1
|
Inoue T, Nomura S, Yamakawa T, Takara S, Imoto H, Maruta Y, Niwayama M, Suzuki M. Intraoperative evaluation using a multimodality probe of temperature-dependent neurovascular modulation during focal brain cooling. Clin Neurophysiol 2025; 173:31-42. [PMID: 40073587 DOI: 10.1016/j.clinph.2025.02.262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 01/15/2025] [Accepted: 02/09/2025] [Indexed: 03/14/2025]
Abstract
OBJECTIVE This study aimed to assess the effects of focal brain cooling (FBC) on human brain tissue through use of multiple sensing techniques by monitoring cerebrovascular activity and brain temperature. METHODS Intraoperative brain activity monitoring using a multimodality probe capable of measuring brain temperature, electrocorticography (ECoG) and changes in cerebral hemoglobin concentration was performed in 13 patients with refractory epilepsy. Brain temperature and neurovascular activity were measured beneath and surrounding the FBC device. Data were categorized into three temperature ranges [low-temperature range (LTR, <18 °C), moderate-temperature range (MTR, 18 °C-28 °C), and high-temperature range (HTR, >28 °C)] for analysis. RESULTS Changes in oxyhemoglobin (ΔO2Hb) and deoxyhemoglobin (ΔHHb) across the temperature ranges showed a U-shape and inverted U-shape pattern, respectively. ΔO2Hb decreased and ΔHHb increased in the MTR, reflecting enhanced neuronal activity and increased oxygen consumption. Conversely, ΔO2Hb increased and ΔHHb decreased in the LTR, indicating suppressed neuronal activity and reduced oxygen consumption. These findings highlight the temperature-dependent modulation of neurovascular activity by FBC, driven by distinct non-linear patterns. CONCLUSIONS FBC selectively influenced brain electrical activity and hemoglobin concentration, highlighting its subtle effects on neurovascular dynamics. SIGNIFICANCE These findings provide critical insights into optimizing cooling strategies for neurological disorders using multimodality probes and FBC devices.
Collapse
Affiliation(s)
- Takao Inoue
- Organization of Research Initiatives, Yamaguchi University, Ube, Japan.
| | - Sadahiro Nomura
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | - Toshitaka Yamakawa
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Sayuki Takara
- Organization of Research Initiatives, Yamaguchi University, Ube, Japan
| | - Hirochika Imoto
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | - Yuichi Maruta
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | - Masatsugu Niwayama
- Graduate School of Medical Photonics, Shizuoka University, Hamamatsu, Japan
| | - Michiyasu Suzuki
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| |
Collapse
|
2
|
Kendall HJ, VAN Kuijk SM, VAN DER Horst IC, Dings JT, Aries MJ, Haeren RH. Difference between brain temperature and core temperature in severe traumatic brain injury: a systematic review. J Neurosurg Sci 2023; 67:46-54. [PMID: 35301834 DOI: 10.23736/s0390-5616.21.05519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Intensive care management for traumatic brain injury (TBI) patients aims to prevent secondary cerebral damage. Targeted temperature management is one option to prevent cerebral damage, as hypothermia may have protective effects. By conducting a systematic literature review we evaluated: 1) the presence of a temperature difference (gradient) between brain temperature (Tb) and core temperature (Tc) in TBI patients; and 2) clinical factors associated with reported differences. EVIDENCE ACQUISITION The PubMed database was systematically searched using Mesh terms and key words, and Web of Sciences was assessed for additional article citations. We included studies that continuously and simultaneously measured Tb and Tc in severe TBI patients. The National Institutes of Health (NIH) quality assessment tool for observational cohort and cross-sectional studies was modified to fit the purpose of our study. Statistical data were extracted for further meta-analyses. EVIDENCE SYNTHESIS We included 16 studies, with a total of 480 patients. Clinical heterogeneity consisted of Tb/Tc measurement site, measurement device, physiological changes, local protocols, and medical or surgical interventions. The studies have a high statistical heterogeneity (I2). The pooled mean temperature gradient between Tb and Tc was +0.14 °C (95% confidence interval: 0.03 to 0.24) and ranged from -1.29 to +1.1 °C. Patients who underwent a decompressive (hemi)craniectomy showed lower Tb values compared to Tc found in three studies. CONCLUSIONS Studies on Tb and Tc are heterogeneous and show that, on average, Tb and Tc are not clinically significant different in TBI patients (<0.2 °C). Interpretations and interventions of the brain and central temperatures will benefit from standardization of temperature measurements.
