1
|
Morelli L, Ochoa E, Salvioni L, Davide Giustra M, De Santes B, Spena F, Barbieri L, Garbujo S, Tomaino G, Novati B, Bolis L, Moutaharrik S, Prosperi D, Palugan L, Colombo M. Microfluidic nanoparticle synthesis for oral solid dosage forms: A step toward clinical transition processes. Int J Pharm 2024; 652:123850. [PMID: 38280498 DOI: 10.1016/j.ijpharm.2024.123850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
Nanomedicine provides various opportunities for addressing medical challenges associated with drug bioavailability, stability, and efficacy. In particular, oral nanoparticles (NPs) represent an alternative strategy to enhance the solubility and stability of active ingredients through the gastrointestinal tract. The nanocarriers could be used for both local and systemic targeting, enabling controlled release of encapsulated drugs. This approach allows more efficient therapies. In this work, we aim to develop reliable oral solid dosage forms incorporating NPs produced by either one pot synthesis or continuous production, following protocols that yield highly consistent outcomes, promoting their technology transfer and clinical use. Microfluidics technology was selected to allow an automated and highly productive synthetic approach suitable for the highly throughput production. In particular, innovative systems, which combine advantage of NPs and solid dosage formulation, were designed, developed, and characterized demonstrating the possibility to obtaining oral administration. The resulting NPs were thus carried on oral dosage forms, i.e., pellets and minitablets. NPs resulted stable after dosage forms manufacturing, leading to confidence also on protection of encapsulated drugs. Indomethacin was used as a tracer to test biopharmaceutical behaviour. Anti-inflammatories or cytotoxic chemotherapeutics could be vehiculated leading to a breakthrough in the treatment of severe diseases allowing the oral administration of these drugs. We believe that the advancement achieved with the results of our work paves the way for the progression of nanoproducts into clinical transition processes.
Collapse
Affiliation(s)
- Lucia Morelli
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Evelyn Ochoa
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Lucia Salvioni
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Marco Davide Giustra
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Beatrice De Santes
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Francesca Spena
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Linda Barbieri
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Stefania Garbujo
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Giulia Tomaino
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Brian Novati
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Leonardo Bolis
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Saliha Moutaharrik
- University of Milano, Department of Pharmaceutical Sciences, Via G. Colombo 71, 20133 Milano, Italy
| | - Davide Prosperi
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy
| | - Luca Palugan
- University of Milano, Department of Pharmaceutical Sciences, Via G. Colombo 71, 20133 Milano, Italy.
| | - Miriam Colombo
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Piazza della Scienza 2, 20126 Milano, Italy.
| |
Collapse
|
2
|
Mehraji S, DeVoe DL. Microfluidic synthesis of lipid-based nanoparticles for drug delivery: recent advances and opportunities. LAB ON A CHIP 2024; 24:1154-1174. [PMID: 38165786 DOI: 10.1039/d3lc00821e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Microfluidic technologies are revolutionizing the synthesis of nanoscale lipid particles and enabling new opportunities for the production of lipid-based nanomedicines. By harnessing the benefits of microfluidics for controlling diffusive and advective transport within microfabricated flow cells, microfluidic platforms enable unique capabilities for lipid nanoparticle synthesis with precise and tunable control over nanoparticle properties. Here we present an assessment of the current state of microfluidic technologies for lipid-based nanoparticle and nanomedicine production. Microfluidic techniques are discussed in the context of conventional production methods, with an emphasis on the capabilities of microfluidic systems for controlling nanoparticle size and size distribution. Challenges and opportunities associated with the scaling of manufacturing throughput are discussed, together with an overview of emerging microfluidic methods for lipid nanomedicine post-processing. The impact of additive manufacturing on current and future microfluidic platforms is also considered.
