1
|
Cognacq G, Attwood JE, DeLuca GC. Traumatic Brain Injury and Alzheimer's Disease: A Shared Neurovascular Hypothesis. Neurosci Insights 2025; 20:26331055251323292. [PMID: 40124421 PMCID: PMC11926848 DOI: 10.1177/26331055251323292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/10/2025] [Indexed: 03/25/2025] Open
Abstract
Traumatic brain injury (TBI) is a modifiable risk factor for Alzheimer's disease (AD). TBI and AD share several histopathological hallmarks: namely, beta-amyloid aggregation, tau hyperphosphorylation, and plasma protein infiltration. The relative contributions of these proteinopathies and their interplay in the pathogenesis of both conditions remains unclear although important differences are emerging. This review synthesises emerging evidence for the critical role of the neurovascular unit in mediating protein accumulation and neurotoxicity in both TBI and AD. We propose a shared pathogenic cascade centred on a neurovascular unit, in which increased blood-brain barrier permeability induces a series of noxious mechanisms leading to neuronal loss, synaptic dysfunction and ultimately cognitive dysfunction in both conditions. We explore the application of this hypothesis to outstanding research questions and potential treatments for TBI and AD, as well as other neurodegenerative and neuroinflammatory conditions. Limitations of this hypothesis, including the challenges of establishing a causal relationship between neurovascular damage and proteinopathies, are also discussed.
Collapse
Affiliation(s)
- Gabrielle Cognacq
- John Radcliffe Hospital, University of Oxford, Headley Way, Oxford, Oxfordshire, UK
| | - Jonathan E Attwood
- Nuffield Department of Clinical Neurosciences, Level 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, Oxfordshire, UK
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neurosciences, Level 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, Oxfordshire, UK
| |
Collapse
|
2
|
Agrawal M, Kumar J, Babal R, Bhaskar M, Jain NK. Computed Tomography Cerebral Perfusion to Predict Functional Outcome in Pediatric Head Injury: A Comparative Study of Voxel-Based and Whole-Brain Perfusion. World Neurosurg 2025; 195:123713. [PMID: 39864799 DOI: 10.1016/j.wneu.2025.123713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
OBJECTIVE This study evaluates the extent of perfusion abnormalities in pediatric patients with traumatic head injury by using computed tomography (CT) perfusion (CTP) and compares the efficacy of voxel-based and whole-brain perfusion data clinically with the functional outcome scales Glasgow Outcome Scale Extended-Pediatric Revision and modified Rankin Scale (mRS). METHODS In this prospective study, 100 eligible patients aged 0-15 years were enrolled. Patients were categorized into having mild, moderate, and severe traumatic brain injury using the Glasgow Coma Scale. CTP scans were performed at admission and at the time of discharge. Both voxel-based and whole-brain perfusion data were acquired at 5 regions of interest: orbitofrontal cortex, internal capsule, thalamus, caudate nucleus, and sensorimotor cortex for cerebral blood perfusion. The extent of perfusion abnormalities was noted in CTP scans. The Glasgow Outcome Scale Extended-Pediatric Revision and modified Rankin Scale were used to clinically evaluate functional outcomes. RESULTS Significant differences in CTP findings between voxel-based and whole-brain approaches were noted. Voxel-based scans showed superior predictive value in severe cases, whereas whole-brain scans were promising in moderate cases. Glasgow Coma Scale scores and specific CT parameters (cerebral blood flow and mean transit time.) were also significant predictors of outcomes. CONCLUSIONS The comparative analysis highlights the complementary roles of voxel-based and whole-brain perfusion CT in predicting functional outcomes in pediatric patients with head injury. Clinicians should consider both approaches when evaluating cerebral perfusion status and making treatment decisions. Further research is warranted to validate these findings and refine imaging protocols to optimize predictive accuracy in this vulnerable population.
