1
|
Ivy CM, Young KG, Qu M, Dick MF, Shoemaker JK, Guglielmo CG. The catecholamine response to graded high-altitude flight in yellow-rumped warblers ( Setophaga coronata). Am J Physiol Regul Integr Comp Physiol 2025; 328:R329-R340. [PMID: 39929197 DOI: 10.1152/ajpregu.00197.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/11/2024] [Accepted: 01/30/2025] [Indexed: 03/04/2025]
Abstract
Chronic exposure to low oxygen (hypoxia) leads to amplification of the hypoxic chemoreflex, increasing breathing and sympathetic nervous system (SNS) activation. Prolonged SNS activation redistributes blood to hypoxia-sensitive tissues away from muscles. Recent tracking studies have shown that migratory songbirds can fly 5,000 m or higher above sea level, leading us to hypothesize that migratory birds may have a blunted hypoxic chemoreflex to maintain blood flow to muscles during migratory flight at high altitudes. To test this hypothesis, we used a hypobaric wind tunnel and measured circulating plasma catecholamines after maximal altitude flight, flight at 75% of maximal altitude, flight at ground level (∼250 m), and after rest at 75% of maximal altitude and ground level in migratory myrtle yellow-rumped warblers (Setophaga coronata). Yellow-rumped warblers were capable of flying above 4,000 m simulated altitude above sea level (average maximum altitude of ∼3,600 m) and would maintain flights at 75% of individual maximum altitudes (∼2,700 m). Circulating dopamine and noradrenaline were similar between resting and flight conditions at ground level and with exposure to 75% of maximal altitude, whereas adrenaline significantly increased with flight, but did not change further with flight at 75% of maximal altitude. In contrast, both adrenaline and noradrenaline concentrations increased after maximum altitude flights compared with 75% and ground-level flights. Our findings show that exercise increases plasma adrenaline in migratory songbirds and suggest that warblers flying at high altitudes below their maximum altitude may be minimally hypoxic, allowing them to maintain oxygen transport to flight muscles.NEW & NOTEWORTHY Yellow-rumped warblers, a small songbird that conducts migratory flights, were found to fly to altitudes above 4,000 m above sea level in simulated flights using a hypobaric wind tunnel. Circulating adrenaline suggests that warblers flying at 75% of individual maximum altitudes are not experiencing arterial hypoxia, allowing them to maintain aerobically demanding migratory flight at high altitudes.
Collapse
Affiliation(s)
- Catherine M Ivy
- Department of Biology, Centre for Animals on the Move, Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kevin G Young
- Department of Biology, Centre for Animals on the Move, Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
| | - Melanie Qu
- Department of Biology, Centre for Animals on the Move, Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
| | - Morag F Dick
- Department of Biology, Centre for Animals on the Move, Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
| | - J Kevin Shoemaker
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
2
|
Garcia AK, Almodovar S. The Intersection of HIV and Pulmonary Vascular Health: From HIV Evolution to Vascular Cell Types to Disease Mechanisms. JOURNAL OF VASCULAR DISEASES 2024; 3:174-200. [PMID: 39464800 PMCID: PMC11507615 DOI: 10.3390/jvd3020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
People living with HIV (PLWH) face a growing burden of chronic diseases, owing to the combinations of aging, environmental triggers, lifestyle choices, and virus-induced chronic inflammation. The rising incidence of pulmonary vascular diseases represents a major concern for PLWH. The study of HIV-associated pulmonary vascular complications ideally requires a strong understanding of pulmonary vascular cell biology and HIV pathogenesis at the molecular level for effective applications in infectious diseases and vascular medicine. Active HIV infection and/or HIV proteins disturb the delicate balance between vascular tone and constriction, which is pivotal for maintaining pulmonary vascular health. One of the defining features of HIV is its high genetic diversity owing to several factors including its high mutation rate, recombination between viral strains, immune selective pressures, or even geographical factors. The intrinsic HIV genetic diversity has several important implications for pathogenic outcomes of infection and the overall battle to combat HIV. Challenges in the field present themselves from two sides of the same coin: those imposed by the virus itself and those stemming from the host. The field may be advanced by further developing in vivo and in vitro models that are well described for both pulmonary vascular diseases and HIV for mechanistic studies. In essence, the study of HIV-associated pulmonary vascular complications requires a multidisciplinary approach, drawing upon insights from both infectious diseases and vascular medicine. In this review article, we discuss the fundamentals of HIV virology and their impact on pulmonary disease, aiming to enhance the understanding of either area or both simultaneously. Bridging the gap between preclinical research findings and clinical practice is essential for improving patient care. Addressing these knowledge gaps requires interdisciplinary collaborations, innovative research approaches, and dedicated efforts to prioritize HIV-related pulmonary complications on the global research agenda.