Collapse
Affiliation(s)
- Sima Mehraji
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| | - Don L DeVoe
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
3
|
Wu W, Liu R, Guo J, Hu Z, An C, Zhang Y, Liu T, Cen L, Pan Y. Modulation of immunosuppressive effect of rapamycin via microfluidic encapsulation within PEG-PLGA nanoparticles. J Biomater Appl 2024; 38:821-833. [PMID: 38145897 DOI: 10.1177/08853282231223808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The high hydrophobicity and low oral availability of immunosuppressive drug, rapamycin, seriously limit its application. It was thus aimed to develop a PEG-PLGA based nano-loading system for rapamycin delivery to achieve improved bioavailability with sustained effects via a novel microfluidic chip and manipulation of the hydrophobic PLGA chain length. PDMS based microfluidic chip with Y shape was designed and PEG-PLGA polymers with different PLGA chain length were used to prepare rapamycin nano-delivery systems. Dendritic cells were selected to evaluate the immunosuppressive effect of the nanoparticles including cytotoxicity assay, dendritic cell activation, and cytokine levels. The effects of different PEG-PLGA nanoparticles on the immunomodulatory properties were finally compared. It was shown that PEG-PLGA could be successfully used for rapamycin encapsulation via microfluidics to obtain nano-delivery systems (Rapa&P-20 k, Rapa&P-50 k and Rapa&P-95 k) ranging from 100 nm to 116 nm. The encapsulation efficiency was ranged from 69.70% to 84.55% and drug loading from 10.45% to 12.68%. The Rapa&P-50 k (PLGA chain length: 50 k) could achieve the highest drug loading (DL) and encapsulation efficiency (EE) as 12.68% and 84.55%. The encapsulated rapamycin could be gradually released from three nanoparticles for more than 1 month without any noticeable burst release. The Rapa & P nanoparticles exhibited enhanced immunosuppressive effects over those of free rapamycin as shown by the expression of CD40 and CD80, and the secretion of IL-1β, IL-12 and TGF-β1. Rapa&P-50 k nanoparticles could be the optimal choice for rapamycin delivery as it also achieved the most effective immunosuppressive property. Hence, this study could provide an efficient technology with superior manipulation to offer a solution for rapamycin delivery and clinical application.
Collapse
Affiliation(s)
- Weiqian Wu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Ruilai Liu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiahao Guo
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhihuan Hu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Chenjing An
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Yan Zhang
- Barbell Therapeutics Co. Ltd, Shanghai, China
| | | | - Lian Cen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Yukun Pan
- Barbell Therapeutics Co. Ltd, Shanghai, China
| |
Collapse
|
4
|
Nair A, Loveday KA, Kenyon C, Qu J, Kis Z. Quality by Digital Design for Developing Platform RNA Vaccine and Therapeutic Manufacturing Processes. Methods Mol Biol 2024; 2786:339-364. [PMID: 38814403 DOI: 10.1007/978-1-0716-3770-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Quality by digital design (QbDD) utilizes data-driven, mechanistic, or hybrid models to define and optimize a manufacturing design space. It improves upon the QbD approach used extensively in the pharmaceutical industry. The computational models developed in this approach identify and quantify the relationship between the product's critical quality attributes (CQAs) and the critical process parameters (CPPs) of unit operations within the manufacturing process. This chapter discusses the QbDD approach in developing and optimizing unit operations such as in vitro transcription, tangential flow filtration, affinity chromatography, and lipid nanoparticle (LNP) formulation in mRNA vaccine manufacturing. QbDD can be an efficient framework for developing a production process for a disease-agnostic product that requires extensive experimental and model-based process-product interaction characterization during the early process development phase.
Collapse
Affiliation(s)
- Adithya Nair
- Department of Biological and Chemical Engineering, University of Sheffield, Sheffield, UK
| | - Kate A Loveday
- Department of Biological and Chemical Engineering, University of Sheffield, Sheffield, UK
| | - Charlotte Kenyon
- Department of Biological and Chemical Engineering, University of Sheffield, Sheffield, UK
| | - Jixin Qu
- Department of Biological and Chemical Engineering, University of Sheffield, Sheffield, UK
| | - Zoltán Kis
- Department of Biological and Chemical Engineering, University of Sheffield, Sheffield, UK.