Collapse
Affiliation(s)
- Manish Agrawal
- Department of Neurosurgery, SMS Medical College and Hospital, Jaipur, Rajasthan, India.
| | - Jagadeesh Kumar
- Department of Neurosurgery, SMS Medical College and Hospital, Jaipur, Rajasthan, India
| | - Rohit Babal
- Department of Neurosurgery, SMS Medical College and Hospital, Jaipur, Rajasthan, India
| | - Mukesh Bhaskar
- Department of Neurosurgery, SMS Medical College and Hospital, Jaipur, Rajasthan, India
| | - Nikhil Kumar Jain
- Department of Neurosurgery, SMS Medical College and Hospital, Jaipur, Rajasthan, India
| |
Collapse
|
3
|
Lauinger AR, Sepe JJ. Vascularization, Innervation, and Inflammation: Pathways Connecting the Heart-Brain Axis and Implications in a Clinical Setting. Biomedicines 2025; 13:171. [PMID: 39857755 PMCID: PMC11762153 DOI: 10.3390/biomedicines13010171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
With an aging population, the incidence of both ischemic heart disease and strokes have become the most prevalent diseases globally. These diseases have similar risk factors, such as hypertension, diabetes, and smoking. However, there is also evidence of a relationship between the heart and the brain, referred to as the heart-brain axis. In this relationship, dysfunction of either organs can lead to injury to the other. There are several proposed physiologies to explain this relationship. These theories usually involve vascular, neuromodulatory, and inflammatory processes; however, few articles have explored and compared these different mechanisms of interaction between the heart and brain. A better understanding of the heart-brain axis can inform physicians of current and future treatment and preventive care options in heart and brain pathologies. The relationship between the brain and heart depends on inflammation, vascular anatomy and function, and neuromodulation. The pathways connecting these organs often become injured or dysfunctional when a major pathology, such as a myocardial infarction or stroke, occurs. This leads to long-term impacts on the patient's overall health and risk for future disease. This study summarizes the current research involved in the heart-brain axis, relates these interactions to different diseases, and proposes future research in the field of neurocardiology. Conditions of the brain and heart are some of the most prevalent diseases. Through understanding the connection between these two organs, we can help inform patients and physicians of novel therapeutics for these pathologies.
Collapse
Affiliation(s)
- Alexa R. Lauinger
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Joseph J. Sepe
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Gupta A, Bice Z, Chen V, Chen Y, Veltri AJ, Lin CW, Ma X, Pan AY, Zennadi R, Palecek SP, Mohieldin AM, Nauli SM, Ramchandran R, Rarick KR. Severe traumatic brain injury temporally affects cerebral blood flow, endothelial cell phenotype, and cilia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.19.623875. [PMID: 39605741 PMCID: PMC11601676 DOI: 10.1101/2024.11.19.623875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Previous clinical work suggested that altered cerebral blood flow (CBF) in severe traumatic brain injury (sTBI) correlates with poor executive function and clinical outcome. However, the molecular consequences of altered CBF on endothelial cells (ECs) and their blood flow-sensor organelle called cilia are not known. Methods We performed laser speckle contrast imaging, single cell isolation, and single cell RNA sequencing (scRNAseq) after sTBI in a closed skull, linear impact mouse model. Validation of select ciliary target protein changes was performed using flow cytometry. Additionally, in vitro experiments modeled the post-injury hypoxic environment to evaluate the effect on cilia protein ARL13B in human brain microvascular ECs. Results We detected immediate reductions in CBF that were sustained for at least 100 minutes in both impacted and non-impacted sides of the brain. Our scRNAseq data detected heterogeneity in the brain cortex-derived EC cluster and demonstrated that two of five unique EC sub-clusters changed their relative proportions post-sTBI. Consistent with flow changes, we identified multiple genes associated with the fluid shear stress pathway that were significantly differentially expressed in brain ECs post-injury. Also, ECs displayed activation of ischemic pathway as early as day 1 post-injury, and enrichment of hypoxia pathway at day 7 and 28 post- injury. Arl13b ciliary gene expression was lost on day 1 in ECs cluster and remained lost for the entire course of the injury. We validated the loss of cilia protein ARL13B specifically from brain ECs as early as day 1 post-injury and detected the protein in the peripheral blood of the injured mice. We also determined that hypoxia could induce loss of ARL13B protein from cultured ECs. Conclusions In severe TBI, blood flow is disrupted in both impacted and non-impacted regions of the brain, creating a hypoxic environment that may influence ciliary gene and protein expression on ECs.
