1
|
Mangundu P, Makaudi R, Paumo HK, Ramalapa B, Tshweu L, Raleie N, Katata‐Seru L. Plant-Derived Natural Products and Their Nano Transformation: A Sustainable Option Towards Desert Locust Infestations. ChemistryOpen 2025; 14:e202400271. [PMID: 39600022 PMCID: PMC11891457 DOI: 10.1002/open.202400271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/20/2024] [Indexed: 11/29/2024] Open
Abstract
The desert locust has been recognized as the most devastating migratory pest in the world. Swarms of this pest have been threatening vast regions of pastures and crops in Africa, Middle East, and South Asia. The biological management of expanding swarms has become a strategy of particular interest due to environmental awareness and economic issues associated with chemical pesticides. The present review aims to explore the latest updates and information about pesticidal plants that are distributed across Africa. Searches on Web of Science, Google Scholar, PubMed, and Scopus databases from 2013-2024 revealed a total of 22 plant species probed for insecticidal activities against desert locusts. The formulation, active ingredients, and biological effects of essential oils and other extracts from these plants are presented. Despite the promising anti-insecticidal effects of the plant extracts and compounds, issues related to their solubility and instability under environmental conditions have been observed. To address such major quality defects, methods for the encapsulation of plant natural products within nanostructures are detailed. Given the presence of bioactive compounds with nucleophiles bearing functional groups, the reported plant extracts have been exploited to fabricate metal nanoparticles with inherent insecticidal activities. In this paper, a holistic overview of prepared phytochemical-coated metal nanopesticides is also presented. In summary, this study offers insights into the integration of nanoformulated natural resources as a more sustainable option to control desert locust invasions.
Collapse
Affiliation(s)
- Patrick Mangundu
- Department of ChemistrySchool of Physical and Chemical SciencesNorth-West UniversityPrivate Bag X2046, 2735MmabathoSouth Africa
| | - Rebaone Makaudi
- Department of ChemistrySchool of Physical and Chemical SciencesNorth-West UniversityPrivate Bag X2046, 2735MmabathoSouth Africa
| | - Hugues Kamdem Paumo
- Department of ChemistrySchool of Physical and Chemical SciencesNorth-West UniversityPrivate Bag X2046, 2735MmabathoSouth Africa
| | - Bathabile Ramalapa
- Biotherapeutics Delivery laboratoryCentre for Nanostructures and Advanced MaterialsCouncil for Scientific and Industrial Research (CSIR)Pretoria0001South Africa
| | - Lesego Tshweu
- Biotherapeutics Delivery laboratoryCentre for Nanostructures and Advanced MaterialsCouncil for Scientific and Industrial Research (CSIR)Pretoria0001South Africa
| | - Naledi Raleie
- Department of ChemistrySchool of Physical and Chemical SciencesNorth-West UniversityPrivate Bag X2046, 2735MmabathoSouth Africa
| | - Lebogang Katata‐Seru
- Department of ChemistrySchool of Physical and Chemical SciencesNorth-West UniversityPrivate Bag X2046, 2735MmabathoSouth Africa
| |
Collapse
|
2
|
Murshed M, AL-Tamimi J, Mares MM, Hailan WAQ, Ibrahim KE, Al-Quraishy S. Pharmacological Effects of Biosynthesis Silver Nanoparticles Utilizing Calotropis procera Leaf Extracts on Plasmodium berghei-Infected Liver in Experiment Mice. Int J Nanomedicine 2024; 19:13717-13733. [PMID: 39726977 PMCID: PMC11669542 DOI: 10.2147/ijn.s490119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Malaria caused by Plasmodium spp. is the most hazardous disease in the world. It is regarded as a life-threatening hematological disorder caused by parasites transferred to humans by the bite of Anopheles mosquitoes. Purpose Calotropis procera leaf extract combined with biosynthesized silver nanoparticles (CPLEAgNPs) to evaluate its antiplasmodium and hepatoprotective effects against P. berghei-induced infection in experimental mice. Methods The animal groups were divided into four groups: the first non-infected group was orally administered distilled water daily 7 days. The second group received an oral dose of 50 mg/kg of CPLE AgNPs. The third group received intraperitoneal injections of 105 P. berghei. The fourth group received of 105 P. berghei with 50 mg/kg CPLE AgNPs. All mice were anesthetized with CO2 and dissected for sample collection. Results This study of C. procera leaves showed that they contain chemically active substances, as shown by the amounts of phenols, flavonoids, and tannins. The antioxidant activity of the samples was assessed using 1.1-diphenyl-2-picrylhydrazyl (DPPH) and 2.2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assays. Treatment of infected mice with CPLE AgNPs for 7 days resulted in a significant decrease in parasitemia and a reduction in histopathological alterations in the liver. Furthermore, CPLE AgNPs mitigated oxidative damage caused by P. berghei infection in the liver. In addition, after receiving the medication, the liver levels of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase decreased. In addition, CPLE AgNPs regulated the expression of liver cytokines, including IL-1β, and I-10. Discussion Based on these findings, the study proved that CPLE AgNPs have hepatoprotective and antiplasmodial properties.
