1
|
Downregulated miR-204 Promotes Skeletal Muscle Regeneration. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3183296. [PMID: 33282943 PMCID: PMC7685802 DOI: 10.1155/2020/3183296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/10/2020] [Accepted: 10/27/2020] [Indexed: 11/27/2022]
Abstract
Skeletal muscle is the most abundant and a highly plastic tissue of the mammals, especially when it comes to regenerate after trauma, but there is limited information about the mechanism of muscle repair and its regeneration. In the present study, we found that miR-204 is downregulated after skeletal muscle injury. In vitro experiments showed that over-expression of miR-204 by transfecting with miR-204 mimics suppressed C2C12 cell proliferation, migration, and blocked subsequent differentiation, whereas inhibition of miR-204 by transfecting with miR-204 inhibitor showed the converse effects. Furthermore, through the dual luciferase reporter system, we demonstrated that miR-204 can target the 3'UTR regions of Pax7, IGF1, and Mef2c and inhibit their expression. Taken together, our results suggest that Pax7, IGF1, and Mef2c are the target genes of miR-204 in the process of myoblasts proliferation, cell migration, and differentiation, respectively, and may contribute to mouse skeletal muscle regeneration. Our results may provide new ideas and references for the skeletal muscle study and may also provide therapeutic strategies of skeletal muscle injury.
Collapse
|
2
|
Rao MS. LULL(ed) into complacency: a perspective on licenses and stem cell translational science. Stem Cell Res Ther 2013; 4:98. [PMID: 23953837 PMCID: PMC3854754 DOI: 10.1186/scrt309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The US has had a very successful model for facilitating the translation of a basic discovery to a commercial application. The success of the model has hinged on providing clarity on ownership of a discovery, facilitating the licensing process, providing adequate incentive to the inventors, and developing a self-sustaining model for reinvestment. In recent years, technological, political, and regulatory changes have put strains on this model and in some cases have hindered progress rather than facilitated it. This is particularly true for the nascent field of regenerative medicine. To illustrate this, I will describe the contributing practices of several different entities, including universities, repositories, patent trolls, and service providers. It is my hope that the scientific community will be motivated to coordinate efforts against these obstacles to translation.
Collapse
|
3
|
Parsons XH. Constraining the Pluripotent Fate of Human Embryonic Stem Cells for Tissue Engineering and Cell Therapy - The Turning Point of Cell-Based Regenerative Medicine. ACTA ACUST UNITED AC 2013. [PMID: 24926434 PMCID: PMC4051304 DOI: 10.9734/bbj/2013/4309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To date, the lack of a clinically-suitable source of engraftable human stem/progenitor cells with adequate neurogenic potential has been the major setback in developing safe and effective cell-based therapies for regenerating the damaged or lost CNS structure and circuitry in a wide range of neurological disorders. Similarly, the lack of a clinically-suitable human cardiomyocyte source with adequate myocardium regenerative potential has been the major setback in regenerating the damaged human heart. Given the limited capacity of the CNS and heart for self-repair, there is a large unmet healthcare need to develop stem cell therapies to provide optimal regeneration and reconstruction treatment options to restore normal tissues and function. Derivation of human embryonic stem cells (hESCs) provides a powerful in vitro model system to investigate molecular controls in human embryogenesis as well as an unlimited source to generate the diversity of human somatic cell types for regenerative medicine. However, realizing the developmental and therapeutic potential of hESC derivatives has been hindered by the inefficiency and instability of generating clinically-relevant functional cells from pluripotent cells through conventional uncontrollable and incomplete multi-lineage differentiation. Recent advances and breakthroughs in hESC research have overcome some major obstacles in bringing hESC therapy derivatives towards clinical applications, including establishing defined culture systems for de novo derivation and maintenance of clinical-grade pluripotent hESCs and lineage-specific differentiation of pluripotent hESCs by small molecule induction. Retinoic acid was identified as sufficient to induce the specification of neuroectoderm direct from the pluripotent state of hESCs and trigger a cascade of neuronal lineage-specific progression to human neuronal progenitors and neurons of the developing CNS in high efficiency, purity, and neuronal lineage specificity by promoting nuclear translocation of the neuronal specific transcription factor Nurr-1. Similarly, nicotinamide was rendered sufficient to induce the specification of cardiomesoderm direct from the pluripotent state of hESCs by promoting the expression of the earliest cardiac-specific transcription factor Csx/Nkx2.5 and triggering progression to cardiac precursors and beating cardiomyocytes with high efficiency. This technology breakthrough enables direct conversion of pluripotent hESCs into a large supply of high purity neuronal cells or heart muscle cells with adequate capacity to regenerate CNS neurons and contractile heart muscles for developing safe and effective stem cell therapies. Transforming pluripotent hESCs into fate-restricted therapy derivatives dramatically increases the clinical efficacy of graft-dependent repair and safety of hESC-derived cellular products. Such milestone advances and medical innovations in hESC research allow generation of a large supply of clinical-grade hESC therapy derivatives targeting for major health problems, bringing cell-based regenerative medicine to a turning point.
