Gong G, Yu H, Zheng Y, Qi B, He H, Yin T, Dong TT, Tsim KW. Astragaloside IV, a saponin from Astragalus membranaceus var. mongholicus, induces expressions of heme recycle proteins via signaling of Nrf2/ARE in cultured macrophages.
JOURNAL OF ETHNOPHARMACOLOGY 2021;
265:113389. [PMID:
32920134 DOI:
10.1016/j.jep.2020.113389]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/23/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE
In traditional Chinese medicine (TCM) theory, "Qi" is classified as energetic essence supporting the life activities in human. "Blood" is categorized as nourishing essence and circulating in the body. "Blood" and "Qi" have an intimate relationship. Astragali Radix (AR; root of Astragalus membranaceus (Fisch.) Bge. Var. mongholicus (Bge.) Hsiao) has a broad spectrum of application for "Qi-Blood" enrichment. Astragaloside IV, a major saponin in AR, has therapeutic functions in erythropoietic, cardiovascular and immune systems. However, the efficacy of astragaloside IV in erythrophagocytosis has not been elucidated.
AIM OF THE STUDY
The possible functions of astragaloside IV in heme iron recycling during erythrophagocytosis in cultured macrophage were elucidated.
METHODS
The translational and transcriptional expressions of heme recycling enzymes were determined after incubating of astragaloside IV for 24 h in cultured macrophage.
RESULTS
In astragaloside IV-treated macrophage, the expressions, both RNA and protein levels, of regulators of heme recycling, e.g. heme oxygenase-1 (HO-1), ferroportin (FPN), biliverdin reductase A and B (BVRA, BVRB), were markedly induced in dose-dependent manners. In parallel, the transcriptional activity of antioxidant response element, cloned within an expression vector as pARE-Luc and transfected in cultured macrophages, was markedly induced after a challenge with astragaloside IV in a dose-dependent manner. Moreover, the translocation of Nrf2, a transcriptional factor in regulating expression of heme recycling protein, was induced by astragaloside IV, leading to an enrichment at nucleus fraction.
CONCLUSION
Astragaloside IV shed lights in enhancing the expression of heme recycle proteins via Nrf2/ARE signaling pathway.
Collapse