- Department of Chemical Engineering, Imperial College London, London, UK.
| |
Collapse
|
5
|
Andretto V, Taurino G, Guerriero G, Guérin H, Lainé E, Bianchi MG, Agusti G, Briançon S, Bussolati O, Clayer-Montembault A, Lollo G. Nanoemulsions Embedded in Alginate Beads as Bioadhesive Nanocomposites for Intestinal Delivery of the Anti-Inflammatory Drug Tofacitinib. Biomacromolecules 2023. [PMID: 37228181 DOI: 10.1021/acs.biomac.3c00260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Oral administration of nanoparticles (NPs) is a promising strategy to overcome solubility and stability issues of many active compounds. However, this route faces major obstacles related to the hostile gastrointestinal (GI) environment, which impairs the efficacy of orally administered nanomedicines. Here, we propose nanocomposites as a promising approach to increase the retention time of NPs in the intestinal tract by using bio- and mucoadhesive matrixes able to protect the cargo until it reaches the targeted area. A microfluidic-based approach has been applied for the production of tailored nanoemulsions (NEs) of about 110 nm, used for the encapsulation of small hydrophobic drugs such as the anti-inflammatory JAK-inhibitor tofacitinib. These NEs proved to be efficiently internalized into a mucus-secreting human intestinal monolayer of Caco-2/HT29-MTX cells and to deliver tofacitinib to subepithelial human THP-1 macrophage-like cells, reducing their inflammatory response. NEs were then successfully encapsulated into alginate hydrogel microbeads of around 300 μm, which were characterized by rheological experiments and dried to create a long-term stable system for pharmaceutical applications. Finally, ex vivo experiments on excised segments of rats' intestine proved the bioadhesive ability of NEs embedded in alginate hydrogels compared to free NEs, showing the advantage that this hybrid system can offer for the treatment of intestinal pathologies.
Collapse
Affiliation(s)
- Valentina Andretto
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Giuseppe Taurino
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, via Volturno 39, 43125 Parma, Italy
- MRH-Microbiome Research Hub, Parco Area delle Scienze 11/A, University of Parma, 43124 Parma, Italy
| | - Giulia Guerriero
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Hanäé Guérin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Emmanuelle Lainé
- Université Clermont Auvergne, INRAe, UMR454 MEDIS (Microbiologie, Environnement Digestif et Santé), 28 place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Massimiliano G Bianchi
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, via Volturno 39, 43125 Parma, Italy
- MRH-Microbiome Research Hub, Parco Area delle Scienze 11/A, University of Parma, 43124 Parma, Italy
| | - Géraldine Agusti
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Stéphanie Briançon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Ovidio Bussolati
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, via Volturno 39, 43125 Parma, Italy
- MRH-Microbiome Research Hub, Parco Area delle Scienze 11/A, University of Parma, 43124 Parma, Italy
| | - Alexandra Clayer-Montembault
- Univ Lyon, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CNRS, UMR 5223, Ingénierie des Matériaux Polymères (IMP), 15 boulevard Latarjet, F-69622 Villeurbanne, France
| | - Giovanna Lollo
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| |
Collapse
|
6
|
Ahn GY, Choi I, Ryu TK, Ryu YH, Oh DH, Kang HW, Kang MH, Choi SW. Continuous production of lipid nanoparticles by multiple-splitting in microfluidic devices with chaotic microfibrous channels. Colloids Surf B Biointerfaces 2023; 224:113212. [PMID: 36822116 DOI: 10.1016/j.colsurfb.2023.113212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 02/22/2023]
Abstract
Polydimethylsiloxane (PDMS) microfluidic devices with chaotic microfibrous channels were fabricated for the continuous production of lipid nanoparticles (LNPs). Electrospun poly(ε-caprolactone) (PCL) microfibrous matrices with different diameters (3.6 ± 0.3, 6.3 ± 0.4, and 12.2 ± 0.8 µm) were used as a template to develop microfibrous channels. The lipid solution (in ethanol) and water phase were introduced into the microfluidic device as the discontinuous and continuous phases, respectively. The smaller diameter of microfibrous channels and the higher flow rate of the continuous phase resulted in the smaller LNPs with a narrower size distribution. The multiple-splitting of the discontinuous phase and the microscale contact between the two phases in the microfibrous channels were the key features of the LNP production in our approach. The LNPs containing doxorubicin with different average sizes (89.7 ± 35.1 and 190.4 ± 66.4 nm) were prepared using the microfluidic devices for the potential application in tumor therapy. In vitro study revealed higher cellular uptake efficiency and cytotoxicity of the smaller LNPs, especially in the HepG2 cells. The microfluidic devices with microfibrous channels can be widely used as a continuous and high-throughput platform for the production of LNPs containing various active agents.