Collapse
Affiliation(s)
- Mutee Murshed
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Jameel AL-Tamimi
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mohammed M Mares
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Waleed A Q Hailan
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Khalid Elfaki Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Mettwally WSA, Hussein RA, Abdel Jaleel GA, Hassan A, Saleh DO, El-Beih AA. Cardenolides; calotropin and gomphogenin from Calotropis procera (Aiton) mitigate bone turnover in ovariectomized osteoporotic rats: Targeting RANKL/OPG axis and estrogen receptor-alpha. Fitoterapia 2024; 179:106226. [PMID: 39321857 DOI: 10.1016/j.fitote.2024.106226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/20/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
The present study aimed to examine the effect of Calotropis procera (Aiton) and its major cardenolides; calotropin and gomphogenin on ovariectomy-induced osteoporosis in rats. Osteoporotic rats were orally treated with C. procera alcoholic extract (100 mg/kg), calotropin (CLT; 100 μg/kg) and gomphogenin (GPG; 100 μg/kg) for 14 consecutive days. Bone resorption/formation biomarkers; bone specific alkaline phosphatase (BALP), osteoprotegerin (OPG) and nuclear factor-κβ ligand (RANKL) as well as serum calcium and phosphorus were assessed 24 h after last doses of treatments. Serum levels of estradiol (E2) and catalase were also measured. Oral treatment with C. procera extract, CLT and GPG caused E2 restoration to normal level with a marked regulation in the RANKL/OPG axis. Serum phosphorus and calcium were up-leveled whereas BALP was downregulated. Histopathological examination, bone histomorphometric analysis and immunohistochemical staining for osteopontin (OPN) inspection further emphasized the aforementioned outcomes. The results revealed the superiority of CLT and to a lesser extent GPG osteoporotic effect over C. procera extract. Molecular docking of the two compounds on ER-α and RANKL/OPG complex showed noteworthy binding affinities which also confirmed the supremacy of CLT due to the additional hydrogen bonding of the hydroxyl groups of the sugar moiety with RANKL/OPG complex. Finally, it is concluded that CLT and GPG from C. procera hinder bone turnover by decreasing osteoclastic bone cells activity and increasing calcium mineralization thus suppressing bone remodeling and preventing bone infirmity in OVX osteoporotic rats directly via binding to RANKL/OPG complex and ER-α and indirectly through elevating level of E2.
Collapse
Affiliation(s)
- Walaa S A Mettwally
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Rehab A Hussein
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Gehad A Abdel Jaleel
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Azza Hassan
- Pathology Department, Faculty of Veterinary, Cairo University, 12613, Egypt
| | - Dalia O Saleh
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ahmed A El-Beih
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
4
|
Maodaa S, Al-Shaebi EM, Abdel-Gaber R, Alatawi A, Alawwad S, Alhomoud D, Al-Quraishy S. Anticoccidial and Antioxidant Activities of an Ethanolic Extract of Teucrium polium Leaves on Eimeria papillate-Infected Mice. Vet Sci 2024; 11:314. [PMID: 39057998 PMCID: PMC11281697 DOI: 10.3390/vetsci11070314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Eimeria spp. are responsible for the economic loss of both domestic and wild animals due to coccidiosis, the most common parasitic disease. The resistance to currently available drugs used to treat coccidiosis has been proven. Medicinal plants that contain physiologically active phytochemicals have been widely used in traditional medicine. Teucrium polium leaf extract (TPLE) has been shown to exhibit pharmacological, antioxidant, and anticoccidial properties in different experiments. Here, our investigation focused on how T. polium leaf extract affected the way that Eimeria papillate caused intestinal injury in mice. Thirty-five male Swiss albino mice were divided into seven groups, as follows: group I: untreated and uninfected (negative control); group II: uninfected, treated group with TPLE (150 mg/kg b.w); and group III: infected untreated (positive control). Groups III-VII were orally administered 103 sporulated E. papillata oocysts. A total of 60 min after infection, groups IV-VI were treated for five successive days with 50, 150, and 250 mg/kg b.w TPLE, respectively, while group VII was treated with amprolium (120 mg/kg b.w.). The mice had been euthanized on the fifth day post-infection, and the jejunum tissues were prepared for histology and oxidative stress studies. A total of 150 mg/kg of TPLE was the most effective dosage, significantly decreasing oocyst output by about 80.5%, accompanied by a significant reduction in the number of developmental parasitic phases in jejunal sections. In addition, the decrease in the number of goblet cells in the jejuna of mice raised after treatment. Also, TPLE greatly diminished the body weight loss of infected mice. Moreover, our research proved that TPLE reduced oxidative damage due to E. papillata infection via decreasing intestinal malondialdehyde (MDA) and nitric oxide (NO) levels and increasing reduced superoxide dismutase (SOD) and glutathione (GSH) levels. These results demonstrated that TPLE had potent anticoccidial properties. TPE's efficacy as a natural antioxidant has also been demonstrated in reducing oxidative stress and enhancing antioxidant systems to mitigate biochemical and histological changes in the jejunum caused by E. papillata.