Collapse
Affiliation(s)
- Xuejun H Parsons
- San Diego Regenerative Medicine Institute, San Diego, CA 92109, USA. ; Xcelthera, San Diego, CA 92109, USA
| |
Collapse
|
4
|
Parsons XH. Constraining the Pluripotent Fate of Human Embryonic Stem Cells for Tissue Engineering and Cell Therapy - The Turning Point of Cell-Based Regenerative Medicine. ACTA ACUST UNITED AC 2013; 3:424-457. [PMID: 24926434 DOI: 10.9734/bbj/2013/4309#sthash.6d8rulbv.dpuf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To date, the lack of a clinically-suitable source of engraftable human stem/progenitor cells with adequate neurogenic potential has been the major setback in developing safe and effective cell-based therapies for regenerating the damaged or lost CNS structure and circuitry in a wide range of neurological disorders. Similarly, the lack of a clinically-suitable human cardiomyocyte source with adequate myocardium regenerative potential has been the major setback in regenerating the damaged human heart. Given the limited capacity of the CNS and heart for self-repair, there is a large unmet healthcare need to develop stem cell therapies to provide optimal regeneration and reconstruction treatment options to restore normal tissues and function. Derivation of human embryonic stem cells (hESCs) provides a powerful in vitro model system to investigate molecular controls in human embryogenesis as well as an unlimited source to generate the diversity of human somatic cell types for regenerative medicine. However, realizing the developmental and therapeutic potential of hESC derivatives has been hindered by the inefficiency and instability of generating clinically-relevant functional cells from pluripotent cells through conventional uncontrollable and incomplete multi-lineage differentiation. Recent advances and breakthroughs in hESC research have overcome some major obstacles in bringing hESC therapy derivatives towards clinical applications, including establishing defined culture systems for de novo derivation and maintenance of clinical-grade pluripotent hESCs and lineage-specific differentiation of pluripotent hESCs by small molecule induction. Retinoic acid was identified as sufficient to induce the specification of neuroectoderm direct from the pluripotent state of hESCs and trigger a cascade of neuronal lineage-specific progression to human neuronal progenitors and neurons of the developing CNS in high efficiency, purity, and neuronal lineage specificity by promoting nuclear translocation of the neuronal specific transcription factor Nurr-1. Similarly, nicotinamide was rendered sufficient to induce the specification of cardiomesoderm direct from the pluripotent state of hESCs by promoting the expression of the earliest cardiac-specific transcription factor Csx/Nkx2.5 and triggering progression to cardiac precursors and beating cardiomyocytes with high efficiency. This technology breakthrough enables direct conversion of pluripotent hESCs into a large supply of high purity neuronal cells or heart muscle cells with adequate capacity to regenerate CNS neurons and contractile heart muscles for developing safe and effective stem cell therapies. Transforming pluripotent hESCs into fate-restricted therapy derivatives dramatically increases the clinical efficacy of graft-dependent repair and safety of hESC-derived cellular products. Such milestone advances and medical innovations in hESC research allow generation of a large supply of clinical-grade hESC therapy derivatives targeting for major health problems, bringing cell-based regenerative medicine to a turning point.
