1
|
Karras SN, Michalakis K, Katsiki N, Kypraiou M, Vlastos A, Anemoulis M, Koukoulis G, Mouslech Z, Talidis F, Tzimagiorgis G, Haitoglou C, Georgios Μ, Papanikolaou EG, Dimitrios S, Georgopoulos N. Interrelations of Leptin and Interleukin-6 in Vitamin D Deficient and Overweight Orthodox Nuns from Northern Greece: A Pilot Study. Nutrients 2025; 17:1144. [PMID: 40218903 PMCID: PMC11990288 DOI: 10.3390/nu17071144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Athonian fasting, a rigorous form of intermittent fasting practiced by Christian Orthodox nuns and a subset of the Mediterranean diet, has known health benefits, but its impact on the interplay of adipokines, inflammatory cytokines, and vitamin D status remains under-investigated. This study aimed to elucidate these relationships within this controlled dietary context. Methods: This cross-sectional study examined the interplay of leptin, interleukin-6 (IL-6), and vitamin D in 41 overweight, vitamin D-sufficient Christian Orthodox nuns practicing Athonian fasting. Anthropometric, biochemical, and inflammatory markers were assessed in the nuns (mean age 53.4 ± 17.1 years, median monastery stay 17 years, median BMI 26.8 kg/m2). Results: Analysis revealed significant positive correlations between age and monastery stay (r = 0.615, p < 0.001), age and visceral fat (ρ = 0.791, p < 0.001), age and IL-6 (ρ = 0.647, p < 0.001), and BMI and IL-6 (ρ = 0.622, p < 0.001). Strong associations existed between adiposity (BMI, body fat, visceral fat), leptin, and IL-6. Specifically, body fat showed substantial positive correlations with visceral fat (ρ = 0.858, p < 0.001), leptin (ρ = 0.538, p < 0.001), and IL-6 (ρ = 0.675, p < 0.001). Visceral fat demonstrated strong positive correlations with leptin (ρ = 0.613, p < 0.001) and IL-6 (ρ = 0.741, p < 0.001). A significant positive correlation was also observed between leptin and IL-6 (ρ = 0.507, p = 0.003). Conversely, a significant negative correlation was found between 25(OH)D and PTH (ρ = -0.380, p = 0.016). Multivariate regression analysis did not reveal independent effects of leptin or IL-6 after adjusting for other factors. Conclusions: This study reveals a complex interplay of adiposity, inflammation, and vitamin D status in this unique population of Orthodox monastery fasters. The strong correlations suggest potential targets for interventions aimed at improving metabolic health. Future research should investigate the effects of vitamin D within the context of Athonian fasting.
Collapse
Affiliation(s)
- Spyridon N. Karras
- Laboratory of Biological Chemistry, Medical School, Aristotle University, 54124 Thessaloniki, Greece; (G.T.)
| | | | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece;
- School of Medicine, European University Cyprus Nicosia, Nicosia 2404, Cyprus;
| | - Maria Kypraiou
- Assisting Nature Centre of Reproduction and Genetics, 57001 Thessaloniki, Greece;
| | - Antonios Vlastos
- Medical School, Aristotle University, 54124 Thessaloniki, Greece (M.A.)
| | - Marios Anemoulis
- Medical School, Aristotle University, 54124 Thessaloniki, Greece (M.A.)
| | - Georgios Koukoulis
- Department of Endocrinology, University of Thessaly School of Medicine, 41500 Larissa, Greece
| | - Zadalla Mouslech
- 1st Medical Propedeutic, Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | | | - Georgios Tzimagiorgis
- Laboratory of Biological Chemistry, Medical School, Aristotle University, 54124 Thessaloniki, Greece; (G.T.)
| | - Costas Haitoglou
- Laboratory of Biological Chemistry, Medical School, Aristotle University, 54124 Thessaloniki, Greece; (G.T.)