Collapse
Affiliation(s)
- Amanda K. Garcia
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
| | - Sharilyn Almodovar
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
- Center for Tropical Medicine & Infectious Diseases, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
| |
Collapse
|
3
|
Absatirova V, Shandaulov A, Khamchiyev K, Shukurov F, Khalimova F. Changes in the pulmonary circulation due to gravitational loads in high altitude conditions. Clin Hemorheol Microcirc 2024; 86:419-432. [PMID: 38108346 DOI: 10.3233/ch-231910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
BACKGROUND The impact of gravity on the existence of all living things has long been of interest to scientists. The force of the Earth's gravity combined with hypoxia significantly affects blood circulation and blood accumulation in various parts of the human and animal body. To date, the relationship between body position and blood circulation in pulmonary circulation under hypobaric hypoxia has not been sufficiently studied. OBJECTIVES Therefore, the research aims to determine the possibility of changing the body position in space on the reactions in the pulmonary circulation in the plains and highlands. METHODS For this purpose, research was conducted on male Wistar rats, 44 of whom spent 150 days at an altitude of 3200 m above sea level, and 25 representatives of the control group - at an altitude of 164 m. RESULTS The study revealed that gravitational redistribution of blood in mountainous conditions is less pronounced compared to the control group. This is explained by the remodeling of the vascular wall and an increase in its stiffness. It was found that a change in pulmonary artery pressure at the time of a change in body position was recorded both on the plains and in the highlands. On the plains, when the body position of rats was changed to passive orthostatic, a decrease in systolic and diastolic pulmonary artery pressure was noted, and when the body position was changed to passive anti-orthostatic, an increase in pulmonary artery pressure was observed. The increase in pulmonary artery pressure was a compensatory mechanism due to the increased stiffness of the pulmonary vasculature. CONCLUSIONS The practical significance of this research is to expand the understanding of the pathogenesis of pulmonary hypertension in high-altitude hypoxia.
Collapse
Affiliation(s)
- Venera Absatirova
- Department of Normal Physiology, Astana Medical University, Astana, Kazakhstan
| | - Assylbek Shandaulov
- Department of Normal Physiology, Astana Medical University, Astana, Kazakhstan
| | - Kureysh Khamchiyev
- Department of Normal Physiology, Astana Medical University, Astana, Kazakhstan
| | - Firuz Shukurov
- Department of Normal Physiology, Avicenna Tajik State Medical University, Dushanbe, Tajikistan
| | - Fariza Khalimova
- Department of Normal Physiology, Avicenna Tajik State Medical University, Dushanbe, Tajikistan
| |
Collapse
|
4
|
Yamamoto S, Sakamaki F, Takahashi G, Kondo Y, Taguchi N, Esashi S, Yuji R, Murakami K, Osaragi K, Tomita K, Kamei S, Matsumoto T, Imai Y, Hasebe T. Retracted: Chest digital dynamic radiography to detect changes in human pulmonary perfusion in response to alveolar hypoxia. J Med Radiat Sci 2023; 70:e1-e11. [PMID: 36101943 PMCID: PMC10715373 DOI: 10.1002/jmrs.619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/29/2022] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Hypoxic pulmonary vasoconstriction optimises oxygenation in the lung by matching the local-blood perfusion to local-ventilation ratio upon exposure to alveolar hypoxia. It plays an important role in various pulmonary diseases, but few imaging evaluations of this phenomenon in humans. This study aimed to determine whether chest digital dynamic radiography could detect hypoxic pulmonary vasoconstriction as changes in pulmonary blood flow in healthy individuals. METHODS Five Asian men underwent chest digital dynamic radiography before and after 60 sec breath-holding at the maximal inspiratory level in upright and supine positions. Alveolar partial pressure of oxygen and atmospheric pressure were calculated using the blood gas test and digital dynamic radiography imaging, respectively. To evaluate the blood flow, the correlation rate of temporal change in each pixel value between the lung fields and left cardiac ventricles was analysed. RESULTS Sixty seconds of breath-holding caused a mean reduction of 26.7 ± 6.4 mmHg in alveolar partial pressure of oxygen. The mean correlation rate of blood flow in the whole lung was significantly lower after than before breath-holding (before, upright 51.5%, supine 52.2%; after, upright 45.5%, supine 46.1%; both P < 0.05). The correlation rate significantly differed before and after breath-holding in the lower lung fields (upright, 11.8% difference; supine, 10.7% difference; both P < 0.05). The mean radiation exposure of each scan was 0.98 ± 0.09 mGy. No complications occurred. CONCLUSIONS Chest digital dynamic radiography could detect the rapid decrease in pulmonary perfusion in response to alveolar hypoxia. It may suggest hypoxic pulmonary vasoconstriction in healthy individuals.