Collapse
Affiliation(s)
- Xuejun H Parsons
- San Diego Regenerative Medicine Institute, San Diego, CA 92109, USA. ; Xcelthera, San Diego, CA 92109, USA
| |
Collapse
|
5
|
Parsons XH. MicroRNA Profiling Reveals Distinct Mechanisms Governing Cardiac and Neural Lineage-Specification of Pluripotent Human Embryonic Stem Cells. ACTA ACUST UNITED AC 2012; 2. [PMID: 23355957 DOI: 10.4172/2157-7633.1000124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Realizing the potential of human embryonic stem cells (hESCs) has been hindered by the inefficiency and instability of generating desired cell types from pluripotent cells through multi-lineage differentiation. We recently reported that pluripotent hESCs maintained under a defined platform can be uniformly converted into a cardiac or neural lineage by small molecule induction, which enables lineage-specific differentiation direct from the pluripotent state of hESCs and opens the door to investigate human embryonic development using in vitro cellular model systems. To identify mechanisms of small molecule induced lineage-specification of pluripotent hESCs, in this study, we compared the expression and intracellular distribution patterns of a set of cardinal chromatin modifiers in pluripotent hESCs, nicotinamide (NAM)-induced cardiomesodermal cells, and retinoic acid (RA)-induced neuroectodermal cells. Further, genome-scale profiling of microRNA (miRNA) differential expression patterns was used to monitor the regulatory networks of the entire genome and identify the development-initiating miRNAs in hESC cardiac and neural lineage-specification. We found that NAM induced nuclear translocation of NAD-dependent histone deacetylase SIRT1 and global chromatin silencing, while RA induced silencing of pluripotence-associated hsa-miR-302 family and drastic up-regulation of neuroectodermal Hox miRNA hsa-miR-10 family to high levels. Genome-scale miRNA profiling indentified that a unique set of pluripotence-associated miRNAs was down-regulated, while novel sets of distinct cardiac- and neural-driving miRNAs were up-regulated upon the induction of lineage-specification direct from the pluripotent state of hESCs. These findings suggest that a predominant epigenetic mechanism via SIRT1-mediated global chromatin silencing governs NAM-induced hESC cardiac fate determination, while a predominant genetic mechanism via silencing of pluripotence-associated hsa-miR-302 family and drastic up-regulation of neuroectodermal Hox miRNA hsa-miR-10 family governs RA-induced hESC neural fate determination. This study provides critical insight into the earliest events in human embryogenesis as well as offers means for small molecule-mediated direct control and modulation of hESC pluripotent fate when deriving clinically-relevant lineages for regenerative therapies.
Collapse
Affiliation(s)
- Xuejun H Parsons
- San Diego Regenerative Medicine Institute, San Diego, CA 92109, USA ; Xcelthera, San Diego, CA 92109, USA
| |
Collapse
|
6
|
Parsons XH. Human Stem Cell Derivatives Retain More Open Epigenomic Landscape When Derived from Pluripotent Cells than from Tissues. ACTA ACUST UNITED AC 2012; 1. [PMID: 23936871 DOI: 10.4172/2325-9620.1000103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The growing number of identified stem cell derivatives and escalating concerns for safety and efficacy of these cells towards clinical applications have made it increasingly crucial to be able to assess the relative risk-benefit ratio of a given stem cell from a given source for a particular disease. Discerning the intrinsic plasticity and regenerative potential of human stem cell populations might reside in chromatin modifications that shape the respective epigenomes of their derivation routes. Previously, we have generated engraftable human neuronal progenitors direct from pluripotent human embryonic stem cells (hESCs) by small molecule induction (hESC-I hNuPs). Unlike the prototypical neuroepithelial-like nestin-positive human neural stem cells (hNSCs), these in vitro neuroectoderm-derived Nurr1-positive hESC-I hNuPs are a more neuronal lineage-specific and plastic hESC derivative. In this study, the global chromatin landscape changes in pluripotent hESCs and their neuronal lineage-specific derivative hESC-I hNuPs were profiled using genome-wide mapping and compared to CNS tissue-derived hNSCs. This study found that the broad potential of pluripotent hESCs is defined by an epigenome constituted of open conformation of chromatin mediated by a pattern of Oct-4 global distribution that corresponds closely with those of acetylated nucleosomes genome-wide. The epigenomic transition from pluripotency to restriction in lineage choices is characterized by genome-wide increases in histone H3K9 methylation that mediates global chromatin-silencing and somatic identity. Tissue-resident CNS-derived hNSCs have acquired a substantial number of additional histone H3K9 methylation, therefore, more silenced chromatin. These data suggest that the intrinsic plasticity and regenerative potential of human stem cell derivatives can be differentiated by their epigenomic landscape features, and that human stem cell derivatives retain more open epigenomic landscape, therefore, more developmental potential for scale-up regeneration, when derived from the hESCs in vitro than from the CNS tissue in vivo.