Collapse
Affiliation(s)
- Guk-Young Ahn
- Biomedical and Chemical Engineering, Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, the Republic of Korea
| | - Inseong Choi
- Biomedical and Chemical Engineering, Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, the Republic of Korea
| | - Tae-Kyung Ryu
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Young-Hyun Ryu
- Biomedical and Chemical Engineering, Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, the Republic of Korea
| | - Do-Hyun Oh
- Biomedical and Chemical Engineering, Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, the Republic of Korea
| | - Hye-Won Kang
- Biomedical and Chemical Engineering, Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, the Republic of Korea
| | - Min-Ho Kang
- Biomedical and Chemical Engineering, Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, the Republic of Korea
| | - Sung-Wook Choi
- Biomedical and Chemical Engineering, Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, the Republic of Korea.
| |
Collapse
|
7
|
Wang H, Qin L, Zhang X, Guan J, Mao S. Mechanisms and challenges of nanocarriers as non-viral vectors of therapeutic genes for enhanced pulmonary delivery. J Control Release 2022; 352:970-993. [PMID: 36372386 PMCID: PMC9671523 DOI: 10.1016/j.jconrel.2022.10.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022]
Abstract
With the rapid development of biopharmaceuticals and the outbreak of COVID-19, the world has ushered in a frenzy to develop gene therapy. Therefore, therapeutic genes have received enormous attention. However, due to the extreme instability and low intracellular gene expression of naked genes, specific vectors are required. Viral vectors are widely used attributed to their high transfection efficiency. However, due to the safety concerns of viral vectors, nanotechnology-based non-viral vectors have attracted extensive investigation. Still, issues of low transfection efficiency and poor tissue targeting of non-viral vectors need to be addressed. Especially, pulmonary gene delivery has obvious advantages for the treatment of inherited lung diseases, lung cancer, and viral pneumonia, which can not only enhance lung targeting and but also reduce enzymatic degradation. For systemic diseases therapy, pulmonary gene delivery can enhance vaccine efficacy via inducing not only cellular, humoral immunity but also mucosal immunity. This review provides a comprehensive overview of nanocarriers as non-viral vectors of therapeutic genes for enhanced pulmonary delivery. First of all, the characteristics and therapeutic mechanism of DNA, mRNA, and siRNA are provided. Thereafter, the advantages and challenges of pulmonary gene delivery in exerting local and systemic effects are discussed. Then, the inhalation dosage forms for nanoparticle-based drug delivery systems are introduced. Moreover, a series of materials used as nanocarriers for pulmonary gene delivery are presented, and the endosomal escape mechanisms of nanocarriers based on different materials are explored. The application of various non-viral vectors for pulmonary gene delivery are summarized in detail, with the perspectives of nano-vectors for pulmonary gene delivery.