Collapse
Affiliation(s)
- Shota Yamamoto
- Department of RadiologyTokai University Hachioji Hospital, Tokai University School of MedicineTokyoJapan
| | - Fumio Sakamaki
- Department of Respiratory MedicineTokai University Hachioji Hospital, Tokai University School of MedicineTokyoJapan
| | - Genki Takahashi
- Department of Respiratory MedicineTokai University Hachioji Hospital, Tokai University School of MedicineTokyoJapan
| | - Yusuke Kondo
- Department of Respiratory MedicineTokai University Hachioji Hospital, Tokai University School of MedicineTokyoJapan
| | - Naoya Taguchi
- Department of Radiological TechnologyTokai University Hachioji Hospital, Tokai University School of MedicineTokyoJapan
| | - Shogo Esashi
- Department of Radiological TechnologyTokai University Hachioji Hospital, Tokai University School of MedicineTokyoJapan
| | - Ryotaro Yuji
- Department of Radiological TechnologyTokai University Hachioji Hospital, Tokai University School of MedicineTokyoJapan
| | - Katsuki Murakami
- Department of Radiological TechnologyTokai University Hachioji Hospital, Tokai University School of MedicineTokyoJapan
| | - Kensuke Osaragi
- Department of RadiologyKochi University, Kochi Medical SchoolNankokuKochiJapan
| | - Kosuke Tomita
- Department of RadiologyTokai University Hachioji Hospital, Tokai University School of MedicineTokyoJapan
| | - Shunsuke Kamei
- Department of RadiologyTokai University Hachioji Hospital, Tokai University School of MedicineTokyoJapan
| | - Tomohiro Matsumoto
- Department of RadiologyKochi University, Kochi Medical SchoolNankokuKochiJapan
| | - Yutaka Imai
- Department of RadiologyTokai University Hachioji Hospital, Tokai University School of MedicineTokyoJapan
| | - Terumitsu Hasebe
- Department of RadiologyTokai University Hachioji Hospital, Tokai University School of MedicineTokyoJapan
| |
Collapse
|
5
|
Banerji R, Grifno GN, Shi L, Smolen D, LeBourdais R, Muhvich J, Eberman C, Hiller BE, Lee J, Regan K, Zheng S, Zhang S, Jiang J, Raslan AA, Breda JC, Pihl R, Traber K, Mazzilli S, Ligresti G, Mizgerd JP, Suki B, Nia HT. Crystal ribcage: a platform for probing real-time lung function at cellular resolution. Nat Methods 2023; 20:1790-1801. [PMID: 37710017 PMCID: PMC10860663 DOI: 10.1038/s41592-023-02004-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 08/10/2023] [Indexed: 09/16/2023]
Abstract
Understanding the dynamic pathogenesis and treatment response in pulmonary diseases requires probing the lung at cellular resolution in real time. Despite advances in intravital imaging, optical imaging of the lung during active respiration and circulation has remained challenging. Here, we introduce the crystal ribcage: a transparent ribcage that allows multiscale optical imaging of the functioning lung from whole-organ to single-cell level. It enables the modulation of lung biophysics and immunity through intravascular, intrapulmonary, intraparenchymal and optogenetic interventions, and it preserves the three-dimensional architecture, air-liquid interface, cellular diversity and respiratory-circulatory functions of the lung. Utilizing these capabilities on murine models of pulmonary pathologies we probed remodeling of respiratory-circulatory functions at the single-alveolus and capillary levels during disease progression. The crystal ribcage and its broad applications presented here will facilitate further studies of nearly any pulmonary disease as well as lead to the identification of new targets for treatment strategies.
Collapse
Affiliation(s)
- Rohin Banerji
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Gabrielle N Grifno
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Linzheng Shi
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Dylan Smolen
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Rob LeBourdais
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Johnathan Muhvich
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Cate Eberman
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Bradley E Hiller
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jisu Lee
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kathryn Regan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Siyi Zheng
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sue Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - John Jiang
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Ahmed A Raslan
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Julia C Breda
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Riley Pihl
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Katrina Traber
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sarah Mazzilli
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Giovanni Ligresti
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Hadi T Nia
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Pulmonary Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
6
|
Mohammed RA, Mohamed LA, Abdelsalam EM, Maghraby HM, Elkenany NM, Nabawi OE, Sultan I. Assessment of Cardiac Dysfunction in Patients With Chronic Obstructive Pulmonary Disease (COPD): A Cross-Sectional Study. Cureus 2023; 15:e39629. [PMID: 37388620 PMCID: PMC10303266 DOI: 10.7759/cureus.39629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are frequent in patients having chronic obstructive pulmonary disease (COPD). Despite that, comorbid CVDs receive less guideline-recommended screening in this population compared to others. We aimed to evaluate the cardiac function using echocardiography and to assess spirometry, arterial blood gas (ABG) as well as brain natriuretic peptide (BNP) as prognostic indicators of cardiovascular dysfunction in COPD patients. METHODS One hundred moderate to very severe COPD patients according to GOLD guidelines with no history of cardiac diseases were recruited from two hospitals in Saudi Arabia and evaluated using electrocardiography (ECG), chest X-ray, BNP, pulmonary functions, ABG analysis, and transthoracic echocardiography. Multiple linear regression analysis was used to determine the predictors of right ventricular (RV) and left ventricular (LV) dysfunction. RESULTS Pulmonary hypertension (PH) was detected in 28% of the patients, while 25% had abnormal tricuspid annular plane systolic excursion (TAPSE). Low left ventricular ejection fraction (LVEF) and abnormal LV strain were present in 20%, abnormal right ventricular strain was present in 17%, and abnormal fractional area change (FAC) was detected in 9% of patients. Multiple linear regression analysis was used to explore possible determinants of cardiac function. Age, gender, and the presence of diabetes and hyperlipidemia were significant predictors of cardiac dysfunction in COPD patients. Forced vital capacity (FVC) was an independent predictor of LVEF (odds ratio, OR: 0.424, confidence interval, 95 CI%: 0.025-0.505, p<0.031) and FAC (OR: 0.496, 95 CI%: 0.008-655). Hypoxemia and hypercapnia significantly predict both RV and LV dysfunctions. BNP was an independent predictor of FAC (OR: 0.307, 95 CI%: -0.021, p<0.001). CONCLUSION Cardiac abnormalities are common in moderate to very severe COPD patients. Echocardiography could be considered for the assessment of these patients even in the absence of a history of cardiac disease. Pulmonary functions, ABG, and BNP may offer additional predictive information on cardiac functions in COPD patients.
