed compounds possessed in vitro antiviral potency in single-digit nanomolar range, which were determined by MT-2 cell assay. Then, the structural diversity, pharmacophore similarity of HIV-1 IN-LEDGF/p75 inhibitors, and implications for drug design were analyzed. In the end of this article, a glimpse of some macrocycles as potent antiviral agents (drug candidates) was provided. Some strategies and technologies enabling macrocycle design were also described. We expect that further development of these macrocyclic compounds will offer new anti-HIV-1 drug candidates.
Collapse
Affiliation(s)
- Lin Sun
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Ping Gao
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Peng Zhan
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Xinyong Liu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| |
Collapse
|
13
|
|
14
|
Abstract
The virally encoded protease is an important drug target for AIDS therapy. Despite the potency of the current drugs, infections with resistant viral strains limit the long-term effectiveness of therapy. Highly resistant variants of HIV protease from clinical isolates have different combinations of about 20 mutations and several orders of magnitude worse binding affinity for clinical inhibitors. Strategies are being explored to inhibit these highly resistant mutants. The existing inhibitors can be modified by introducing groups with the potential to form new interactions with conserved protease residues, and the flexible flaps. Alternative strategies are discussed, including designing inhibitors to bind to the open conformation of the protease dimer, and inhibition of the protease-catalyzed processing of the Gag-Pol precursor.
Collapse
|
15
|
Alkyl Amine Bevirimat Derivatives Are Potent and Broadly Active HIV-1 Maturation Inhibitors. Antimicrob Agents Chemother 2015; 60:190-7. [PMID: 26482309 DOI: 10.1128/aac.02121-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/12/2015] [Indexed: 11/20/2022] Open
Abstract
Concomitant with the release of human immunodeficiency virus type 1 (HIV-1) particles from the infected cell, the viral protease cleaves the Gag polyprotein precursor at a number of sites to trigger virus maturation. We previously reported that a betulinic acid-derived compound, bevirimat (BVM), blocks HIV-1 maturation by disrupting a late step in protease-mediated Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA. BVM was shown in multiple clinical trials to be safe and effective in reducing viral loads in HIV-1-infected patients. However, naturally occurring polymorphisms in the SP1 region of Gag (e.g., SP1-V7A) led to a variable response in some BVM-treated patients. The reduced susceptibility of SP1-polymorphic HIV-1 to BVM resulted in the discontinuation of its clinical development. To overcome the loss of BVM activity induced by polymorphisms in SP1, we carried out an extensive medicinal chemistry campaign to develop novel maturation inhibitors. In this study, we focused on alkyl amine derivatives modified at the C-28 position of the BVM scaffold. We identified a set of derivatives that are markedly more potent than BVM against an HIV-1 clade B clone (NL4-3) and show robust antiviral activity against a variant of NL4-3 containing the V7A polymorphism in SP1. One of the most potent of these compounds also strongly inhibited a multiclade panel of primary HIV-1 isolates. These data demonstrate that C-28 alkyl amine derivatives of BVM can, to a large extent, overcome the loss of susceptibility imposed by polymorphisms in SP1.
Collapse
|
16
|
Chingwaru W, Vidmar J, Kapewangolo PT. The Potential of Sub-Saharan African Plants in the Management of Human Immunodeficiency Virus Infections: A Review. Phytother Res 2015; 29:1452-87. [PMID: 26337608 DOI: 10.1002/ptr.5433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 07/09/2015] [Accepted: 07/22/2015] [Indexed: 12/28/2022]
Abstract
Acquired immunodeficiency syndrome, caused by human immunodeficiency virus (HIV), is a leading cause of mortality and morbidity in Sub-Saharan Africa, particularly in Southern Africa. Phytomedicines are an integral part of African health care. The Southern African flora is composed of at least 23 400 taxa. Despite this richness, only a handful of botanical products have been assessed for activities against HIV. This study aimed to summarize the potential of Sub-Saharan African plants, based on their composition and the established bioactivities, as sources of agents to manage HIV symptoms and as retroviral therapy. At least 109 plant species from 42 families and 94 genera that are found in Southern Africa were shown to have potential or actual activities against HIV. Only 12 of these plant species from 6 families and 10 genera were shown to harbour anti-HIV properties. Phytochemicals that include β-sitosterols, terpenoids, glycosides, saponins, flavonoids, triterpenoids, tannins and alkaloids, which harbour anti-HIV properties, were found to have a near cosmopolitan presence across the plant families in the region. Bioactivities of multiple phytochemicals are comparable to those for standard allopathic antiretroviral drugs. Research to determine the anti-HIV activities of the identified and other plants, including clinical trials, is long overdue.
Collapse
Affiliation(s)
- Walter Chingwaru
- Department of Biological Sciences, Faculty of Science, Bindura University of Science Education, P. Bag 1020, Bindura, Zimbabwe.,Institute Ceres/Zavod Ceres, Lahovna 16, 3000, Celje, Slovenia
| | - Jerneja Vidmar
- Institute Ceres/Zavod Ceres, Lahovna 16, 3000, Celje, Slovenia.,Department of Plastic and Reconstructive Surgery, University Medical Centre Maribor, Ljubljanska 5, 2000, Maribor, Slovenia
| | - Petrina T Kapewangolo
- Department of Chemistry and Biochemistry, University of Namibia, P/Bag 13301, 340 Mandume Ndemufayo Avenue, Pionierspark, Windhoek, Namibia
| |
Collapse
|