Collapse
Affiliation(s)
| | | | - Xin Zhang
- Corresponding authors at: School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, China
| | | | - Shirui Mao
- Corresponding authors at: School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, China
| |
Collapse
|
8
|
Erfle P, Riewe J, Cai S, Bunjes H, Dietzel A. Horseshoe lamination mixer (HLM) sets new standards in the production of monodisperse lipid nanoparticles. LAB ON A CHIP 2022; 22:3025-3044. [PMID: 35829631 DOI: 10.1039/d2lc00240j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microfluidic mixers promise unique conditions for the controlled and continuous preparation of nanoparticles by antisolvent precipitation. Nanoparticles may enable encapsulation of drug or mRNA molecules in the form of carrier nanoparticles or can provide higher bioavailability in the form of drug nanoparticles. The ultimate goal in microfluidic approaches is the production of nanoparticles with narrow size distributions while avoiding contaminations and achieving sufficiently high throughput. To achieve this, a novel microfluidic precipitation device was developed and realized by two-photon polymerization: mixing elements were designed in such a way that the liquids undergo a repeated Smale horseshoe transformation resulting in an increased interfacial area and mixing times of less than 10 ms. These elements and an additional 3D flow focusing ensure that no organic phase is exposed to the channel walls. The integration of a fluidic shield layer in the flow focusing proved to be useful to delay the precipitation process until reaching a sufficient distance to the injection nozzle. Lipid nanoparticle preparation with different concentrations of castor oil or the hard fat Softisan® 100 were performed at different flow rates and mixing ratios with and without a shield layer. Flow rates of up to 800 μl min-1 and organic phase mixing ratios of up to 20% resulted in particle sizes ranging from 42 nm to 166 nm with polydispersity indices from 0.04 to 0.11, indicating very narrowly distributed, and in most cases even monodisperse, nanoparticles. The occurrence of fouling can be completely suppressed with this new type of mixing elements, as long as Dean vortices are prevented. Moreover, this parameter range in the horseshoe lamination mixer provided a stable and continuous process, which enables a scalable production.
Collapse
Affiliation(s)
- Peer Erfle
- Institut für Mikrotechnik, Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany.
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
| | - Juliane Riewe
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
- Institut für Pharmazeutische Technologie und Biopharmazie, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106 Braunschweig, Germany
| | - Songtao Cai
- Institut für Mikrotechnik, Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany.
| | - Heike Bunjes
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
- Institut für Pharmazeutische Technologie und Biopharmazie, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106 Braunschweig, Germany
| | - Andreas Dietzel
- Institut für Mikrotechnik, Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany.
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
| |
Collapse
|
9
|
Yaghmur A, Hamad I. Microfluidic Nanomaterial Synthesis and In Situ SAXS, WAXS, or SANS Characterization: Manipulation of Size Characteristics and Online Elucidation of Dynamic Structural Transitions. Molecules 2022; 27:4602. [PMID: 35889473 PMCID: PMC9323596 DOI: 10.3390/molecules27144602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/27/2022] Open
Abstract
With the ability to cross biological barriers, encapsulate and efficiently deliver drugs and nucleic acid therapeutics, and protect the loaded cargos from degradation, different soft polymer and lipid nanoparticles (including liposomes, cubosomes, and hexosomes) have received considerable interest in the last three decades as versatile platforms for drug delivery applications and for the design of vaccines. Hard nanocrystals (including gold nanoparticles and quantum dots) are also attractive for use in various biomedical applications. Here, microfluidics provides unique opportunities for the continuous synthesis of these hard and soft nanomaterials with controllable shapes and sizes, and their in situ characterization through manipulation of the flow conditions and coupling to synchrotron small-angle X-ray (SAXS), wide-angle scattering (WAXS), or neutron (SANS) scattering techniques, respectively. Two-dimensional (2D) and three-dimensional (3D) microfluidic devices are attractive not only for the continuous production of monodispersed nanomaterials, but also for improving our understanding of the involved nucleation and growth mechanisms during the formation of hard nanocrystals under confined geometry conditions. They allow further gaining insight into the involved dynamic structural transitions, mechanisms, and kinetics during the generation of self-assembled nanostructures (including drug nanocarriers) at different reaction times (ranging from fractions of seconds to minutes). This review provides an overview of recently developed 2D and 3D microfluidic platforms for the continuous production of nanomaterials, and their simultaneous use in in situ characterization investigations through coupling to nanostructural characterization techniques (e.g., SAXS, WAXS, and SANS).