Collapse
Affiliation(s)
- Rehab A Mohammed
- Internal Medicine, Faculty of Medicine for Girls, Al-Azhar University, Cairo, EGY
- Internal Medicine, Ibn Sina National College for Medical Studies, Jeddah, SAU
| | - Layla A Mohamed
- Cardiology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, EGY
| | - Eman M Abdelsalam
- Internal Medicine, Faculty of Medicine for Girls, Al-Azhar University, Cairo, EGY
| | - Hend M Maghraby
- Internal Medicine, Faculty of Medicine for Girls, Al-Azhar University, Cairo, EGY
| | - Nasima M Elkenany
- Cardiology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, EGY
| | | | | |
Collapse
|
7
|
Castillo-Galán S, Parrau D, Hernández I, Quezada S, Díaz M, Ebensperger G, Herrera EA, Moraga FA, Iturriaga R, Llanos AJ, Reyes RV. The Action of 2-Aminoethyldiphenyl Borinate on the Pulmonary Arterial Hypertension and Remodeling of High-Altitude Hypoxemic Lambs. Front Physiol 2022; 12:765281. [PMID: 35082688 PMCID: PMC8784838 DOI: 10.3389/fphys.2021.765281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/07/2021] [Indexed: 01/17/2023] Open
Abstract
Calcium signaling is key for the contraction, differentiation, and proliferation of pulmonary arterial smooth muscle cells. Furthermore, calcium influx through store-operated channels (SOCs) is particularly important in the vasoconstrictor response to hypoxia. Previously, we found a decrease in pulmonary hypertension and remodeling in normoxic newborn lambs partially gestated under chronic hypoxia, when treated with 2-aminoethyldiphenyl borinate (2-APB), a non-specific SOC blocker. However, the effects of 2-APB are unknown in neonates completely gestated, born, and raised under environmental hypoxia. Accordingly, we studied the effects of 2-APB-treatment on the cardiopulmonary variables in lambs under chronic hypobaric hypoxia. Experiments were done in nine newborn lambs gestated, born, and raised in high altitude (3,600 m): five animals were treated with 2-APB [intravenous (i.v.) 10 mg kg–1] for 10 days, while other four animals received vehicle. During the treatment, cardiopulmonary variables were measured daily, and these were also evaluated during an acute episode of superimposed hypoxia, 1 day after the end of the treatment. Furthermore, pulmonary vascular remodeling was assessed by histological analysis 2 days after the end of the treatment. Basal cardiac output and mean systemic arterial pressure (SAP) and resistance from 2-APB- and vehicle-treated lambs did not differ along with the treatment. Mean pulmonary arterial pressure (mPAP) decreased after the first day of 2-APB treatment and remained lower than the vehicle-treated group until the third day, and during the fifth, sixth, and ninth day of treatment. The net mPAP increase in response to acute hypoxia did not change, but the pressure area under the curve (AUC) during hypoxia was slightly lower in 2-APB-treated lambs than in vehicle-treated lambs. Moreover, the 2-APB treatment decreased the pulmonary arterial wall thickness and the α-actin immunoreactivity and increased the luminal area with no changes in the vascular density. Our findings show that 2-APB treatment partially reduced the contractile hypoxic response and reverted the pulmonary vascular remodeling, but this is not enough to normalize the pulmonary hemodynamics in chronically hypoxic newborn lambs.
Collapse
Affiliation(s)
- Sebastián Castillo-Galán
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela Parrau
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Ismael Hernández
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Sebastián Quezada
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Marcela Díaz
- Departamento de Promoción de la Salud de la Mujer y el Recién Nacido, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Germán Ebensperger
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| | - Emilio A Herrera
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| | - Fernando A Moraga
- Laboratorio de Fisiología, Hipoxia y Función Vascular, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| | - Aníbal J Llanos
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| | - Roberto V Reyes
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| |
Collapse
|
8
|
Ekici B. Can a patient with pulmonary hypertension travel safely by plane? Anatol J Cardiol 2021; 25:29-30. [PMID: 34464298 DOI: 10.5152/anatoljcardiol.2021.s111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Air travel is known as the safest way of transportation. Therefore, patients with health problems prefer to travel by air; however, those with heart or lung issues, who do not have any problems under normal conditions, may experience some problems in high altitude and different environmental conditions. In this review, we have described the points to be considered during air travel in patients with pulmonary hypertension.