Collapse
Affiliation(s)
- Xuejun H Parsons
- San Diego Regenerative Medicine Institute, San Diego, USA ; Xcelthera, San Diego, USA
| |
Collapse
|
7
|
Parsons XH, Parsons JF, Moore DA. Genome-Scale Mapping of MicroRNA Signatures in Human Embryonic Stem Cell Neurogenesis. ACTA ACUST UNITED AC 2012; 1. [PMID: 23543894 DOI: 10.4172/2324-8769.1000105] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To date, lacking of a clinically-suitable source of engraftable human stem/progenitor cells with adequate neurogenic potential has been the major setback in developing effective cell-based therapies against a wide range of neurological disorders. Derivation of human embryonic stem cells (hESCs) provides a powerful tool to investigate the molecular controls in human embryonic neurogenesis as well as an unlimited source to generate the diversity of human neuronal cell types in the developing CNS for repair. However, realizing the developmental and therapeutic potential of hESCs has been hindered by conventional multi-lineage differentiation of pluripotent cells, which is uncontrollable, inefficient, highly variable, difficult to reproduce and scale-up. We recently identified retinoic acid (RA) as sufficient to induce the specification of neuroectoderm direct from the pluripotent state of hESCs under defined platform and trigger progression to human neuronal progenitors (hESC-I hNuPs) and neurons (hESC-I hNus) in the developing CNS with high efficiency, which enables hESC neuronal lineage-specific differentiation and opens the door to investigate human embryonic neurogenesis using the hESC model system. In this study, genome-scale profiling of microRNA (miRNA) differential expression patterns in hESC neuronal lineage-specific progression was used to identify molecular signatures of human embryonic neurogenesis. These in vitro neuroectoderm-derived human neuronal cells have acquired a neuron al identity by down-regulating pluripotence-associated miRNAs and inducing the expression of miRNAs linked to regulating human CNS development to high levels in a stage-specific manner, including silencing of the prominent pluripotence-associated hsa-miR-302 family and drastic expression increases of the Hox hsa-miR-10 and let-7 miRNAs. Following transplantation, hESC-I hNuPs engrafted and yielded well-integrated neurons at a high prevalence within neurogenic regions of the brain. In 3D culture, these hESC-I hNuPs proceeded to express subtype neuronal markers, such as dopaminergic and motor neurons, demonstrating their therapeutic potential for CNS repair. Our study provides critical insight into molecular neurogenesis in human embryonic development as well as offers an adequate human neurogenic cell source in high purity and large quantity for scale-up CNS regeneration.
Collapse
Affiliation(s)
- Xuejun H Parsons
- San Diego Regenerative Medicine Institute, San Diego, CA 92109, USA ; Xcelthera, San Diego, CA 92109, USA
| | | | | |
Collapse
|
8
|
Parsons JF, Smotrich DB, Gonzalez R, Snyder EY, Moore DA, Parsons XH. Defining Conditions for Sustaining Epiblast Pluripotence Enables Direct Induction of Clinically-Suitable Human Myocardial Grafts from Biologics-Free Human Embryonic Stem Cells. ACTA ACUST UNITED AC 2012; S9. [PMID: 22905333 DOI: 10.4172/2155-9880.s9-001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To date, lacking of a clinically-suitable human cardiac cell source with adequate myocardium regenerative potential has been the major setback in regenerating the damaged human myocardium. Pluripotent Human Embryonic Stem Cells (hESCs) proffer unique revenue to generate a large supply of cardiac lineage-committed cells as human myocardial grafts for cell-based therapy. Due to the prevalence of heart disease worldwide and acute shortage of donor organs or human myocardial grafts, there is intense interest in developing hESC-based therapy for heart disease and failure. However, realizing the potential of hESCs has been hindered by the inefficiency and instability of generating cardiac cells from pluripotent cells through uncontrollable multi-lineage differentiation. In addition, the need for foreign biologics for derivation, maintenance, and differentiation of hESCs may make direct use of such cells and their derivatives in patients problematic. Understanding the requirements for sustaining pluripotentce and self-renewal of hESCs will provide the foundation for de novo derivation and long-term maintenance of biologics-free hESCs under optimal yet well-defined culture conditions from which they can be efficiently directed towards clinically-relevant lineages for therapies. We previously reported the resolving of the elements of a defined culture system, serving as a platform for effectively directing pluripotent hESCs uniformly towards a cardiac lineage-specific fate by small molecule induction. In this study, we found that, under the defined culture conditions, primitive endoderm-like (PEL) cells constitutively emerged and acted through the activin-A-SMAD pathway in a paracrine fashion to sustain the epiblast pluripotence of hESCs. Such defined conditions enable the spontaneous unfolding of inherent early embryogenesis processes that, in turn, aid efficient clonal propagation and de novo derivation of stable biologics-free hESCs from blastocysts that can be directly differentiated into a large supply of clinically-suitable human myocardial grafts across the spectrum of developmental stages using small molecule induction for cardiovascular repair.