Collapse
Affiliation(s)
- Harry J Kendall
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands -
| | - Sander M VAN Kuijk
- KEMTA, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Iwan C VAN DER Horst
- School of Mental Health and Neurosciences, Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht University, Maastricht, the Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Jim T Dings
- School of Mental Health and Neurosciences, Department of Neurosurgery, Maastricht University Medical Center+, Maastricht University, Maastricht, the Netherlands
| | - Marcel J Aries
- School of Mental Health and Neurosciences, Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht University, Maastricht, the Netherlands
| | - Roel H Haeren
- School of Mental Health and Neurosciences, Department of Neurosurgery, Maastricht University Medical Center+, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
3
|
Sakai K, Kentaro A, Tazoe J, Ikeno H, Nakagawa T, Yamada K. Does cerebrospinal fluid pulsation affect diffusion-weighted imaging thermometry? A study in healthy volunteers. NMR IN BIOMEDICINE 2022; 35:e4738. [PMID: 35388508 DOI: 10.1002/nbm.4738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 01/25/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Diffusion-weighted imaging (DWI)-based thermometry offers potential as a noninvasive method for measuring temperatures deep inside the human brain. However, DWI might be influenced by the pulsatile flow of cerebrospinal fluid (CSF). This study aimed to investigate the influence of such pulsations on DWI thermometry in healthy individuals. A total of 104 participants (50 men, 54 women; mean [± standard deviation] age, 44.2 ± 14.3 years; range 21-69 years) were investigated. DWI-based brain temperature (TDWI ) was acquired at three speeds (maximum and minimum speeds of ascending flow and random timing at the cerebral aqueduct) of CSF pulsation using a 3-T magnetic resonance imaging scanner. Magnetic resonance spectroscopy (MRS)-based temperature (TMRS ) at the thalamus was also obtained as a reference standard for brain temperature. The three different CSF pulsatile flows were monitored by heart rate during the scan. The difference between reference temperature and brain temperature (ΔT = TDWI - TMRS ) along with the three CSF speeds were statistically compared using Student's matched pair t-test. No significant difference in ΔT was evident among CSF speeds (p > 0.05). No significant linear correlation between ΔT and CSF flow speed at the cerebral aqueduct was observed. Using DWI thermometry with clinical acquisition settings, which utilizes mean values within thresholds, no effect of CSF pulsation speed was observed in the estimation of ΔT.
Collapse
Affiliation(s)
- Koji Sakai
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Akazawa Kentaro
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Jun Tazoe
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Hiroyasu Ikeno
- Department of Radiology, Kyoto Prefectural University of Medicine Hospital, Kyoto City, Japan
| | - Toshiaki Nakagawa
- Department of Radiology, Kyoto Prefectural University of Medicine Hospital, Kyoto City, Japan
| | - Kei Yamada
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| |
Collapse
|
4
|
Nomura S, Inoue T, Imoto H, Sadahiro H, Sugimoto K, Maruta Y, Ishihara H, Suzuki M. A focal brain-cooling device as an alternative to electrical stimulation for language mapping during awake craniotomy: patient series. JOURNAL OF NEUROSURGERY: CASE LESSONS 2021; 2:CASE21131. [PMID: 35854858 PMCID: PMC9265174 DOI: 10.3171/case21131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/14/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND
Functional mapping in awake craniotomy has the potential risk of electrical stimulation-related seizure. The authors have developed a novel mapping technique using a brain-cooling device. The cooling probe is cylindrical in shape with a thermoelectric cooling plate (10 × 10 mm) at the bottom. A proportional integration and differentiation-controlled system adjusts the temperature accurately (Japan patent no. P5688666). The authors used it in two patients with glioblastoma. Broca’s area was identified by electrical stimulation, and then the cooling probe set at 5°C was attempted on it.
OBSERVATIONS
Electrocorticogram was suppressed, and the temperature dropped to 8°C in 50 sec. A positive aphasic reaction was reproduced on Broca’s area at a latency of 7 sec. A negative reaction appeared on the adjacent cortices despite the temperature decrease. The sensitivity and specificity were 60% and 100%, respectively. No seizures or other adverse events related to the cooling were recognized, and no histological damage to the cooled cortex was observed.
LESSONS
The cooling probe suppressed topographical brain function selectively and reversibly. Awake functional mapping based on thermal neuromodulation technology could substitute or compensate for the conventional electrical mapping.