Collapse
Affiliation(s)
- Berkay Ekici
- Department of Cardiology and Aeromedical Centre, Faculty of Medicine, Ufuk University; Ankara-Turkey
| |
Collapse
|
9
|
Lee JH, Kim Y, Mun J, Lee J, Ko S. Effects of hypercarbia on arterial oxygenation during one-lung ventilation: prospective randomized crossover study. Korean J Anesthesiol 2020; 73:534-541. [PMID: 32460465 PMCID: PMC7714622 DOI: 10.4097/kja.19445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/27/2020] [Indexed: 11/12/2022] Open
Abstract
Background This study aimed to evaluate the effects of hypercarbia on arterial oxygenation during one-lung ventilation (OLV). Methods Fifty adult patients undergoing elective video-assisted thoracoscopic lobectomy or pneumonectomy were enrolled. Group I patients (n = 25) were first maintained at normocarbia (PaCO2: 38–42 mmHg) for 30 min and then at hypercarbia (45–50 mmHg). In Group II patients (n = 25), PaCO2 was maintained in the reverse order. Arterial oxygen partial pressure (PaO2), respiratory variables, hemodynamic variables, and hemoglobin concentration were compared during normocarbia and hypercarbia. Arterial O2 content and O2 delivery were calculated. Results PaO2 values during normocarbia and hypercarbia were 66.5 ± 10.6 and 79.7 ± 17.3 mmHg, respectively (mean difference: 13.2 mmHg, 95% CI for difference of means: 17.0 to 9.3, P < 0.001). SaO2 values during normocarbia and hypercarbia were 92.5 ± 4.8% and 94.3 ± 3.1% (P = 0.009), respectively. Static compliance of the lung (33.0 ± 5.4 vs. 30.4 ± 5.3 ml/cmH2O, P < 0.001), arterial O2 content (15.4 ± 1.4 vs. 14.9 ± 1.5 ml/dl, P < 0.001) and O2 delivery (69.9 ± 18.4 vs. 65.1 ± 18.1 ml/min, P < 0.001) were significantly higher during hypercarbia than during normocarbia. Conclusions Hypercarbia increases PaO2 and O2 carrying capacity and improves pulmonary mechanics during OLV, suggesting that it may help manage oxygenation during OLV. Therefore, permissive hypercarbia may be a simple and valuable modality to manage arterial oxygenation during OLV.
Collapse
Affiliation(s)
- Jun Ho Lee
- Department of Anesthesiology and Pain Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Yesull Kim
- Department of Anesthesiology and Pain Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Juhan Mun
- Department of Anesthesiology and Pain Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Joseph Lee
- Department of Anesthesiology and Pain Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Seonghoon Ko
- Department of Anesthesiology and Pain Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
| |
Collapse
|
10
|
Villamor E, Moreno L, Mohammed R, Pérez-Vizcaíno F, Cogolludo A. Reactive oxygen species as mediators of oxygen signaling during fetal-to-neonatal circulatory transition. Free Radic Biol Med 2019; 142:82-96. [PMID: 30995535 DOI: 10.1016/j.freeradbiomed.2019.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/22/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS) are frequently seen as pathological agents of oxidative stress. However, ROS are not always deleterious and can also act as cell signaling molecules. Vascular oxygen sensing and signaling during fetal-to-neonatal circulatory transition is a remarkable example of the physiological regulatory actions of ROS. The fetal relative hypoxic environment induces hypoxic pulmonary vasoconstriction (HPV) and ductus arteriosus (DA) relaxation favoring the presence of high pulmonary vascular resistance and right-to-left ductal shunt. At birth, the increase in oxygen tension causes relaxation of pulmonary arteries (PAs) and normoxic DA vasoconstriction (NDAV), thus diverting blood flow to the lungs. Although the response to changes in oxygen tension is diametrically opposite, the mechanisms responsible for HPV and NDAV appear to be the result of a similar interaction between triggering and modulating factors that lead to an increase in cytosolic Ca2+ concentration and Ca2+ sensitization of the contractile apparatus. Growing evidence points to an increase in ROS (mitochondria- and/or NADPH-derived superoxide and/or H2O2), leading to inhibition of voltage-gated K+ channels, membrane depolarization, and activation of voltage-gated L-type Ca2+ channels as critical events in the signaling pathway of both HPV and NDAV. Several groups of investigators have completed this pathway adding other elements such as neutral sphingomyelinase-derived ceramide, the sarcoplasmic/endoplasmic reticulum (through ryanodine and inositol 1,4,5-trisphosphate receptors), Rho kinase-mediated Ca2+ sensitization, or transient receptor potential channels. The present review focus on the role of ROS as mediators of the homeostatic oxygen sensing system during fetal and neonatal life not only in the PAs and DA but also in systemic arteries.
Collapse
Affiliation(s)
- Eduardo Villamor
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Developmental Biology (GROW), Maastricht, the Netherlands.
| | - Laura Moreno
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Riazzudin Mohammed
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Developmental Biology (GROW), Maastricht, the Netherlands
| | - Francisco Pérez-Vizcaíno
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Angel Cogolludo
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
11
|
Scott AL, Pranckevicius NA, Nurse CA, Scott GR. Regulation of catecholamine release from the adrenal medulla is altered in deer mice ( Peromyscus maniculatus) native to high altitudes. Am J Physiol Regul Integr Comp Physiol 2019; 317:R407-R417. [PMID: 31242021 DOI: 10.1152/ajpregu.00005.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
High-altitude natives have evolved to overcome environmental hypoxia and provide a compelling system to understand physiological function during reductions in oxygen availability. The sympathoadrenal system plays a key role in responses to acute hypoxia, but prolonged activation of this system in chronic hypoxia may be maladaptive. Here, we examined how chronic hypoxia exposure alters adrenal catecholamine secretion and how adrenal function is altered further in high-altitude natives. Populations of deer mice (Peromyscus maniculatus) native to low and high altitudes were each born and raised in captivity at sea level, and adults from each population were exposed to normoxia or hypobaric hypoxia for 5 mo. Using carbon fiber amperometry on adrenal slices, catecholamine secretion evoked by low doses of nicotine (10 µM) or acute hypoxia (Po2 ∼15-20 mmHg) was reduced in lowlanders exposed to hypobaric hypoxia, which was attributable mainly to a decrease in quantal charge rather than event frequency. However, secretion evoked by high doses of nicotine (50 µM) was unaffected. Hypobaric hypoxia also reduced plasma epinephrine and protein expression of 3,4-dihydroxyphenylalanine (DOPA) decarboxylase in the adrenal medulla of lowlanders. In contrast, highlanders were unresponsive to hypobaric hypoxia, exhibiting typically low adrenal catecholamine secretion, plasma epinephrine, and DOPA decarboxylase. Highlanders also had consistently lower catecholamine secretion evoked by high nicotine, smaller adrenal medullae with fewer chromaffin cells, and a larger adrenal cortex compared with lowlanders across both acclimation environments. Our results suggest that plastic responses to chronic hypoxia along with evolved changes in adrenal function attenuate catecholamine release in deer mice at high altitude.