Collapse
Affiliation(s)
- Saleh Maodaa
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Esam M. Al-Shaebi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Rewaida Abdel-Gaber
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Afaf Alatawi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sarah Alawwad
- Department of Food Science and Nutrition, College of Food and Agricultural Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Dalal Alhomoud
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Tian Z, Hao Y, Chee TS, Cai H, Zhu L, Duan T, Xiao C. Hollow Core-Shell Bismuth Based Al-Doped Silica Materials for Powerful Co-Sequestration of Radioactive I 2 and CH 3I. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308451. [PMID: 38059738 DOI: 10.1002/smll.202308451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/30/2023] [Indexed: 12/08/2023]
Abstract
Developing pure inorganic materials capable of efficiently co-removing radioactive I2 and CH3I has always been a major challenge. Bismuth-based materials (BBMs) have garnered considerable attention due to their impressive I2 sorption capacity at high-temperature and cost-effectiveness. However, solely relying on bismuth components falls short in effectively removing CH3I and has not been systematically studied. Herein, a series of hollow mesoporous core-shell bifunctional materials with adjustable shell thickness and Si/Al ratio by using silica-coated Bi2O3 as a hard template and through simple alkaline-etching and CTAB-assisted surface coassembly methods (Bi@Al/SiO2) is successfully synthesized. By meticulously controlling the thickness of the shell layer and precisely tuning of the Si/Al ratio composition, the synthesis of BBMs capable of co-removing radioactive I2 and CH3I for the first time, demonstrating remarkable sorption capacities of 533.1 and 421.5 mg g-1, respectively is achieved. Both experimental and theoretical calculations indicate that the incorporation of acid sites within the shell layer is a key factor in achieving effective CH3I sorption. This innovative structural design of sorbent enables exceptional co-removal capabilities for both I2 and CH3I. Furthermore, the core-shell structure enhances the retention of captured iodine within the sorbents, which may further prevent potential leakage.
Collapse
Affiliation(s)
- Zhenjiang Tian
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- Institute of Nuclear Science and Technology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yuxun Hao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- Institute of Nuclear Science and Technology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Tien-Shee Chee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - He Cai
- Department of Earth and Environmental Sciences, The University of Manchester, 176 Oxford Rd, Manchester, M13 9QQ, UK
| | - Lin Zhu
- School of National Defense Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Tao Duan
- School of National Defense Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- Institute of Nuclear Science and Technology, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
6
|
Liu S, Li Y, Lin J, Ke Z, Grützmacher H, Su CY, Li Z. Sequential radical and cationic reactivity at separated sites within one molecule in solution. Chem Sci 2024; 15:5376-5384. [PMID: 38577367 PMCID: PMC10988588 DOI: 10.1039/d4sc00201f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 04/06/2024] Open
Abstract
Distonic radical cations (DRCs) with spatially separated charge and radical sites are expected to show both radical and cationic reactivity at different sites within one molecule. However, such "dual" reactivity has rarely been observed in the condensed phase. Herein we report the isolation of crystalline 1λ2,3λ2-1-phosphonia-3-phosphinyl-cyclohex-4-enes 2a,b˙+, which can be considered delocalized DRCs and were completely characterized by crystallographic, spectroscopic, and computational methods. These DRCs contain a radical and cationic site with seven and six valence electrons, respectively, which are both stabilized via conjugation, yet remain spatially separated. They exhibit reactivity that differs from that of conventional radical cations (CRCs); specifically they show sequential radical and cationic reactivity at separated sites within one molecule in solution.