Collapse
Affiliation(s)
| | - Takao Inoue
- Advanced Thermal Neurobiology, Yamaguchi University School of Medicine, Ube, Yamaguchi, Japan
| | | | | | | | | | | | - Michiyasu Suzuki
- Advanced Thermal Neurobiology, Yamaguchi University School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
5
|
Addis A, Gaasch M, Schiefecker AJ, Kofler M, Ianosi B, Rass V, Lindner A, Broessner G, Beer R, Pfausler B, Thomé C, Schmutzhard E, Helbok R. Brain temperature regulation in poor-grade subarachnoid hemorrhage patients - A multimodal neuromonitoring study. J Cereb Blood Flow Metab 2021; 41:359-368. [PMID: 32151225 PMCID: PMC7812508 DOI: 10.1177/0271678x20910405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Elevated body temperature (Tcore) is associated with poor outcome after subarachnoid hemorrhage (SAH). Brain temperature (Tbrain) is usually higher than Tcore. However, the implication of this difference (Tdelta) remains unclear. We aimed to study factors associated with higher Tdelta and its association with outcome. We included 46 SAH patients undergoing multimodal neuromonitoring, for a total of 7879 h of averaged data of Tcore, Tbrain, cerebral blood flow, cerebral perfusion pressure, intracranial pressure and cerebral metabolism (CMD). Three-months good functional outcome was defined as modified Rankin Scale ≤2. Tbrain was tightly correlated with Tcore (r = 0.948, p < 0.01), and was higher in 73.7% of neuromonitoring time (Tdelta +0.18°C, IQR -0.01 - 0.37°C). A higher Tdelta was associated with better metabolic state, indicated by lower CMD-glutamate (p = 0.003) and CMD-lactate (p < 0.001), and lower risk of mitochondrial dysfunction (MD) (OR = 0.2, p < 0.001). During MD, Tdelta was significantly lower (0°C, IQR -0.2 - 0.1; p < 0.001). A higher Tdelta was associated with improved outcome (OR = 7.7, p = 0.002). Our study suggests that Tbrain is associated with brain metabolic activity and exceeds Tcore when mitochondrial function is preserved. Further studies are needed to understand how Tdelta may serve as a surrogate marker for brain function and predict clinical course and outcome after SAH.
Collapse
Affiliation(s)
- Alberto Addis
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.,Neurology, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy.,School of Medicine, University of Milan-Bicocca, Milano, Italy
| | - Maxime Gaasch
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alois J Schiefecker
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Mario Kofler
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Bogdan Ianosi
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Rass
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Lindner
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor Broessner
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ronny Beer
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Bettina Pfausler
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Erich Schmutzhard
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Raimund Helbok
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
|
7
|
Wang HC, Wang BD, Chen MS, Chen H, Sun CF, Shen G, Zhang JM. Neuroprotective effect of berberine against learning and memory deficits in diffuse axonal injury. Exp Ther Med 2017; 15:1129-1135. [PMID: 29399112 DOI: 10.3892/etm.2017.5496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 01/26/2017] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to assess the neuroprotective effect of berberine against learning and memory deficits in diffuse axonal injury (DAI). DAI rats were orally gavaged with berberine at a dose of 200 mg/kg of body weight for 4 weeks. Behavioral tests were used to analyze the neuroprotective effect of berberine against DAI-induced learning and memory deficits. In the present study, treatment with berberine significantly protected against DAI-induced inhibition of learning and memory in rats. Notably, berberine significantly suppressed the levels of tumor necrosis factor, interleukin-1β and monocyte chemoattractant protein-1, as well as reduced the protein expression levels of nuclear factor-κB, Bcl-2-associated X protein and cytochrome c in DAI rats. In addition, berberine significantly suppressed the protein expression of p38 mitogen-activated protein kinase, activating transcription factor 2 and vascular endothelial growth factor in DAI rats. These results suggested that berberine exhibited a neuroprotective effect against learning and memory deficits in severe DAI through the suppression of inflammation, angiogenesis and apoptosis in a rat model.