Collapse
Affiliation(s)
- Angela L Scott
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Colin A Nurse
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
12
|
Isoliquiritigenin Attenuates Monocrotaline-Induced Pulmonary Hypertension via Inhibition of the Inflammatory Response and PASMCs Proliferation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4568198. [PMID: 31239860 PMCID: PMC6556334 DOI: 10.1155/2019/4568198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/16/2019] [Indexed: 01/13/2023]
Abstract
Pulmonary hypertension (PH) is a progressive and serious disease, where exacerbated inflammatory response plays a critical role. Isoliquiritigenin (ISL), an important flavonoid isolated from Glycyrrhizae radix, exhibits a wide range of pharmacological actions including anti-inflammation. Previously we found ISL alleviated hypoxia-induced PH; in the present study, to extend this, we evaluated the effects of ISL on monocrotaline (MCT)-induced PH and the relevant mechanisms. Rats received a single intraperitoneal injection of MCT, followed by intragastric treatments with ISL (10 mg/kg/d or 30 mg/kg/d) once a day for 28 days. The MCT administration increased the right ventricular systolic pressure (RVSP) (p < 0.001), the median width of pulmonary arteries (p < 0.01), and the weight ratio of the right ventricular wall/left ventricular wall plus septum (Fulton index) (p < 0.01) in rats; however, these changes were inhibited by both doses of ISL (p < 0.05). In addition, treatment with ISL suppressed the upregulated production of serum interleukin-6 (p < 0.01) and tumor necrosis factor-α (p < 0.05) by MCT and reversed the increases in the numbers of proliferating cell nuclear antigen (PCNA)-positive cells (p < 0.01) in the medial wall of pulmonary arteries. In in vitro experiments, ISL (10 μM, 30 μM, and 100 μM) inhibited excessive proliferation of cultured primary pulmonary artery smooth muscle cells (PASMCs) (p < 0.05, p < 0.01, and p < 0.001) in a dose-dependent manner and prevented an increase in the expressions of PCNA (p < 0.01) and phospho-Akt (p < 0.05) in PASMCs induced by hypoxia. These results suggest that ISL can attenuate MCT-induced PH via its anti-inflammatory and antiproliferative actions.
Collapse
|
13
|
Diagnostic value of ventilation/perfusion single-photon emission computed tomography/computed tomography for bronchiolitis obliterans syndrome in patients after lung transplantation. Nucl Med Commun 2019; 40:703-710. [PMID: 31022070 DOI: 10.1097/mnm.0000000000001021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To evaluate the diagnostic value of function volume/morphological volume ratio calculated from ventilation/perfusion single-photon emission computed tomography/computed tomography in distinguishing the lungs with bronchiolitis obliterans syndrome (BOS) from the lungs without this syndrome after lung transplantation and to assess its relationship with spirometry parameters. MATERIALS AND METHODS We retrospectively identified 84 consecutive lung transplant recipients and 13 donors who underwent ventilation/perfusion single-photon emission computed tomography/computed tomography. Differences in the function volume/morphological volume ratio of unilateral lungs were tested for significance between the lungs with and without BOS. Receiver operating characteristics and correlations between function volume/morphological volume ratios of bilateral lungs and forced expiratory volume in 1 s, forced vital capacity, and total lung capacity were analyzed. RESULTS The function volume/morphological volume ratios of ventilation and perfusion images of unilateral lungs were significantly lower in lungs with BOS (each P<0.0001). The area under the curve values of ventilation and perfusion images were 0.97 and 0.99, respectively. Significant correlations were identified between the function volume/morphological volume ratios of ventilation and perfusion images and forced expiratory volume in 1 s (r=0.54, P<0.0001 and r=0.45, P<0.0001, respectively). The function volume/morphological volume ratio of ventilation image had a significantly weak correlation with forced vital capacity. CONCLUSION The function volume/morphological volume ratio enables a semiquantitative assessment of ventilation and perfusion lung functions and is useful for diagnosing BOS after lung transplantation.