| | - Μichos Georgios
- Third Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | | | - Skoutas Dimitrios
- Thermi Clinic, Internal Medicine and Diabetes Department 14th km National Road Thessalonikis-Moudanion, 57001 Thessaloniki, Greece;
| | - Neoklis Georgopoulos
- Division of Endocrinology, Department of Internal Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece
| |
Collapse
|
2
|
Dharia A, Desai D, Desai K. Exploring the Link Between Thyroid Disorders and Obesity : Mechanisms, Impacts, and Clinical Implications. Endocr Pract 2025:S1530-891X(25)00043-6. [PMID: 39952472 DOI: 10.1016/j.eprac.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/22/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Obesity and thyroid dysfunction are among the most significant challenges in endocrinology, frequently overlapping to create complexities in weight management. Even after achieving euthyroidism weight variations persist, significantly affecting patients' quality of life. This review explores the mechanisms linking hypothyroidism and hyperthyroidism to weight fluctuations, emphasizing their impact on basal metabolic rate, appetite regulation, glucose and lipid metabolism, and thermogenesis. We conducted a comprehensive review using PubMed and Google Scholar, applying the search criteria: (obesity OR overweight) AND (Hashimoto's thyroiditis OR hyperthyroidism OR hypothyroidism OR Thyroid Cancer). From this search, we reviewed 500 publications and finally included 72 publications, focusing on broad clinical questions regarding the role of thyroid hormones in weight regulation and metabolism, the impact of thyroid disorders and their treatments on obesity, and approaches for managing obesity in the context of thyroid dysfunction. In hypothyroidism, the impact of levothyroxine therapy on weight changes is discussed, along with the potential role of T3 supplementation. For hyperthyroid patients, the effects of antithyroid medications, radioactive iodine therapy, and thyroidectomy on weight regulation are explored. Pharmacological and non-pharmacological strategies for managing obesity in thyroid disorders are reviewed. Lifestyle interventions and pharmacotherapies are evaluated for their efficacy and potential effects on thyroid function. Lastly, the implications of bariatric surgery are explored, including its effects on thyroid function, medication absorption, and post-surgical management of thyroid disorders. This review underscores the importance of an integrated, multidisciplinary approach to managing obesity in the context of thyroid dysfunction to optimize patient outcomes.
Collapse
Affiliation(s)
- Ashni Dharia
- Department of Internal Medicine, Allegheny General Hospital, Pittsburgh, Pennsylvania, USA.
| | - Dimpi Desai
- Department of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, California
| | - Kaniksha Desai
- Department of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
3
|
Kokkorakis M, Katsarou A, Katsiki N, Mantzoros CS. Milestones in the journey towards addressing obesity; Past trials and triumphs, recent breakthroughs, and an exciting future in the era of emerging effective medical therapies and integration of effective medical therapies with metabolic surgery. Metabolism 2023; 148:155689. [PMID: 37689110 DOI: 10.1016/j.metabol.2023.155689] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/11/2023]
Abstract
The 21st century is characterized by an increasing incidence and prevalence of obesity and the burden of its associated comorbidities, especially cardiometabolic diseases, which are reaching pandemic proportions. In the late '90s, the "black box" of adipose tissue and energy homeostasis was opened with the discovery of leptin, transforming the adipose tissue from an "inert fat-storage organ" to the largest human endocrine organ and creating the basis on which more intensified research efforts to elucidate the pathogenesis of obesity and develop novel treatments were based upon. Even though leptin was eventually not proven to be the "standalone magic bullet" for the treatment of common/polygenic obesity, it has been successful in the treatment of monogenic obesity syndromes. Additionally, it shifted the paradigm of treating obesity from a condition due to "lack of willpower" to a disease due to distinct underlying biological mechanisms for which specific pharmacotherapies would be needed in addition to lifestyle modification. Subsequently, the melanocortin pathway proved to be an equally valuable pathway for the pharmacotherapy of