Collapse
Affiliation(s)
- Shihua Liu
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Yinwu Li
- School of Materials Science and Engineering, Sun Yat-Sen University 510006 Guangzhou China
| | - Jieli Lin
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Zhuofeng Ke
- School of Materials Science and Engineering, Sun Yat-Sen University 510006 Guangzhou China
| | - Hansjörg Grützmacher
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1 Zürich 8093 Switzerland
| | - Cheng-Yong Su
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Zhongshu Li
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| |
Collapse
|
7
|
Maria B, Saeed S, Ahmed A, Ahmed M, Rehman A. The sustainable use of diverse plants accustomed by different ethnic groups in Sibi District, Balochistan, Pakistan. PLoS One 2024; 19:e0294989. [PMID: 38381718 PMCID: PMC10880983 DOI: 10.1371/journal.pone.0294989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 11/13/2023] [Indexed: 02/23/2024] Open
Abstract
The present study was conducted to analyze the utilization of medicinal plants (traditional as well as cultivated) and there recipes accustomed by different ethnic groups of Sibi District (SD), Balochistan, Pakistan. The study was carried out between 2018 and 2021 by using semi-structured and open-ended questionnaire.. The randomly selected methods applied for this study were mainly based on household surveys walk through and interview with indigenous communityage 40 to 80, a total of 75 plants, belonging to 63 genera and distributed among 33 plant families were recorded. The dominant Plant families were the Fabaceae (12%) of all studied taxa, followed by the Amaranthaceae (7%), Asteraceae (6%), Cucurbitaceae, Solanaceae, Poaceae (4% each), Rhamnaceae and Zygophyllaceae (3%). Thirty traditional Food Recipes (TFR) and Traditional Medicinal Recipes (TMR) were novel being first time reported from SD., which are utilized by the local communities in their daily routine. These ethnic TFR and TMR have a tremendous role in preservation and sustainable use of traditional food habits and culture. It was also documented that along with cultivated, the wild edible and medicinal plant preparations play a significant role in in the economic potential and primary health care system of the local communities. The study recommends the specific measures, such as small industries, improved export means, tourism and educational activities, to protect the traditional knowledge and biocultural heritage of the region before its erosion.
Collapse
Affiliation(s)
- Bibi Maria
- Department of Botany, University of Balochistan, Quetta, Pakistan
| | - Shazia Saeed
- Department of Botany, University of Balochistan, Quetta, Pakistan
| | - Alia Ahmed
- Department of Botany, University of Balochistan, Quetta, Pakistan
| | - Maria Ahmed
- Department of URSMIT and FAHS, University of Lahore, Lahore, Pakistan
| | - Abdul Rehman
- Department of Botany, University of Balochistan, Quetta, Pakistan
| |
Collapse
|
8
|
Ahmad Nejhad A, Alizadeh Behbahani B, Hojjati M, Vasiee A, Mehrnia MA. Identification of phytochemical, antioxidant, anticancer and antimicrobial potential of Calotropis procera leaf aqueous extract. Sci Rep 2023; 13:14716. [PMID: 37679486 PMCID: PMC10485245 DOI: 10.1038/s41598-023-42086-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023] Open
Abstract
Since the dawn of civilization, people have turned to plants as a safe and efficient form of treatment for a variety of diseases. It has long been known that Calotropis procera has the potential to treat a number of diseases. In this study, the C. procera leaf aqueous extract was obtained using the maceration method, and p-coumaric was found to be the main compound. The extract was rich in phenols (174.82 mg gallic acid equivalent/g) and flavonoids (1781.7 µg quercetin equivalent/g). The extract had high antioxidant properties, as indicated by the IC50 values obtained for 2,2-diphenyl-1-picrylhydrazyl (DPPH) (366.33 μg/mL) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) (169.04 μg/mL), as well as the ferric ions reducing antioxidant power (FRAP) (1.67 μg ascorbic acid equivalent/g of the extract). The cytotoxicity of the extract was evaluated against the survival of HT 29 cells, and the IC50 was found to be 236.87 μg/mL. The most resistant and sensitive strains to the extract were Escherichia coli and Staphylococcus aureus, respectively. The morphological changes of these strains were demonstrated through scanning electron microscopy and confocal laser scanning microscopy. The C. procera extract could be therefore used as an antioxidant, antimicrobial, and anticancer agent.
Collapse
Affiliation(s)
- Armin Ahmad Nejhad
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Behrooz Alizadeh Behbahani
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.
| | - Mohammad Hojjati
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Alireza Vasiee
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Amin Mehrnia
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| |
Collapse
|
9
|
In vitro: Anti-coccidia activity of Calotropis procera leaf extract on Eimeria papillata oocysts sporulation and sporozoite. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Abstract
Natural products play an important role as environmentally friendly agents that can be used against parasitic diseases. Many Eimeria species cause eimeriosis in poultry. The negative effects of synthetic anti-coccidiosis medications necessitate the quest for alternative treatments derived from medicinal plants in the treatment of eimeriosis. The study was conducted to evaluate the effects of Calotropis procera leaf extract (CPLE) (Madar) on the sporulation of Eimeria oocysts and sporozoites that affect mammalian jejunum and to obtain the best concentration for sporulation inhibition and infection prevention. Extracts were tested in vitro to prevent oocyst sporulation, wall deformity, and anti-sporozoite activity with Eimeria papillata. The plant-chemical compounds analysis of CPLE some active compounds were shown as well as CPLE in vitro effects at various concentrations (200, 100, 50, 25,12.5, and 6.25 mg/mL), while potassium dichromate solution 2.5% and Toltrazuril 25 mg/mL were administered as the control groups. C. procera leaf extract showed the highest inhibitory percentage on E. papillata oocyst at 200 mg/mL of extract, approximately 91%. In addition, CPLE showed the sporozoite highest viability inhibitory percentage on E. papillata at 200 mg/mL of extract, approximately 88%, and the lowest efficacy was 5% at 6.25 mg/mL. Also, we noticed the deformation and destruction of the oocyst wall based on the concentration rate. Sporulation inhibition rate is significantly affected by incubation time and treatment concentration ratio. The results showed that Madar has an effective, inhibitory potential, and protective effect on coccidian oocyst sporulation and sporozoites of E. papillata.