Collapse
Affiliation(s)
- Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Islam Hamad
- Department of Pharmacy, Faculty of Health Sciences, American University of Madaba, Madaba 11821, Jordan;
| |
Collapse
|
10
|
Microfluidic-Based Cationic Cholesterol Lipid siRNA Delivery Nanosystem: Highly Efficient In Vitro Gene Silencing and the Intracellular Behavior. Int J Mol Sci 2022; 23:ijms23073999. [PMID: 35409359 PMCID: PMC8999516 DOI: 10.3390/ijms23073999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/04/2022] Open
Abstract
Safe and efficient delivery of small interfering RNA (siRNA) is essential to gene therapy towards intervention of genetic diseases. Herein, we developed a novel cationic cholesterol lipid derivative (CEL) in which cholesterol hydrophobic skeleton was connected to L-lysine cationic headgroup via a hexanediol linker as the non-viral siRNA delivery carrier. Well-organized CEL/siRNA nanocomplexes (100-200 nm) were prepared by microfluidic-assisted assembly of CEL and siRNA at various N/P ratios. The CEL and CEL/siRNA nanocomplexes have lower cytotoxicity compared with bPEI25k. Delightfully, we disclosed that, in Hela-Luc and H1299-Luc cell lines, the micro-fluidic-based CEL/siRNA nanocomplexes exhibited high siRNA transfection efficiency under both serum-free condition (74-98%) and low-serum circumstances (80-87%), higher than that of lipofectamine 2000. These nanocomplexes also showed high cellular uptake through the caveolae/lipid-raft mediated endocytosis pathway, which may greatly contribute to transfection efficiency. Moreover, the time-dependent (0-12 h) dynamic intracellular imaging demonstrated the efficient delivery to cytoplasm after lysosomal co-localization. The results indicated that the microfluidic-based CEL/siRNA nanosystems possessed good stability, low cytotoxicity, high siRNA delivery efficiency, rapid cellular uptake and caveolae/lipid raft-dependent internalization. Additionally, this study provides a simple approach for preparing and applying a "helper lipid-free" cationic lipid siRNA delivery system as potential nanotherapeutics towards gene silencing treatment of (tumor) diseases.
Collapse
|
11
|
Hwang J, Mros S, Gamble AB, Tyndall JDA, McDowell A. Improving Antibacterial Activity of a HtrA Protease Inhibitor JO146 against Helicobacter pylori: A Novel Approach Using Microfluidics-Engineered PLGA Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14020348. [PMID: 35214080 PMCID: PMC8875321 DOI: 10.3390/pharmaceutics14020348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 11/16/2022] Open
Abstract
Nanoparticle drug delivery systems have emerged as a promising strategy for overcoming limitations of antimicrobial drugs such as stability, bioavailability, and insufficient exposure to the hard-to-reach bacterial drug targets. Although size is a vital colloidal feature of nanoparticles that governs biological interactions, the absence of well-defined size control technology has hampered the investigation of optimal nanoparticle size for targeting bacterial cells. Previously, we identified a lead antichlamydial compound JO146 against the high temperature requirement A (HtrA) protease, a promising antibacterial target involved in protein quality control and virulence. Here, we reveal that JO146 was active against Helicobacter pylori with a minimum bactericidal concentration of 18.8–75.2 µg/mL. Microfluidic technology using a design of experiments approach was utilized to formulate JO146-loaded poly(lactic-co-glycolic) acid nanoparticles and explore the effect of the nanoparticle size on drug delivery. JO146-loaded nanoparticles of three different sizes (90, 150, and 220 nm) were formulated with uniform particle size distribution and drug encapsulation efficiency of up to 25%. In in vitro microdilution inhibition assays, 90 nm nanoparticles improved the minimum bactericidal concentration of JO146 two-fold against H. pylori compared to the free drug alone, highlighting that controlled engineering of nanoparticle size is important in drug delivery optimization.
Collapse
Affiliation(s)
- Jimin Hwang
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand; (J.H.); (A.B.G.); (J.D.A.T.)
| | - Sonya Mros
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand;
| | - Allan B. Gamble
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand; (J.H.); (A.B.G.); (J.D.A.T.)
| | - Joel D. A. Tyndall
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand; (J.H.); (A.B.G.); (J.D.A.T.)
| | - Arlene McDowell
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand; (J.H.); (A.B.G.); (J.D.A.T.)