obesity. Melanocortin receptor agonists have recently been approved for treating certain types of syndromic obesity. Other molecules- such as incretins, implicated in energy and glucose homeostasis- are secreted by the gastrointestinal tract. Glucagon-like peptide 1 (GLP-1) is the most prominent one, with GLP-1 analogs approved for common/polygenic obesity. Unimolecular combinations with other incretins, e.g., GLP-1 with gastric inhibitory polypeptide and/or glucagon, are expected to be approved soon as more effective pharmacotherapies for obesity and its comorbidities. Unimolecular combinations with other compounds and small molecules activating the receptors of these molecules are currently under investigation as promising future pharmacotherapies. Moreover, metabolic and bariatric surgery has also demonstrated impressive results, especially in the case of morbid obesity. Consequently, this broadening therapeutic armamentarium calls for a well-thought-after and well-coordinated multidisciplinary approach, for instance, through cardiometabolic expertise centers, that would ideally address effectively and cost-effectively obesity and its comorbidities, providing tangible benefits to large segments of the population.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Angeliki Katsarou
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Yang T, Yuan Z, Liu C, Liu T, Zhang W. A neural circuit integrates pharyngeal sensation to control feeding. Cell Rep 2021; 37:109983. [PMID: 34758309 DOI: 10.1016/j.celrep.2021.109983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/20/2021] [Accepted: 10/20/2021] [Indexed: 11/18/2022] Open
Abstract
Swallowing is an essential step of eating and drinking. However, how the quality of a food bolus is sensed by pharyngeal neurons is largely unknown. Here we find that mechanical receptors along the Drosophila pharynx are required for control of meal size, especially for food of high viscosity. The mechanical force exerted by the bolus passing across the pharynx is detected by neurons expressing the mechanotransduction channel NOMPC (no mechanoreceptor potential C) and is relayed, together with gustatory information, to IN1 neurons in the subesophageal zone (SEZ) of the brain. IN1 (ingestion neurons) neurons act directly upstream of a group of peptidergic neurons that encode satiety. Prolonged activation of IN1 neurons suppresses feeding. IN1 neurons receive inhibition from DSOG1 (descending subesophageal neurons) neurons, a group of GABAergic neurons that non-selectively suppress feeding. Our results reveal the function of pharyngeal mechanoreceptors and their downstream neural circuits in the control of food ingestion.
Collapse
Affiliation(s)
- Tingting Yang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Zixuan Yuan
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Chenxi Liu
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Ting Liu
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Wei Zhang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
5
|
Xu XY, Zhao CN, Li BY, Tang GY, Shang A, Gan RY, Feng YB, Li HB. Effects and mechanisms of tea on obesity. Crit Rev Food Sci Nutr 2021:1-18. [PMID: 34704503 DOI: 10.1080/10408398.2021.1992748] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Obesity has become a global health concern. It increases the risk of several diseases, such as type 2 diabetes mellitus, nonalcoholic fatty liver disease, and certain cancers, which threatens human health and increases social economic burden. As one of the most consumed beverages, tea contains various phytochemicals with potent bioactive properties and health-promoting effects, such as antioxidant, immune-regulation, cardiovascular protection and anticancer. Tea and its components are also considered as potential candidates for anti-obesity. Epidemiological studies indicate that regular consumption of tea is beneficial for reducing body fat. In addition, the experimental studies demonstrate that the potential anti-obesity mechanisms of tea are mainly involved in increasing energy expenditure and lipid catabolism, decreasing nutrient digestion and absorption as well as lipid synthesis, and regulating adipocytes, neuroendocrine system and gut microbiota. Moreover, most of clinical studies illustrate that the intake of green tea could reduce body weight and alleviate the obesity. In this review, we focus on the effect of tea and its components on obesity from epidemiological, experimental, and clinical studies, and discuss their potential mechanisms.