Collapse
Affiliation(s)
- Hong-Cai Wang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China.,Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo, Ningbo, Zhejiang 315041, P.R. China
| | - Bo-Ding Wang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China.,Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo, Ningbo, Zhejiang 315041, P.R. China
| | - Mao-Song Chen
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo, Ningbo, Zhejiang 315041, P.R. China
| | - Hai Chen
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo, Ningbo, Zhejiang 315041, P.R. China
| | - Cheng-Feng Sun
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo, Ningbo, Zhejiang 315041, P.R. China
| | - Gang Shen
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo, Ningbo, Zhejiang 315041, P.R. China
| | - Jian-Min Zhang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
8
|
Szczygielski J, Müller A, Mautes AE, Sippl C, Glameanu C, Schwerdtfeger K, Steudel WI, Oertel J. Selective Brain Hypothermia Mitigates Brain Damage and Improves Neurological Outcome after Post-Traumatic Decompressive Craniectomy in Mice. J Neurotrauma 2017; 34:1623-1635. [PMID: 27799012 DOI: 10.1089/neu.2016.4615] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hypothermia and decompressive craniectomy (DC) have been considered as treatment for traumatic brain injury. The present study investigates whether selective brain hypothermia added to craniectomy could improve neurological outcome after brain trauma. Male CD-1 mice were assigned into the following groups: sham; DC; closed head injury (CHI); CHI followed by craniectomy (CHI+DC); and CHI+DC followed by focal hypothermia (CHI+DC+H). At 24 h post-trauma, animals were subjected to Neurological Severity Score (NSS) test and Beam Balance Score test. At the same time point, magnetic resonance imaging using a 9.4 Tesla scanner and subsequent volumetric evaluation of edema and contusion were performed. Thereafter, the animals were sacrificed and subjected to histopathological analysis. According to NSS, there was a significant impairment among all the groups subjected to trauma. Animals with both trauma and craniectomy performed significantly worse than animals with craniectomy alone. This deleterious effect disappeared when additional hypothermia was applied. BBS was significantly worse in the CHI and CHI+DC groups, but not in the CHI+DC+H group, compared to the sham animals. Edema and contusion volumes were significantly increased in CHI+DC animals, but not in the CHI+DC+H group, compared to the DC group. Histopathological analysis showed that neuronal loss and contusional blossoming could be attenuated by application of selective brain hypothermia. Selective brain cooling applied post-trauma and craniectomy improved neurological function and reduced structural damage and may be therefore an alternative to complication-burdened systemic hypothermia. Clinical studies are recommended in order to explore the potential of this treatment.
Collapse
Affiliation(s)
- Jacek Szczygielski
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Andreas Müller
- 2 Department of Radiology, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Angelika E Mautes
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Christoph Sippl
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Cosmin Glameanu
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Karsten Schwerdtfeger
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Wolf-Ingo Steudel
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Joachim Oertel
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| |
Collapse
|
9
|
Mahdavi Z, Pierre-Louis N, Ho TT, Figueroa SA, Olson DM. Advances in cerebral monitoring for the patient with traumatic brain injury. Crit Care Nurs Clin North Am 2015; 27:213-23. [PMID: 25981724 DOI: 10.1016/j.cnc.2015.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A brief overview of the most common invasive and noninvasive monitoring tools collectively referred to using the term "multimodal monitoring" is provided. Caring for the critically ill patient with traumatic brain injury requires careful monitoring to prevent or reduce secondary brain injury. Concurrent to the growth of the subspecialty of neurocritical care, there has been a concerted effort to discover novel mechanisms to monitor the physiology of brain injury. The past 2 decades have witnessed an exponential growth in neurologic monitoring in terms of intracranial pressure, blood flow, metabolism, oxygenation, advanced neuroimaging, and electrophysiology.
Collapse
Affiliation(s)
- Zakraus Mahdavi
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Naregnia Pierre-Louis
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Thuy-Tien Ho
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Stephen A Figueroa
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - DaiWai M Olson
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
10
|
Wang H, Wang B, Normoyle KP, Jackson K, Spitler K, Sharrock MF, Miller CM, Best C, Llano D, Du R. Brain temperature and its fundamental properties: a review for clinical neuroscientists. Front Neurosci 2014; 8:307. [PMID: 25339859 PMCID: PMC4189373 DOI: 10.3389/fnins.2014.00307] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 09/12/2014] [Indexed: 01/13/2023] Open
Abstract
Brain temperature, as an independent therapeutic target variable, has received increasingly intense clinical attention. To date, brain hypothermia represents the most potent neuroprotectant in laboratory studies. Although the impact of brain temperature is prevalent in a number of common human diseases including: head trauma, stroke, multiple sclerosis, epilepsy, mood disorders, headaches, and neurodegenerative disorders, it is evident and well recognized that the therapeutic application of induced hypothermia is limited to a few highly selected clinical conditions such as cardiac arrest and hypoxic ischemic neonatal encephalopathy. Efforts to understand the fundamental aspects of brain temperature regulation are therefore critical for the development of safe, effective, and pragmatic clinical treatments for patients with brain injuries. Although centrally-mediated mechanisms to maintain a stable body temperature are relatively well established, very little is clinically known about brain temperature's spatial and temporal distribution, its physiological and pathological fluctuations, and the mechanism underlying brain thermal homeostasis. The human brain, a metabolically "expensive" organ with intense heat production, is sensitive to fluctuations in temperature with regards to its functional activity and energy efficiency. In this review, we discuss several critical aspects concerning the fundamental properties of brain temperature from a clinical perspective.