Collapse
Affiliation(s)
- James F Parsons
- San Diego Regenerative Medicine Institute, San Diego, CA 92109, USA
| | | | | | | | | | | |
Collapse
|
9
|
Parsons XH. An Engraftable Human Embryonic Stem Cell Neuronal Lineage-Specific Derivative Retains Embryonic Chromatin Plasticity for Scale-Up CNS Regeneration. ACTA ACUST UNITED AC 2012; 1. [PMID: 23542901 DOI: 10.7243/2050-1218-1-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Pluripotent human embryonic stem cells (hESCs) proffer cures for a wide range of neurological disorders by supplying the diversity of human neuronal cell types in the developing CNS for repair. However, realizing the therapeutic potential of hESC derivatives has been hindered by generating neuronal cells from pluripotent cells through uncontrollable and inefficient multi-lineage differentiation. Previously, we used a defined platform to identify retinoic acid as sufficient to induce the specification of neuroectoderm direct from the pluripotent state of hESCs and trigger uniform neuronal lineage-specific progression to human neuronal progenitors (hESC-I hNuPs) and neurons (hESC-I hNus) in the developing CNS with high efficiency. METHODS Having achieved uniformly conversion of pluripotent hESCs to a neuronal lineage, in this study, the expression and intracellular distribution patterns of a set of chromatin modifiers in hESC-I hNuPs were examined and compared to the two prototypical neuroepithelial-like human neural stem cells (hNSCs) either derived from hESCs or isolated directly from the human fetal neuroectoderm in vivo. RESULTS These hESC-I hNuPs expressed high levels of active chromatin modifiers, including acetylated histone H3 and H4, HDAC1, Brg-1, and hSNF2H, retaining an embryonic acetylated globally active chromatin state. Consistent with this observation, several repressive chromatin remodeling factors regulating histone H3K9 methylation, including SIRT1, SUV39H1, and Brm, were inactive in hESC-I hNuPs. These Nurr1-positive hESC-I hNuPs, which did not express the canonical hNSC markers, yielded neurons efficiently and exclusively, as they did not differentiate into glial cells. Following engraftment in the brain, hESC-I hNuPs yielded well-dispersed and well-integrated human neurons at a high prevalence. CONCLUSIONS These observations suggest that, unlike the prototypical neuroepithelial-like nestin-positive hNSCs, these in vitro neuroectoderm-derived Nurr1-positive hESC-I hNuPs are a more neuronal lineage-specific and plastic human stem cell derivative, providing an engraftable human embryonic neuronal progenitor in high purity and large supply with adequate neurogenic potential for scale-up CNS regeneration as stem cell therapy to be translated to patients in clinical trials.
Collapse
Affiliation(s)
- Xuejun H Parsons
- San Diego Regenerative Medicine Institute, and Xcelthera, San Diego, CA 92109
| |
Collapse
|
10
|
Parsons XH, Teng YD, Parsons JF, Snyder EY, Smotrich DB, Moore DA. Efficient derivation of human cardiac precursors and cardiomyocytes from pluripotent human embryonic stem cells with small molecule induction. J Vis Exp 2011:e3274. [PMID: 22083019 PMCID: PMC3308594 DOI: 10.3791/3274] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To date, the lack of a suitable human cardiac cell source has been the major setback in regenerating the human myocardium, either by cell-based transplantation or by cardiac tissue engineering1-3. Cardiomyocytes become terminally-differentiated soon after birth and lose their ability to proliferate. There is no evidence that stem/progenitor cells derived from other sources, such as the bone marrow or the cord blood, are able to give rise to the contractile heart muscle cells following transplantation into the heart1-3. The need to regenerate or repair the damaged heart muscle has not been met by adult stem cell therapy, either endogenous or via cell delivery1-3. The genetically stable human embryonic stem cells (hESCs) have unlimited expansion ability and unrestricted plasticity, proffering a pluripotent reservoir for in vitro derivation of large supplies of human somatic cells that are restricted to the lineage in need of repair and regeneration4,5. Due to the prevalence of cardiovascular disease worldwide and acute shortage of donor organs, there is intense interest in developing hESC-based therapies as an alternative approach. However, how to channel the wide differentiation potential of pluripotent hESCs efficiently and predictably to a desired phenotype has been a major challenge for both developmental study and clinical translation. Conventional approaches rely on multi-lineage inclination of pluripotent cells through spontaneous germ layer differentiation, resulting in inefficient and uncontrollable lineage-commitment that is often followed by phenotypic