Collapse
Affiliation(s)
- Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.,Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, China Hong Kong
| | - Cai-Ning Zhao
- Li Ka Shing Faculty of Medicine, Department of Clinical Oncology, The University of Hong Kong, China Hong Kong
| | - Bang-Yan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Guo-Yi Tang
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, China Hong Kong
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.,Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, China Hong Kong
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, Chengdu University, Chengdu, China
| | - Yi-Bin Feng
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, China Hong Kong
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
6
|
Su X, Peng D. Emerging functions of adipokines in linking the development of obesity and cardiovascular diseases. Mol Biol Rep 2020; 47:7991-8006. [PMID: 32888125 DOI: 10.1007/s11033-020-05732-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
Abstract
Increasing evidence shows that obesity is the critical factor in shaping cardio-metabolic phenotypes. However, the pathogenic mechanisms remain incompletely clarified. According to the published reports, adipose tissue communicates with several diverse organs, such as heart, lungs, and kidneys through the secretion of various cytokines named adipokines. The adipocytes isolated from obese mice or humans are dysfunctional with aberrant production of pro-inflammatory adipokines, which subsequently induce both acute and chronic inflammatory reaction and facilitate the process of cardio-metabolic disorder complications. Furthermore, the microenvironment within adipose tissue under obese status also influence the secretion of adipokines. Recently, given that several important adipokines have been completely researched and causally involved in various diseases, we could make a conclusion that adipokines play an essential role in modulating the development of cardio-metabolic disorder diseases, whereas several novel adipokines continue to be explored and elucidated. In the present review, we summarized the current knowledge of the microenvironment of adipose tissue and the published mechanisms whereby adipocytes affects obesity and cardiovascular diseases. On the other hand, we also provide the evidence to elucidate the functions of adipokines in controlling and regulating the inflammatory reactions which contribute to obesity and cardiovascular disease.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China.,Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
7
|
Katsiki N, Mikhailidis DP, Banach M. Leptin, cardiovascular diseases and type 2 diabetes mellitus. Acta Pharmacol Sin 2018; 39:1176-1188. [PMID: 29877321 PMCID: PMC6289384 DOI: 10.1038/aps.2018.40] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
Abstract
Leptin, an adipokine that is implicated in the control of food intake via appetite suppression, may also stimulate oxidative stress, inflammation, thrombosis, arterial stiffness, angiogenesis and atherogenesis. These leptin-induced effects may predispose to the development of cardiovascular diseases. In the present review we discuss the evidence linking leptin levels with the presence, severity and/or prognosis of both coronary artery disease and non-cardiac vascular diseases such as stroke, carotid artery disease, peripheral artery disease (PAD) and abdominal aortic aneurysms (AAA) as well as with chronic kidney disease (CKD) and type 2 diabetes mellitus (T2DM). Leptin levels have been positively associated with the presence, severity, extent and lesion complexity of coronary atherosclerosis as well as with the presence, severity and poor clinical outcomes of both ischemic and hemorrhagic strokes. But conflicting results also exist. Furthermore, leptin was reported to independently predict common carotid intima-media thickness and carotid plaque instability. A link between hyperleptinemia and PAD has been reported, whereas limited data were available on the potential association between leptin and AAA. Elevated leptin concentrations have also been related to CKD incidence and progression as well as with insulin resistance, T2DM, micro- and macrovascular diabetic complications. Statins and antidiabetic drugs (including sitagliptin, metformin, pioglitazone, liraglutide and empagliflozin) may affect leptin levels. Further research is needed to establish the potential use (if any) of leptin as a therapeutic target in these diseases.
Collapse
Affiliation(s)
- Niki Katsiki
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippocration Hospital, Thessaloniki, Greece
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, UK.