Collapse
|
10
|
Antimicrobial, Antigenotoxicity, and Characterization of Calotropis procera and Its Rhizosphere-Inhabiting Actinobacteria: In Vitro and In Vivo Studies. Molecules 2022; 27:molecules27103123. [PMID: 35630600 PMCID: PMC9146570 DOI: 10.3390/molecules27103123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 01/27/2023] Open
Abstract
Calotropis procera (C. procera) is a wild shrub that is a medicinal plant found in abundance throughout Saudi Arabia. In this study, we investigated the phytochemical composition and antigenotoxic properties of the ethanolic extract of C. procera, in addition to the antimicrobial activity of the plant and its rhizospheric actinobacteria effects against pathogenic microorganisms. Soil-extract medium supplemented with glycerol as a carbon source and starch–casein agar medium was used for isolation of actinobacteria from rhizosphere. From the plant, a total of 31 compounds were identified using gas chromatography/mass spectrometry (GC–MS). The main components were α-amyrin (39.36%), lupeol acetate (17.94%), phytol (13.32%), hexadecanoic acid (5.55%), stigmasterol (3.16%), linolenic acid (3.04%), and gombasterol A (2.14%). C. procera plant extract’s antimicrobial activity was investigated using an agar well-diffusion assay and minimum inhibitory concentration (MIC) against six pathogenic microbial strains. The plant extract of C. procera was considered significantly active against Staphylococcus aureus, Klebsiella pneumonia, and Escherichia coli, with inhibition zones of 18.66 mm, 21.26 mm, and 21.93 mm, respectively. The plant extract was considered to be a moderate inhibitor against Bacillus subtilis, with MIC ranging from 0.60–1.50 mg/mL. On the other hand, the isolated actinobacteria were considered to be a moderate inhibitor against S. aureus (MIC of 86 µg/mL), and a potent inhibitor, strain CALT_2, against Candida albicans (MIC of 35 µg/mL). The 16S rRNA gene sequence analysis showed that the potential strains belonged to the genus Streptomyces. The effect of C. procera extract against cyclophosphamide (CP)-induced genotoxicity was examined by evaluating chromosome abnormalities in mouse somatic cells and DNA fragmentation assays. The current study revealed that oral pretreatment of C. procera (50, 100, and 200 mg/kg b.w.) for 1, 7, and 14 days to cyclophosphamide-treated animals significantly reduced chromosomal abnormalities as well as DNA fragmentation in a dose-dependent manner. Moreover, C. procera extract had antimicrobial and antigenotoxic effects against CP-induced genotoxicity.
Collapse
|
11
|
Tan C, Xu Z, Zhang L, Lei M, Lei J, Duan T, Liu W. Introducing Zirconium Organic Gels for Efficient Radioiodine Gas Removal. Inorg Chem 2022; 61:4818-4824. [PMID: 35289614 DOI: 10.1021/acs.inorgchem.1c03159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Iodine radioisotope, as one of the most important fission products of uranium, may cause severe damage to human health when it is accidentally discharged into the environment. Hence, efficient removal of radioactive iodine is one of the most critical issues for both used nuclear fuel (UNF) reprocessing and environmental remediation. In this work, three metal-organic gels (MOGs) were introduced for iodine removal. The presented zirconium-based MOGs, namely, CWNU, CWNU-NH2, and CWNU-2NH2, were prepared via moderate solvothermal reactions. These MOGs all exhibit excellent chemical stability and reusability, marked iodine sorption capability, and favorable machinability, which can even rival commercial ones. The sorption capacities are determined to be 3.36, 4.10, and 4.20 g/g, respectively. The increased amount of amino group is considered to be responsible for the elevated iodine sorption capacity and kinetics, as confirmed by combined sorption studies and XPS analysis. The presented work sheds light on the utilization of MOGs for radioiodine capture.