- Correspondence:
| |
Collapse
|
12
|
Ottonelli I, Duskey JT, Rinaldi A, Grazioli MV, Parmeggiani I, Vandelli MA, Wang LZ, Prud’homme RK, Tosi G, Ruozi B. Microfluidic Technology for the Production of Hybrid Nanomedicines. Pharmaceutics 2021; 13:1495. [PMID: 34575571 PMCID: PMC8465086 DOI: 10.3390/pharmaceutics13091495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Microfluidic technologies have recently been applied as innovative methods for the production of a variety of nanomedicines (NMeds), demonstrating their potential on a global scale. The capacity to precisely control variables, such as the flow rate ratio, temperature, total flow rate, etc., allows for greater tunability of the NMed systems that are more standardized and automated than the ones obtained by well-known benchtop protocols. However, it is a crucial aspect to be able to obtain NMeds with the same characteristics of the previously optimized ones. In this study, we focused on the transfer of a production protocol for hybrid NMeds (H-NMeds) consisting of PLGA, Cholesterol, and Pluronic® F68 from a benchtop nanoprecipitation method to a microfluidic device. For this aim, we modified parameters such as the flow rate ratio, the concentration of core materials in the organic phase, and the ratio between PLGA and Cholesterol in the feeding organic phase. Outputs analysed were the chemico-physical properties, such as size, PDI, and surface charge, the composition in terms of %Cholesterol and residual %Pluronic® F68, their stability to lyophilization, and the morphology via atomic force and electron microscopy. On the basis of the results, even if microfluidic technology is one of the unique procedures to obtain industrial production of NMeds, we demonstrated that the translation from a benchtop method to a microfluidic one is not a simple transfer of already established parameters, with several variables to be taken into account and to be optimized.
Collapse
Affiliation(s)
- Ilaria Ottonelli
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Jason Thomas Duskey
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
| | - Arianna Rinaldi
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Maria Vittoria Grazioli
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
| | - Irene Parmeggiani
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
| | - Maria Angela Vandelli
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
| | - Leon Z. Wang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; (L.Z.W.); (R.K.P.)
| | - Robert K. Prud’homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; (L.Z.W.); (R.K.P.)
| | - Giovanni Tosi
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
| | - Barbara Ruozi
- Nanotech Lab, Te. Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (I.O.); (J.T.D.); (A.R.); (M.V.G.); (I.P.); (M.A.V.); (B.R.)
| |
Collapse
|
13
|
Advances in microfluidic synthesis and coupling with synchrotron SAXS for continuous production and real-time structural characterization of nano-self-assemblies. Colloids Surf B Biointerfaces 2021; 201:111633. [PMID: 33639513 DOI: 10.1016/j.colsurfb.2021.111633] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Microfluidic platforms have become highly attractive tools for synthesis of nanoparticles, including lipid nano-self-assemblies, owing to unique features and at least three important aspects inherent to miniaturized micro-devices. Firstly, the fluids flow under controlled conditions in the microchannels, providing well-defined flow profiles and shorter diffusion lengths that play important roles in enhancing the continuous production of lipid and polymer nanoparticles with relatively narrow size distributions. Secondly, various geometries adapted to microfluidic device designs can be utilized for enhancing the colloidal stability of nanoparticles and improving their drug loading. Thirdly, microfluidic devices are usually compatible with in situ characterization methods for real-time monitoring of processes occurring inside the microchannels. This is unlike conventional nanoparticle synthesis methods, where a final solution or withdrawn aliquots are separately analysed. These features inherent to microfluidic devices provide a tool-set allowing not only precise nanoparticle size control, but also real-time analyses for process optimization. In this review, we focus on recent advances and developments in the use of microfluidic devices for synthesis of lipid nanoparticles. We present different designs based on hydrodynamic flow focusing, droplet-based methods and controlled microvortices, and discuss integration of microfluidic platforms with synchrotron small-angle X ray scattering (SAXS) for in situ structural characterization of lipid nano-self-assemblies under continuous flow conditions, along with major challenges and future directions in this research area.