Collapse
|
14
|
Guo X, Liu Y, Kim JL, Kim EY, Kim EQ, Jansen A, Li K, Chan M, Keenan BT, Conejo-Garcia J, Lim DC. Effect of cyclical intermittent hypoxia on Ad5CMVCre induced solitary lung cancer progression and spontaneous metastases in the KrasG12D+; p53fl/fl; myristolated p110fl/fl ROSA-gfp mouse. PLoS One 2019; 14:e0212930. [PMID: 30811514 PMCID: PMC6392281 DOI: 10.1371/journal.pone.0212930] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/12/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Epidemiological data suggests that obstructive sleep apnea (OSA) is associated with increased cancer incidence and mortality. We investigate the effects of cyclical intermittent hypoxia (CIH), akin to the underlying pathophysiology of OSA, on lung cancer progression and metastatic profile in a mouse model. METHODS Intrathoracic injection of Ad5CMVCre virus into a genetically engineered mouse (GEM) KrasG12D+/-; p53fl/fl; myristolated-p110αfl/fl-ROSA-gfp was utilized to induce a solitary lung cancer. Male mice were then exposed to either CIH or Sham for 40-41 days until harvest. To monitor malignant progression, serial micro CT scans with respiratory gating (no contrast) was performed. To detect spontaneous metastases in distant organs, H&E and immunohistochemistry were performed. RESULTS Eighty-eight percent of injected Ad5CMVCre virus was recovered from left lung tissue, indicating reliable and accurate injections. Serial micro CT demonstrated that CIH increases primary lung tumor volume progression compared to Sham on days 33 (p = 0.004) and 40 (p<0.001) post-injection. In addition, CIH increases variability in tumor volume on day 19 (p<0.0001), day 26 (p<0.0001), day 33 (p = 0.025) and day 40 (p = 0.004). Finally, metastases are frequently detected in heart, mediastinal lymph nodes, and right lung using H&E and immunohistochemistry. CONCLUSIONS Using a GEM mouse model of metastatic lung cancer, we report that male mice with solitary lung cancer have accelerated malignant progression and increased variability in tumor growth when exposed to cyclical intermittent hypoxia. Our results indicate that cyclical intermittent hypoxia is a pathogenic factor in non-small cell lung cancer that promotes the more rapid growth of developing tumors.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yan Liu
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, Changchun, Jilin Province, China
| | - Jessica L. Kim
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Emily Y. Kim
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Edison Q. Kim
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alexandria Jansen
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katherine Li
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - May Chan
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brendan T. Keenan
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jose Conejo-Garcia
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Diane C. Lim
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| |
Collapse
|
15
|
Li F, You Y, Zhu H. 15-HETE protects pulmonary artery smooth muscle cells against apoptosis via SIRT1 regulation during hypoxia. Biomed Pharmacother 2018; 108:325-330. [PMID: 30227325 DOI: 10.1016/j.biopha.2018.07.166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 12/28/2022] Open
Abstract
15-Hydroxyeicosatetraenoic acid (15-HETE) is produced by the catalytic metabolism of arachidonic acid by the enzyme 15-lipoxygenase. It is produced during hypoxia, and participates in the remodeling of pulmonary artery smooth muscle (PASM). Previous research has revealed that sirtuin 1 (SIRT1) involved in apoptosis in various cells and tissues. Herein, we attempted to determine whether 15-HETE counteracts SIRT1-promoted cell death in murine PASM cells (PASMCs). To verify this theory, we investigated changes in SIRT1 concentration in response to the counteraction of cell death by 15-HETE. We used western blotting and a terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) assay, and investigated the survival, nuclear morphology, and mitochondrial potential of the cells. Our results revealed that 15-HETE promotes the transcription and translation of SIRT1. Moreover, 15-HETE increases viability and impaired mitochondrial depolarization, and promotes the expression of Bcl-2 and Bcl-xL in PASMCs without serum. The reactions mentioned above were eliminated by SIRT1 inhibitors (EX 527 and SIRT1 inhibitor IV). Our findings suggest that 15-HETE is crucial for the protection of PASMCs against cell death, and the SIRT1 pathway may provide a new strategy for pulmonary artery hypertension therapy.
Collapse
Affiliation(s)
- Fujun Li
- Deparment of Physiology of Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, China; Department of Anesthesiology, First Affiliated Hospital of Harbin Medical University, No. 199 Dazhi Street, Nangang District, Harbin, Heilongjiang, 150001, China.
| | - Yanqiu You
- Department of Clinical Laboratory, Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, Heilongjiang, 150081, China.
| | - Hui Zhu
- Deparment of Physiology of Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, China.
| |
Collapse
|
16
|
Reyes RV, Castillo-Galán S, Hernandez I, Herrera EA, Ebensperger G, Llanos AJ. Revisiting the Role of TRP, Orai, and ASIC Channels in the Pulmonary Arterial Response to Hypoxia. Front Physiol 2018; 9:486. [PMID: 29867539 PMCID: PMC5949889 DOI: 10.3389/fphys.2018.00486] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
The pulmonary arteries are exquisitely responsive to oxygen changes. They rapidly and proportionally contract as arterial PO2 decrease, and they relax as arterial PO2 is re-established. The hypoxic pulmonary vasoconstriction (HPV) is intrinsic since it does not require neural or endocrine factors, as evidenced in isolated vessels. On the other hand, pulmonary arteries also respond to sustained hypoxia with structural and functional remodeling, involving growth of smooth muscle medial layer and later recruitment of adventitial fibroblasts, secreted mitogens from endothelium and changes in the response to vasoconstrictor and vasodilator stimuli. Hypoxic pulmonary arterial vasoconstriction and remodeling are relevant biological responses both under physiological and pathological conditions, to explain matching between ventilation and perfusion, fetal to neonatal transition of pulmonary circulation and pulmonary artery over-constriction and thickening in pulmonary hypertension. Store operated channels (SOC) and receptor operated channels (ROC) are plasma membrane cationic channels that mediate calcium influx in response to depletion of internal calcium stores or receptor activation, respectively. They are involved in both HPV and pathological remodeling since their pharmacological blockade or genetic suppression of several of the Stim, Orai, TRP, or ASIC proteins in SOC or ROC complexes attenuate the calcium increase, the tension development, the pulmonary artery smooth muscle proliferation, and pulmonary arterial hypertension. In this Mini Review, we discussed the evidence obtained in in vivo animal models, at the level of isolated organ or cells of pulmonary arteries, and we identified and discussed the questions for future research needed to validate these signaling complexes as targets against pulmonary hypertension.