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
8
|
Acupuncture on Obesity: Clinical Evidence and Possible Neuroendocrine Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:6409389. [PMID: 30013603 PMCID: PMC6022277 DOI: 10.1155/2018/6409389] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/14/2018] [Accepted: 05/27/2018] [Indexed: 12/11/2022]
Abstract
Objective Acupuncture, as one of the complementary and alternative medicines, represents an efficient therapeutic option for obesity control. We conducted a meta-analysis to investigate the effectiveness of acupuncture in obesity and also summarized the available studies on exploring the mechanisms. Design We searched six databases from the inception to April 2017 without language restriction. Eligible studies consisted of acupuncture with comparative controls ((1) sham acupuncture, (2) no treatment, (3) diet and exercise, and (4) conventional medicine). The primary outcomes consisted of BMI, body weight reduction, and incidence of cardiovascular events (CVD). Secondary outcomes included waist circumference (WC), waist-to-hip ratio (WHR), body fat mass percent, body fat mass (kg), total cholesterol (TC), triglyceride (TG), glucose, low density lipoprotein cholesterol (LDL-c) reduction, high density lipoprotein cholesterol (HDL-c) increase, and adverse effects. The quality of RCTs was assessed by the Cochrane Risk of Bias Tool. Subgroup analyses were performed according to types of acupuncture. A random effects model was used to adjust for the heterogeneity of the included studies. Publication bias was assessed using funnel plots. Main Results We included 21 studies with 1389 participants. When compared with sham acupuncture, significant reductions in BMI (MD=-1.22, 95%CI=-1.87 to -0.56), weight (MD=-1.54, 95%CI=-2.98 to -0.11), body fat mass (kg) (MD=-1.31, 95%CI=-2.47 to -0.16), and TC (SMD=-0.63, 95%CI=-1.00 to -0.25) were found. When compared with no treatment group, significant reductions of BMI (MD=-1.92, 95%CI=-3.04 to -0.79), WHR (MD=-0.05, 95%CI=-0.09 to -0.02), TC (MD=-0.26, 95%CI=-0.48 to -0.03), and TG (MD=-0.29 95%CI=-0.39 to -0.18) were found. When compared with diet and exercise group, significant reduction in BMI (MD=-1.24, 95%CI=-1.87 to -0.62) and weight (MD=-3.27 95%CI=-5.07 to -1.47) was found. Adverse effects were reported in 5 studies. Conclusions We concluded that acupuncture is an effective treatment for obesity and inferred that neuroendocrine regulation might be involved.
Collapse
|
9
|
Roff H, Jappy C. Adiposity and the Role of Neuroendocrine Hormones in Energy Balance. AACN Adv Crit Care 2018; 28:284-288. [PMID: 28847863 DOI: 10.4037/aacnacc2017712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Obesity is a worldwide health concern and, given the risk for developing associated co-morbidities that increase mortality, obesity has health implications for individuals and populations. Obesity involves multifactorial regulatory mechanisms, and recognition of these mechanisms will enhance the care critical care nurses provide to their patients. This article reviews the general physiological mechanisms of energy storage and the regulation of adiposity related to key neuroendocrine hormones. The authors also highlight the implications for nursing care for critically ill patients suffering from obesity.