Collapse
Affiliation(s)
- Huan Wang
- Department of Neurosurgery, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
- Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Bonnie Wang
- Department of Internal Medicine, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
| | - Kieran P. Normoyle
- Department of Internal Medicine, College of Medicine at Urbana-Champaign, University of IllinoisChampaign, Urbana, IL, USA
- Department of Molecular and Integrative Physiology, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
| | - Kevin Jackson
- Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Kevin Spitler
- Department of Internal Medicine, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
| | - Matthew F. Sharrock
- Department of Internal Medicine, College of Medicine at Urbana-Champaign, University of IllinoisChampaign, Urbana, IL, USA
| | - Claire M. Miller
- Department of Internal Medicine, College of Medicine at Urbana-Champaign, University of IllinoisChampaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Catherine Best
- Molecular and Cellular Biology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Daniel Llano
- Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-ChampaignUrbana, IL, USA
- Department of Molecular and Integrative Physiology, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
| | - Rose Du
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
11
|
Pietroboni A, Arighi A, De Riz M, Scarpini E, Galimberti D, Bresolin N, Rango M. Brain temperature in multiple sclerosis. Mult Scler 2013; 20:894-6. [PMID: 24158976 DOI: 10.1177/1352458513508838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Anna Pietroboni
- Department of Neurological Sciences, IRCCS Fondazione Cà Granda, Ospedale Maggiore Policlinico, Italy Magnetic Resonance Spectroscopy Center, IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Italy
| | - Andrea Arighi
- Department of Neurological Sciences, IRCCS Fondazione Cà Granda, Ospedale Maggiore Policlinico, Italy Magnetic Resonance Spectroscopy Center, IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Italy
| | - Milena De Riz
- Department of Neurological Sciences, IRCCS Fondazione Cà Granda, Ospedale Maggiore Policlinico, Italy
| | - Elio Scarpini
- Department of Neurological Sciences, IRCCS Fondazione Cà Granda, Ospedale Maggiore Policlinico, Italy
| | - Daniela Galimberti
- Department of Neurological Sciences, IRCCS Fondazione Cà Granda, Ospedale Maggiore Policlinico, Italy
| | - Nereo Bresolin
- Department of Neurological Sciences, IRCCS Fondazione Cà Granda, Ospedale Maggiore Policlinico, Italy Magnetic Resonance Spectroscopy Center, IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Italy
| | - Mario Rango
- Department of Neurological Sciences, IRCCS Fondazione Cà Granda, Ospedale Maggiore Policlinico, Italy Magnetic Resonance Spectroscopy Center, IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Italy
| |
Collapse
|
12
|
Childs C, Lunn KW. Clinical review: Brain-body temperature differences in adults with severe traumatic brain injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:222. [PMID: 23680353 PMCID: PMC3672533 DOI: 10.1186/cc11892] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Surrogate or 'proxy' measures of brain temperature are used in the routine management of patients with brain damage. The prevailing view is that the brain is 'hotter' than the body. The polarity and magnitude of temperature differences between brain and body, however, remains unclear after severe traumatic brain injury (TBI). The focus of this systematic review is on the adult patient admitted to intensive/neurocritical care with a diagnosis of severe TBI (Glasgow Coma Scale score of less than 8). The review considered studies that measured brain temperature and core body temperature. Articles published in English from the years 1980 to 2012 were searched in databases, CINAHL, PubMed, Scopus, Web of Science, Science Direct, Ovid SP, Mednar and ProQuest Dissertations & Theses Database. For the review, publications of randomised controlled trials, non-randomised controlled trials, before and after studies, cohort studies, case-control studies and descriptive studies were considered for inclusion. Of 2,391 records identified via the search strategies, 37 were retrieved for detailed examination (including two via hand searching). Fifteen were reviewed and assessed for methodological quality. Eleven studies were included in the systematic review providing 15 brain-core body temperature comparisons. The direction of mean brain-body temperature differences was positive (brain higher than body temperature) and negative (brain lower than body temperature). Hypothermia is associated with large brain-body temperature differences. Brain temperature cannot be predicted reliably from core body temperature. Concurrent monitoring of brain and body temperature is recommended in patients where risk of temperature-related neuronal damage is a cause for clinical concern and when deliberate induction of below-normal body temperature is instituted.
Collapse
|