Collapse
Affiliation(s)
- Roberto V Reyes
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| | - Sebastián Castillo-Galán
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ismael Hernandez
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Emilio A Herrera
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| | - Germán Ebensperger
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| | - Aníbal J Llanos
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| |
Collapse
|
17
|
Gaur P, Saini S, Vats P, Kumar B. Regulation, signalling and functions of hormonal peptides in pulmonary vascular remodelling during hypoxia. Endocrine 2018; 59:466-480. [PMID: 29383676 DOI: 10.1007/s12020-018-1529-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/10/2018] [Indexed: 01/06/2023]
Abstract
Hypoxic state affects organism primarily by decreasing the amount of oxygen reaching the cells and tissues. To adjust with changing environment organism undergoes mechanisms which are necessary for acclimatization to hypoxic stress. Pulmonary vascular remodelling is one such mechanism controlled by hormonal peptides present in blood circulation for acclimatization. Activation of peptides regulates constriction and relaxation of blood vessels of pulmonary and systemic circulation. Thus, understanding of vascular tone maintenance and hypoxic pulmonary vasoconstriction like pathophysiological condition during hypoxia is of prime importance. Endothelin-1 (ET-1), atrial natriuretic peptide (ANP), and renin angiotensin system (RAS) function, their receptor functioning and signalling during hypoxia in different body parts point them as disease markers. In vivo and in vitro studies have helped understanding the mechanism of hormonal peptides for better acclimatization to hypoxic stress and interventions for better management of vascular remodelling in different models like cell, rat, and human is discussed in this review.
Collapse
Affiliation(s)
- Priya Gaur
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, India
| | - Supriya Saini
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, India
| | - Praveen Vats
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, India.
| | - Bhuvnesh Kumar
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, India
| |
Collapse
|
18
|
He X, Song S, Ayon RJ, Balisterieri A, Black SM, Makino A, Wier WG, Zang WJ, Yuan JXJ. Hypoxia selectively upregulates cation channels and increases cytosolic [Ca 2+] in pulmonary, but not coronary, arterial smooth muscle cells. Am J Physiol Cell Physiol 2018; 314:C504-C517. [PMID: 29351410 DOI: 10.1152/ajpcell.00272.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ca2+ signaling, particularly the mechanism via store-operated Ca2+ entry (SOCE) and receptor-operated Ca2+ entry (ROCE), plays a critical role in the development of acute hypoxia-induced pulmonary vasoconstriction and chronic hypoxia-induced pulmonary hypertension. This study aimed to test the hypothesis that chronic hypoxia differentially regulates the expression of proteins that mediate SOCE and ROCE [stromal interacting molecule (STIM), Orai, and canonical transient receptor potential channel TRPC6] in pulmonary (PASMC) and coronary (CASMC) artery smooth muscle cells. The resting cytosolic [Ca2+] ([Ca2+]cyt) and the stored [Ca2+] in the sarcoplasmic reticulum were not different in CASMC and PASMC. Seahorse measurement showed a similar level of mitochondrial bioenergetics (basal respiration and ATP production) between CASMC and PASMC. Glycolysis was significantly higher in PASMC than in CASMC. The amplitudes of cyclopiazonic acid-induced SOCE and OAG-induced ROCE in CASMC are slightly, but significantly, greater than in PASMC. The frequency and the area under the curve of Ca2+ oscillations induced by ATP and histamine were also larger in CASMC than in PASMC. Na+/Ca2+ exchanger-mediated increases in [Ca2+]cyt did not differ significantly between CASMC and PASMC. The basal protein expression levels of STIM1/2, Orai1/2, and TRPC6 were higher in CASMC than in PASMC, but hypoxia (3% O2 for 72 h) significantly upregulated protein expression levels of STIM1/STIM2, Orai1/Orai2, and TRPC6 and increased the resting [Ca2+]cyt only in PASMC, but not in CASMC. The different response of essential components of store-operated and receptor-operated Ca2+ channels to hypoxia is a unique intrinsic property of PASMC, which is likely one of the important explanations why hypoxia causes pulmonary vasoconstriction and induces pulmonary vascular remodeling, but causes coronary vasodilation.
Collapse
Affiliation(s)
- Xi He
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi Province, China.,Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona
| | - Shanshan Song
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona
| | - Ramon J Ayon
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona
| | - Angela Balisterieri
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona
| | - Stephen M Black
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine , Tucson, Arizona
| | - Ayako Makino
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine , Tucson, Arizona
| | - W Gil Wier
- Department of Physiology, The University of Arizona College of Medicine , Tucson, Arizona
| | - Wei-Jin Zang
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi Province, China
| | - Jason X-J Yuan
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine , Tucson, Arizona
| |
Collapse
|