Collapse
|
14
|
Gkionis L, Campbell RA, Aojula H, Harris LK, Tirella A. Manufacturing drug co-loaded liposomal formulations targeting breast cancer: Influence of preparative method on liposomes characteristics and in vitro toxicity. Int J Pharm 2020; 590:119926. [PMID: 33010397 DOI: 10.1016/j.ijpharm.2020.119926] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 01/09/2023]
Abstract
Developing more efficient manufacturing methods for nano therapeutic systems is becoming important, not only to better control their physico-chemical characteristics and therapeutic efficacy but also to ensure scale-up is cost-effective. The principle of cross-flow chemistry allows precise control over manufacturing parameters for the fabrication of uniform liposomal formulations, as well as providing reproducible manufacturing scale-up compared to conventional methods. We have herein investigated the use of microfluidics to produce PEGylated DSPC liposomes loaded with doxorubicin and compared their performance against identical formulations prepared by the thin-film method. The isoprenylated coumarin umbelliprenin was selected as a co-therapeutic. Umbelliprenin-loaded and doxorubicin:umbelliprenin co-loaded liposomes were fabricated using the optimised microfluidic set-up. The role of umbelliprenin as lipid bilayer fluidity modulation was characterized, and we investigated its role on liposomes size, size distribution, shape and stability compared to doxorubicin-loaded liposomes. Finally, the toxicity of all liposomal formulations was tested on a panel of human breast cancer cells (MCF-7, MDA-MB 231, BT-474) to identify the most potent formulation by liposomal fabrication method and loaded compound(s). We herein show that the microfluidic system is an alternative method to produce doxorubicin:umbelliprenin co-loaded liposomes, allowing fine control over liposome size (100-250 nm), shape, uniformity and doxorubicin drug loading (>80%). Umbelliprenin was shown to confer fluidity to model lipid biomembranes, which helps to explain the more homogeneous size and shape of co-loaded liposomes compared to liposomes without umbelliprenin. The toxicity of doxorubicin:umbelliprenin co-loaded liposomes was lower than that of free doxorubicin, due to the delayed release of doxorubicin from liposomes. An alternative, rapid and easy manufacturing method for the production of liposomes has been established using microfluidics to effectively produce uniform doxorubicin:umbelliprenin co-loaded liposomal formulations with proven cytotoxicity in human breast cancer cell lines in vitro.
Collapse
Affiliation(s)
- Leonidas Gkionis
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PL, UK
| | - Richard A Campbell
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PL, UK
| | - Harmesh Aojula
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PL, UK
| | - Lynda K Harris
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PL, UK; Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 5th floor (Research), St Mary's Hospital, Oxford Road, Manchester M13 9WL, UK; St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Annalisa Tirella
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
15
|
Liposomes: Advancements and innovation in the manufacturing process. Adv Drug Deliv Rev 2020; 154-155:102-122. [PMID: 32650041 DOI: 10.1016/j.addr.2020.07.002] [Citation(s) in RCA: 348] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/13/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022]
Abstract
Liposomes are well recognised as effective drug delivery systems, with a range of products approved, including follow on generic products. Current manufacturing processes used to produce liposomes are generally complex multi-batch processes. Furthermore, liposome preparation processes adopted in the laboratory setting do not offer easy translation to large scale production, which may delay the development and adoption of new liposomal systems. To promote advancement and innovation in liposome manufacturing processes, this review considers the range of manufacturing processes available for liposomes, from laboratory scale and scale up, through to large-scale manufacture and evaluates their advantages and limitations. The regulatory considerations associated with the manufacture of liposomes is also discussed. New innovations that support leaner scalable technologies for liposome fabrication are outlined including self-assembling liposome systems and microfluidic production. The critical process attributes that impact on the liposome product attributes are outlined to support potential wider adoption of these innovations.
Collapse
|
16
|
|