Collapse
Affiliation(s)
- Heather Roff
- Heather Roff is Critical Care Clinical Nurse Specialist, Donor Network West, 12667 Alcosta Boulevard #500, San Ramon, CA 94583 . Colette Jappy is Clinical Nurse Specialist, Kaiser Permanente, Redwood City, CA
| | - Colette Jappy
- Heather Roff is Critical Care Clinical Nurse Specialist, Donor Network West, 12667 Alcosta Boulevard #500, San Ramon, CA 94583 . Colette Jappy is Clinical Nurse Specialist, Kaiser Permanente, Redwood City, CA
| |
Collapse
|
10
|
Salek-Maghsoudi A, Vakhshiteh F, Torabi R, Hassani S, Ganjali MR, Norouzi P, Hosseini M, Abdollahi M. Recent advances in biosensor technology in assessment of early diabetes biomarkers. Biosens Bioelectron 2018; 99:122-135. [DOI: 10.1016/j.bios.2017.07.047] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 01/26/2023]
|
11
|
Effect of spineless cactus intake (Opuntia ficus-indica) on blood glucose levels in lactating sows and its impact on feed intake, body weight loss, and weaning-estrus interval. Trop Anim Health Prod 2017; 49:1025-1033. [PMID: 28455607 PMCID: PMC5432610 DOI: 10.1007/s11250-017-1295-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/19/2017] [Indexed: 01/10/2023]
Abstract
The effect of spineless cactus intake (Opuntia ficus-indica) on blood glucose (BG) levels in lactating sows and its impact on daily and total feed intake (dFI−1 and TFI, respectively), body weight loss (BWL), and weaning-estrus interval length (WEI) were evaluated. Thirty-four hybrid (Yorkshire × Landrace × Pietrain) sows in lactation phase were used. Sows were divided into two groups: G1 (n = 17) where they received commercial feed and G2 (n = 17) provided with commercial feed plus an average of 2.0 ± 0.5 kg spineless cactus, based on a sow’s body weight. The variables evaluated were BG, dFI−1, TFI, BWL, and WEI. Statistical analysis was performed by using a fixed and mixed model methodology, under a repeated measurements experiment. Group effects were found on all analyzed variables (P < 0.05). The BG was lower in G2 (55.2 and 64.5 mg/dL pre- and post-prandial, respectively), compared to that in G1 (70.9 and 80.1 mg/dL pre- and post-prandial, respectively) (P < 0.05). G2 showed better performance than G1 for dFI−1, BWL, and WEI (P < 0.05) whose averages were 5.5 ± 1.8 kg, 7.4 ± 4.5%, and 5.3 ± 1.2 days, respectively. Averages for these variables in G1 were 4.7 ± 1.5 kg, 16.8 ± 4.6%, and 6.1 ± 1.6 days, respectively. Intake of spineless cactus reduced BG levels in lactating sows, generating greater dFI−1, lower BWL at the end of lactation, and a lower WEI.
Collapse
|
12
|
Zanchi D, Meyer-Gerspach AC, Suenderhauf C, Janach K, le Roux CW, Haller S, Drewe J, Beglinger C, Wölnerhanssen BK, Borgwardt S. Differential effects of L-tryptophan and L-leucine administration on brain resting state functional networks and plasma hormone levels. Sci Rep 2016; 6:35727. [PMID: 27760995 PMCID: PMC5071755 DOI: 10.1038/srep35727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/04/2016] [Indexed: 12/28/2022] Open
Abstract
Depending on their protein content, single meals can rapidly influence the uptake of amino acids into the brain and thereby modify brain functions. The current study investigates the effects of two different amino acids on the human gut-brain system, using a multimodal approach, integrating physiological and neuroimaging data. In a randomized, placebo-controlled trial, L-tryptophan, L-leucine, glucose and water were administered directly into the gut of 20 healthy subjects. Functional MRI (fMRI) in a resting state paradigm (RS), combined with the assessment of insulin and glucose blood concentration, was performed before and after treatment. Independent component analysis with dual regression technique was applied to RS-fMRI data. Results were corrected for multiple comparisons. In comparison to glucose and water, L-tryptophan consistently modifies the connectivity of the cingulate cortex in the default mode network, of the insula in the saliency network and of the sensory cortex in the somatosensory network. L-leucine has lesser effects on these functional networks. L-tryptophan and L-leucine also modified plasma insulin concentration. Finally, significant correlations were found between brain modifications after L-tryptophan administration and insulin plasma levels. This study shows that acute L-tryptophan and L-leucine intake directly influence the brain networks underpinning the food-reward system and appetite regulation.