Collapse
Affiliation(s)
- Chuan Tan
- School of Physics and Astronomy, China West Normal University, Nanchong 637002, China
| | - Zijun Xu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Lilin Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Min Lei
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Jiehong Lei
- School of Physics and Astronomy, China West Normal University, Nanchong 637002, China
| | - Tao Duan
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China.,State Key Laboratory of Environment-friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wei Liu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
12
|
Robust ultrathin nanoporous MOF membrane with intra-crystalline defects for fast water transport. Nat Commun 2022; 13:266. [PMID: 35017513 PMCID: PMC8752604 DOI: 10.1038/s41467-021-27873-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/17/2021] [Indexed: 01/20/2023] Open
Abstract
Rational design of high-performance stable metal–organic framework (MOF) membranes is challenging, especially for the sustainable treatment of hypersaline waters to address critical global environmental issues. Herein, a molecular-level intra-crystalline defect strategy combined with a selective layer thinning protocol is proposed to fabricate robust ultrathin missing-linker UiO-66 (ML-UiO-66) membrane to enable fast water permeation. Besides almost complete salt rejection, high and stable water flux is achieved even under long-term pervaporation operation in hash environments, which effectively addresses challenging stability issues. Then, detailed structural characterizations are employed to identify the type, chemical functionality, and density of intra-crystalline missing-linker defects. Moreover, molecular dynamics simulations shed light on the positive atomistic role of these defects, which are responsible for substantially enhancing structural hydrophilicity and enlarging pore window, consequently allowing ultra-fast water transport via a lower-energy-barrier pathway across three-dimensional sub-nanochannels during pervaporation. Unlike common unfavorable defect effects, the present positive intra-crystalline defect engineering concept at the molecular level is expected to pave a promising way toward not only rational design of next-generation MOF membranes with enhanced permeation performance, but additional water treatment applications. The development of highly water-permeable membranes is key for the treatment of high salinity waters. Here the authors enhance the water permeability of a metal-organic framework nanoporous membrane via an intra-crystalline defect engineering strategy.
Collapse
|
13
|
Jousselin-Oba T, Mamada M, Wright K, Marrot J, Adachi C, Yassar A, Frigoli M. Synthesis, Aromaticity, and Application of peri-Pentacenopentacene: Localized Representation of Benzenoid Aromatic Compounds. Angew Chem Int Ed Engl 2022; 61:e202112794. [PMID: 34727416 DOI: 10.1002/anie.202112794] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Indexed: 11/09/2022]
Abstract
We report the synthesis and optoelectronic properties of TIPS-peri-pentacenopentacene (TIPS-PPP), a vertical extension of TIPS-pentacene (TIPS-PEN) and a low-band-gap material with remarkable stability. We found the synthetic conditions to avoid the competition between 1,2- and 1,4-addition of lithium acetylide on the large aromatic dione. The high stability of TIPS-PPP is due to the peri-fusion which increases the aromaticity by generating two localized aromatic sextets that are flanked with 2 diene fragments, similar to two fused-anthracenes. Like TIPS-PEN, TIPS-PPP shows the archetypal 2D brickwall motif in crystals with a larger transfer integral and smaller reorganization energy. The high mobility of up to 1 cm2 V-1 s-1 was obtained in an organic field-effect transistor fabricated by a wet process. Also, TIPS-PPP was used as a near-infrared (NIR) emitter for NIR organic-light-emitting-diode devices resulting in a high external quantum efficiency at 800 nm.
Collapse
Affiliation(s)
- Tanguy Jousselin-Oba
- Institut Lavoisier de Versailles, UMR CNRS 8180, University Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles Cedex, France
| | - Masashi Mamada
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Nishi, Fukuoka, 819-0395, Japan
| | - Karen Wright
- Institut Lavoisier de Versailles, UMR CNRS 8180, University Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles Cedex, France
| | - Jérome Marrot
- Institut Lavoisier de Versailles, UMR CNRS 8180, University Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles Cedex, France
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Nishi, Fukuoka, 819-0395, Japan.,International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Nishi, Fukuoka, 819-0395, Japan
| | - Abderrahim Yassar
- LPICM, UMR CNRS 7647, Ecole Polytechnique, 91128, Palaiseau Cedex, France
| | - Michel Frigoli
- Institut Lavoisier de Versailles, UMR CNRS 8180, University Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles Cedex, France
| |
Collapse
|
14
|
Jousselin‐Oba T, Mamada M, Wright K, Marrot J, Adachi C, Yassar A, Frigoli M. Synthesis, Aromaticity, and Application of
peri
‐Pentacenopentacene: Localized Representation of Benzenoid Aromatic Compounds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tanguy Jousselin‐Oba
- Institut Lavoisier de Versailles UMR CNRS 8180 University Paris-Saclay 45 avenue des Etats-Unis 78035 Versailles Cedex France
| | - Masashi Mamada
- Center for Organic Photonics and Electronics Research (OPERA) Kyushu University Nishi Fukuoka 819-0395 Japan
| | - Karen Wright
- Institut Lavoisier de Versailles UMR CNRS 8180 University Paris-Saclay 45 avenue des Etats-Unis 78035 Versailles Cedex France
| | - Jérome Marrot
- Institut Lavoisier de Versailles UMR CNRS 8180 University Paris-Saclay 45 avenue des Etats-Unis 78035 Versailles Cedex France
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA) Kyushu University Nishi Fukuoka 819-0395 Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER) Kyushu University Nishi Fukuoka 819-0395 Japan
| | - Abderrahim Yassar
- LPICM, UMR CNRS 7647 Ecole Polytechnique 91128 Palaiseau Cedex France
| | - Michel Frigoli
- Institut Lavoisier de Versailles UMR CNRS 8180 University Paris-Saclay 45 avenue des Etats-Unis 78035 Versailles Cedex France
| |
Collapse
|
15
|