heterogeneity and instability, hence, a high risk of tumorigenicity6-8 (see a schematic in Fig. 1A). In addition, undefined foreign/animal biological supplements and/or feeders that have typically been used for the isolation, expansion, and differentiation of hESCs may make direct use of such cell-specialized grafts in patients problematic9-11. To overcome these obstacles, we have resolved the elements of a defined culture system necessary and sufficient for sustaining the epiblast pluripotence of hESCs, serving as a platform for de novo derivation of clinically-suitable hESCs and effectively directing such hESCs uniformly towards clinically-relevant lineages by small molecules12 (see a schematic in Fig. 1B). After screening a variety of small molecules and growth factors, we found that such defined conditions rendered nicotinamide (NAM) sufficient to induce the specification of cardiomesoderm direct from pluripotent hESCs that further progressed to cardioblasts that generated human beating cardiomyocytes with high efficiency (Fig. 2). We defined conditions for induction of cardioblasts direct from pluripotent hESCs without an intervening multi-lineage embryoid body stage, enabling well-controlled efficient derivation of a large supply of human cardiac cells across the spectrum of developmental stages for cell-based therapeutics.
Collapse
|
11
|
Parsons XH, Teng YD, Parsons JF, Snyder EY, Smotrich DB, Moore DA. Efficient derivation of human neuronal progenitors and neurons from pluripotent human embryonic stem cells with small molecule induction. J Vis Exp 2011:e3273. [PMID: 22064669 PMCID: PMC3227216 DOI: 10.3791/3273] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
There is a large unfulfilled need for a clinically-suitable human neuronal cell source for repair or regeneration of the damaged central nervous system (CNS) structure and circuitry in today's healthcare industry. Cell-based therapies hold great promise to restore the lost nerve tissue and function for CNS disorders. However, cell therapies based on CNS-derived neural stem cells have encountered supply restriction and difficulty to use in the clinical setting due to their limited expansion ability in culture and failing plasticity after extensive passaging(1-3). Despite some beneficial outcomes, the CNS-derived human neural stem cells (hNSCs) appear to exert their therapeutic effects primarily by their non-neuronal progenies through producing trophic and neuroprotective molecules to rescue the endogenous cells(1-3). Alternatively, pluripotent human embryonic stem cells (hESCs) proffer cures for a wide range of neurological disorders by supplying the diversity of human neuronal cell types in the developing CNS for regeneration(1,4-7). However, how to channel the wide differentiation potential of pluripotent hESCs efficiently and predictably to a desired phenotype has been a major challenge for both developmental study and clinical translation. Conventional approaches rely on multi-lineage inclination of pluripotent cells through spontaneous germ layer differentiation, resulting in inefficient and uncontrollable lineage-commitment that is often followed by phenotypic heterogeneity and instability, hence, a high risk of tumorigenicity(7-10). In addition, undefined foreign/animal biological supplements and/or feeders that have typically been used for the isolation, expansion, and differentiation of hESCs may make direct use of such cell-specialized grafts in patients problematic(11-13). To overcome these obstacles, we have resolved the elements of a defined culture system necessary and sufficient for sustaining the epiblast pluripotence of hESCs, serving as a platform for de novo derivation of clinically-suitable hESCs and effectively directing such hESCs uniformly towards clinically-relevant lineages by small molecules(14) (please see a schematic in Fig. 1). Retinoic acid (RA) does not induce neuronal differentiation of undifferentiated hESCs maintained on feeders(1, 14). And unlike mouse ESCs, treating hESC-differentiated embryoid bodies (EBs) only slightly increases the low yield of neurons(1, 14, 15). However, after screening a variety of small molecules and growth factors, we found that such defined conditions rendered retinoic acid (RA) sufficient to induce the specification of neuroectoderm direct from pluripotent hESCs that further progressed to neuroblasts that generated human neuronal progenitors and neurons in the developing CNS with high efficiency (Fig. 2). We defined conditions for induction of neuroblasts direct from pluripotent hESCs without an intervening multi-lineage embryoid body stage, enabling well-controlled efficient derivation of a large supply of human neuronal cells across the spectrum of developmental stages for cell-based therapeutics.
Collapse
|