Collapse
Affiliation(s)
- Davide Zanchi
- Department of Psychiatry, University Hospital of Basel, CH-4012 Basel, Switzerland
| | | | - Claudia Suenderhauf
- Department of Psychiatry, University Hospital of Basel, CH-4012 Basel, Switzerland
| | - Katharina Janach
- Department of Biomedicine, University Hospital, CH-4031 Basel Switzerland
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute University College Dublin, Dublin, Ireland
| | - Sven Haller
- Faculty of Medicine of the University of Geneva, Switzerland.,Affidea CDRC - Centre Diagnostique Radiologique de Carouge, Switzerland.,Department of Surgical Sciences, Radiology Uppsala University, Uppsala, Sweden.,Department of Neuroradiology, University Hospital Freiburg, Germany.,Faculty of Medicine of the University of Geneva, Switzerland
| | - Jürgen Drewe
- Department of Research, St. Claraspital, Switzerland
| | | | - Bettina K Wölnerhanssen
- Department of Biomedicine, University Hospital, CH-4031 Basel Switzerland.,Department of Research, St. Claraspital, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry, University Hospital of Basel, CH-4012 Basel, Switzerland
| |
Collapse
|
13
|
Hakim F, Wang Y, Carreras A, Hirotsu C, Zhang J, Peris E, Gozal D. Chronic sleep fragmentation during the sleep period induces hypothalamic endoplasmic reticulum stress and PTP1b-mediated leptin resistance in male mice. Sleep 2015; 38:31-40. [PMID: 25325461 DOI: 10.5665/sleep.4320] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/30/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sleep fragmentation (SF) is highly prevalent and may constitute an important contributing factor to excessive weight gain and the metabolic syndrome. Increased endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) leading to the attenuation of leptin receptor signaling in the hypothalamus leads to obesity and metabolic dysfunction. METHODS Mice were exposed to SF and sleep control (SC) for varying periods of time during which ingestive behaviors were monitored. UPR pathways and leptin receptor signaling were assessed in hypothalami. To further examine the mechanistic role of ER stress, changes in leptin receptor (ObR) signaling were also examined in wild-type mice treated with the ER chaperone tauroursodeoxycholic acid (TUDCA), as well as in CHOP-/+ transgenic mice. RESULTS Fragmented sleep in male mice induced increased food intake starting day 3 and thereafter, which was preceded by increases in ER stress and activation of all three UPR pathways in the hypothalamus. Although ObR expression was unchanged, signal transducer and activator of transcription 3 (STAT3) phosphorylation was decreased, suggesting reduced ObR signaling. Unchanged suppressor of cytokine signaling-3 (SOCS3) expression and increases in protein-tyrosine phosphatase 1B (PTP1B) expression and activity emerged with SF, along with reduced p-STAT3 responses to exogenous leptin. SF-induced effects were reversed following TUDCA treatment and were absent in CHOP -/+ mice. CONCLUSIONS SF induces hyperphagic behaviors and reduced leptin signaling in hypothalamus that are mediated by activation of ER stress, and ultimately lead to increased PTP1B activity. ER stress pathways are therefore potentially implicated in SF-induced weight gain and metabolic dysfunction, and may represent a viable therapeutic target.