Han S, Wang Y, Li Y, Shi K. Investigation of bacterial diversity in Cajanus cajan-planted gangue soil via high-throughput sequencing. Bioengineered 2021; 12:6981-6995. [PMID: 34545768 PMCID: PMC8806674 DOI: 10.1080/21655979.2021.1976043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The ecological restoration of coal gangue can be achieved by planting Cajanus cajan (pigeon pea) because of its developed root system. The close relationships soil microorganisms have with plants are crucial for improving soil composition; the soil composition affects nutrient absorption. The microbial composition and function of soil planted with C. cajan in reclaimed land were compared with soil that was not planted with C. cajan (the control). Results showed that the dominant microflora in the soil significantly changed after planting C. cajan. Before planting, the dominant microflora included members of the phyla Sulfobacteria and Acidobacteria. After planting, the dominant microflora contained bacteria from phyla and classes that included Actinobacteria, Acidimicubia, Thermoleophilia, and Anaerolineae. Additionally, there were significant differences in the bacterial composition of each layer in soils planted with C. cajan. Principal component analysis revealed that the interpretation degrees of the results for PC2 and PC3 axes were 10.46% and 3.87%, respectively. The dominant microflora were Vicinamibacterales, Nocardioides, and Arthrobacter in the surface soil; Actinophytocola and Sphingomonas in the deep soil; and Sulfobacillus and Acidimicrobium in the mixed-layer soil. Function prediction analysis using the bioinformatics software package PICRUSt revealed that the abundance of operational taxonomic units corresponding to sigma 54-specific transcriptional regulators, serine threonine protein kinase, and histidine kinase increased by 111.2%, 56.8%, and 47.4%, respectively, after planting C. cajan. This study provides a reference for interactions among microorganisms in reclaimed soils for guiding the development and restoration of waste coal gangue hills.
Collapse
Affiliation(s)
- Shimin Han
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui Guizhou, China
| | - Yuexia Wang
- Human Resources Office, Liupanshui Normal University, Liupanshui Guizhou, China
| | - Yuan Li
- Guizhou Coal Product Quality Supervision & Inspection Institute, Liupanshui Guizhou, China
| | - Kaiyi Shi
- School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun, Guizhou, China.,School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, Guizhou, China
| |
Collapse
|
16
|
Amini MH, Ashraf K, Salim F, Meng Lim S, Ramasamy K, Manshoor N, Sultan S, Ahmad W. Important insights from the antimicrobial activity of Calotropis procera. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
17
|
Fakhri S, Tomas M, Capanoglu E, Hussain Y, Abbaszadeh F, Lu B, Hu X, Wu J, Zou L, Smeriglio A, Simal-Gandara J, Cao H, Xiao J, Khan H. Antioxidant and anticancer potentials of edible flowers: where do we stand? Crit Rev Food Sci Nutr 2021; 62:8589-8645. [PMID: 34096420 DOI: 10.1080/10408398.2021.1931022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Edible flowers are attracting special therapeutic attention and their administration is on the rise. Edible flowers play pivotal modulatory roles on oxidative stress and related interconnected apoptotic/inflammatory pathways toward the treatment of cancer. In this review, we highlighted the phytochemical content and therapeutic applications of edible flowers, as well as their modulatory potential on the oxidative stress pathways and apoptotic/inflammatory mediators, resulting in anticancer effects. Edible flowers are promising sources of phytochemicals (e.g., phenolic compounds, carotenoids, terpenoids) with several therapeutic effects. They possess anti-inflammatory, anti-diabetic, anti-microbial, anti-depressant, anxiolytic, anti-obesity, cardioprotective, and neuroprotective effects. Edible flowers potentially modulate oxidative stress by targeting erythroid nuclear transcription factor-2/extracellular signal-regulated kinase/mitogen-activated protein kinase (Nrf2/ERK/MAPK), reactive oxygen species (ROS), nitric oxide (NO), malondialdehyde (MDA) and antioxidant response elements (AREs). As the interconnected pathways to oxidative stress, inflammatory mediators, including tumor necrosis factor (TNF)-α, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukins (ILs) as well as apoptotic pathways such as Bcl-2-associated X protein (Bax), Bcl-2, caspase and cytochrome C are critical targets of edible flowers in combating cancer. In this regard, edible flowers could play promising anticancer effects by targeting oxidative stress and downstream dysregulated pathways.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Merve Tomas
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Yaseen Hussain
- Control release drug delivery system, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Xiaolan Hu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Jianlin Wu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, Ourense, Spain
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, Ourense, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, Ourense, Spain
- Institute of Food Safety & Nutrition, Jinan University, Guangzhou, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
18
|
Zu Y, Yao H, Wang Y, Yan L, Gu Z, Chen C, Gao L, Yin W. The age of bioinspired molybdenum‐involved nanozymes: Synthesis, catalytic mechanisms, and biomedical applications. VIEW 2021. [DOI: 10.1002/viw.20200188] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Yan Zu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics and National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing China
| | - Huiqin Yao
- School of Basic Medicine Ningxia Medical University Yinchuan China
| | - Yifan Wang
- School of Basic Medicine Ningxia Medical University Yinchuan China
| | - Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics and National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics and National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics and National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing China
| | - Lizeng Gao
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics Chinese Academy of Sciences Beijing China
| | - Wenyan Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics and National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing China
| |
Collapse
|
19
|
Zhang Z, Xu W, Ye X, Xi Y, Qiu C, Ding L, Liu G, Xiao Q. Enormous passivation effects of a surrounding zeolitic framework on Pt clusters for the catalytic dehydrogenation of propane. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00738f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The significant passivation effect of the zeolitic framework on the catalytic performance of Pt clusters for dehydrogenation of propane to propylene is displayed. Pt/NaX shows 1100% enhanced TOFs and largely improved selectivity compared with Pt@NaX.