Collapse
Affiliation(s)
- Fahed Hakim
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Comer Children's Hospital, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - Yang Wang
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Comer Children's Hospital, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - Alba Carreras
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Comer Children's Hospital, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - Camila Hirotsu
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Comer Children's Hospital, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - Jing Zhang
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Comer Children's Hospital, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - Eduard Peris
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Comer Children's Hospital, Biological Sciences Division, The University of Chicago, Chicago, IL
| | - David Gozal
- Section of Pediatric Sleep Medicine, Department of Pediatrics, Comer Children's Hospital, Biological Sciences Division, The University of Chicago, Chicago, IL
| |
Collapse
|
14
|
Dietary intake and ghrelin and leptin changes after sleeve gastrectomy. Wideochir Inne Tech Maloinwazyjne 2014; 9:554-61. [PMID: 25561993 PMCID: PMC4280419 DOI: 10.5114/wiitm.2014.45437] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/30/2014] [Accepted: 08/15/2014] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Surgical intervention in obesity is today the most effective treatment method in high level obesity management. Bariatric interventions not only ensure body weight reduction, but may influence dietary habits. AIM To assess changes in adipose hormones and dietary habits in obese patients after sleeve gastrectomy. MATERIAL AND METHODS The study set comprised 37 subjects (29 females and 8 males) 24 to 68 years old with body mass index 43.0 ±4.9 kg/m(2). Pre-operative examination included baseline measurements of body composition. Dietary habits and intake frequency were monitored by a questionnaire method. Follow-up examinations were carried out in a scope identical to the pre-operative examination, 6 and 12 months after surgery, respectively. RESULTS The average patient weight loss 12 months after surgery was 31.7 kg. Excess weight loss was 55.2 ±20.6%. Patients reported reduced appetite (p < 0.001), increasingly regular food intake (p < 0.001), intake of more meal portions per day (p = 0.003) and a decrease in consuming the largest portions during the afternoon and evening (p = 0.030). Plasma levels of fasting glucose, leptin and ghrelin significantly decreased (p = 0.006; p = 0.0.043); in contrast, the level of adiponectin significantly increased (p < 0.001). CONCLUSIONS Sleeve gastrectomy and follow-up nutritional therapy resulted in a significant body weight reduction within 1 year after surgery. An improvement of certain dietary habits in patients was registered. At 12 months after surgery, there were no statistically significant differences in decreases in ghrelin and leptin concentrations between patients without changed appetite and those reporting decreased appetite.
Collapse
|
15
|
Effect of Intragastric Balloon on Gastric Emptying Time in Humans for Weight Control. Clin Nucl Med 2013; 38:863-8. [DOI: 10.1097/rlu.0000000000000224] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Obradovic M, Bjelogrlic P, Rizzo M, Katsiki N, Haidara M, Stewart AJ, Jovanovic A, Isenovic ER. Effects of obesity and estradiol on Na+/K+-ATPase and their relevance to cardiovascular diseases. J Endocrinol 2013; 218:R13-R23. [PMID: 23785175 DOI: 10.1530/joe-13-0144] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Obesity is associated with aberrant sodium/potassium-ATPase (Na(+)/K(+)-ATPase) activity, apparently linked to hyperglycemic hyperinsulinemia, which may repress or inactivate the enzyme. The reduction of Na(+)/K(+)-ATPase activity in cardiac tissue induces myocyte death and cardiac dysfunction, leading to the development of myocardial dilation in animal models; this has also been documented in patients with heart failure (HF). During several pathological situations (cardiac insufficiency and HF) and in experimental models (obesity), the heart becomes more sensitive to the effect of cardiac glycosides, due to a decrease in Na(+)/K(+)-ATPase levels. The primary female sex steroid estradiol has long been recognized to be important in a wide variety of physiological processes. Numerous studies, including ours, have shown that estradiol is one of the major factors controlling the activity and expression of Na(+)/K(+)-ATPase in the cardiovascular (CV) system. However, the effects of estradiol on Na(+)/K(+)-ATPase in both normal and pathological conditions, such as obesity, remain unclear. Increasing our understanding of the molecular mechanisms by which estradiol mediates its effects on Na(+)/K(+)-ATPase function may help to develop new strategies for the treatment of CV diseases. Herein, we discuss the latest data from animal and clinical studies that have examined how pathophysiological conditions such as obesity and the action of estradiol regulate Na(+)/K(+)-ATPase activity.
Collapse
Affiliation(s)
- Milan Obradovic
- Laboratory of Radiobiology and Molecular Genetics, Institute Vinca, University of Belgrade, PO Box 522, 11000 Belgrade, Serbia
| | | | | | | | | | | | | | | |
Collapse
|