Collapse
Affiliation(s)
- Zhiyang Zhang
- Institute of Agricultural Resources and Environment
- Jiangsu Academy of Agricultural Sciences
- Nanjing 210014
- China
| | - Wenlong Xu
- Institute of Agricultural Resources and Environment
- Jiangsu Academy of Agricultural Sciences
- Nanjing 210014
- China
| | - Xiaomei Ye
- Institute of Agricultural Resources and Environment
- Jiangsu Academy of Agricultural Sciences
- Nanjing 210014
- China
| | - Yonglan Xi
- Institute of Agricultural Resources and Environment
- Jiangsu Academy of Agricultural Sciences
- Nanjing 210014
- China
| | - Cunpu Qiu
- Institute of Agricultural Resources and Environment
- Jiangsu Academy of Agricultural Sciences
- Nanjing 210014
- China
| | - Liping Ding
- Key Lab of Mesoscopic Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Gui Liu
- Key Lab of Mesoscopic Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Qingbo Xiao
- Institute of Agricultural Resources and Environment
- Jiangsu Academy of Agricultural Sciences
- Nanjing 210014
- China
| |
Collapse
|
20
|
Kaur A, Batish DR, Kaur S, Chauhan BS. An Overview of the Characteristics and Potential of Calotropis procera From Botanical, Ecological, and Economic Perspectives. FRONTIERS IN PLANT SCIENCE 2021; 12:690806. [PMID: 34220914 PMCID: PMC8248367 DOI: 10.3389/fpls.2021.690806] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/24/2021] [Indexed: 05/05/2023]
Abstract
Calotropis procera (Aiton) Dryand. (commonly known as the apple of sodom, calotrope, and giant milkweed) is an evergreen, perennial shrub of the family Apocynaceae, mainly found in arid and semi-arid regions. It is a multipurpose plant, which can be utilized for medicine, fodder, and fuel purposes, timber and fiber production, phytoremediation, and synthesis of nanoparticles. It has been widely used in traditional medicinal systems across North Africa, Middle East Asia, and South-East Asia. At present, it is being extensively explored for its potential pharmacological applications. Several reports also suggest its prospects in the food, textile, and paper industries. Besides, C. procera has also been acknowledged as an ornamental species. High pharmacological potential and socio-economic value have led to the pantropical introduction of the plant. Morpho-physiological adaptations and the ability to tolerate various abiotic stresses enabled its naturalization beyond the introduced areas. Now, it is recognized as an obnoxious environmental weed in several parts of the world. Its unnatural expansion has been witnessed in the regions of South America, the Caribbean Islands, Australia, the Hawaiian Islands, Mexico, Seychelles, and several Pacific Islands. In Australia, nearly 3.7 million hectares of drier areas, including rangelands and Savannahs, have been invaded by the plant. In this review, multiple aspects of C. procera have been discussed including its general characteristics, current and potential uses, and invasive tendencies. The objectives of this review are a) to compile the information available in the literature on C. procera, to make it accessible for future research, b) to enlist together its potential applications being investigated in different fields, and c) to acknowledge C. procera as an emerging invasive species of arid and semi-arid regions.
Collapse
Affiliation(s)
- Amarpreet Kaur
- Department of Botany, Panjab University, Chandigarh, India
| | | | - Shalinder Kaur
- Department of Botany, Panjab University, Chandigarh, India
| | - Bhagirath S. Chauhan
- Queensland Alliance for Agriculture and Food Innovation (QAAFI) and School of Agriculture and Food Sciences (SAFS), The University of Queensland, Gatton, QLD, Australia
- *Correspondence: Bhagirath S. Chauhan,
| |
Collapse
|