Collapse
|
5
|
Amorim RL, da Silva VT, Martins HO, Brasil S, Godoy DA, Mendes MT, Gattas G, Bor-Seng-Shu E, Paiva WS. Perfusion tomography in early follow-up of acute traumatic subdural hematoma: a case series. J Clin Monit Comput 2024; 38:783-789. [PMID: 38381360 DOI: 10.1007/s10877-024-01133-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/28/2024] [Indexed: 02/22/2024]
Abstract
Perfusion Computed Tomography (PCT) is an alternative tool to assess cerebral hemodynamics during trauma. As acute traumatic subdural hematomas (ASH) is a severe primary injury associated with poor outcomes, the aim of this study was to evaluate the cerebral hemodynamics in this context. Five adult patients with moderate and severe traumatic brain injury (TBI) and ASH were included. All individuals were indicated for surgical evacuation. Before and after surgery, PCT was performed and cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) were evaluated. These parameters were associated with the outcome at 6 months post-trauma with the extended Glasgow Outcome Scale (GOSE). Mean age of population was 46 years (SD: 8.1). Mean post-resuscitation Glasgow coma scale (GCS) was 10 (SD: 3.4). Mean preoperative midline brain shift was 10.1 mm (SD: 1.8). Preoperative CBF and MTT were 23.9 ml/100 g/min (SD: 6.1) and 7.3 s (1.3) respectively. After surgery, CBF increase to 30.7 ml/100 g/min (SD: 5.1), and MTT decrease to 5.8s (SD:1.0), however, both changes don't achieve statistically significance (p = 0.06). Additionally, CBV increase after surgery, from 2.34 (SD: 0.67) to 2.63 ml/100 g (SD: 1.10), (p = 0.31). Spearman correlation test of postoperative and preoperative CBF ratio with outcome at 6 months was 0.94 (p = 0.054). One patient died with the highest preoperative MTT (9.97 s) and CBV (4.51 ml/100 g). CBF seems to increase after surgery, especially when evaluated together with the MTT values. It is suggested that the improvement in postoperative brain hemodynamics correlates to favorable outcome.
Collapse
Affiliation(s)
- Robson Luís Amorim
- LIM-62, Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
- Health Sciences Faculty, Federal University of Amazonas, Manaus, Brazil
| | | | | | - Sérgio Brasil
- LIM-62, Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil.
- Division of Neurosurgery, University of São Paulo, 255. Eneas de Carvalho Aguiar Av., São Paulo, 05403-000, Brazil.
| | - Daniel Agustín Godoy
- Critical Care Department, Division Neurocritical Care, Sanatorio Pasteur, Catamarca, Argentina.
- Neurointensive Care Unit, Sanatorio Pasteur. Chacabuco 747, Catamarca, 4700, Argentina.
| | | | - Gabriel Gattas
- Institute of Radiology, University of São Paulo Medical School, São Paulo, Brazil
| | - Edson Bor-Seng-Shu
- LIM-62, Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | - Wellingson Silva Paiva
- LIM-62, Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
6
|
Penn C, Katnik C, Cuevas J, Mohapatra SS, Mohapatra S. Multispectral optoacoustic tomography (MSOT): Monitoring neurovascular changes in a mouse repetitive traumatic brain injury model. J Neurosci Methods 2023; 393:109876. [PMID: 37150303 PMCID: PMC10388337 DOI: 10.1016/j.jneumeth.2023.109876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND Evidence suggests that mild TBI injuries, which comprise > 75% of all TBIs, can cause chronic post-concussive symptoms, especially when experienced repetitively (rTBI). rTBI is a major cause of cognitive deficit in athletes and military personnel and is associated with neurovascular changes. Current methods to monitor neurovascular changes in detail are prohibitively expensive and invasive for patients with mild injuries. NEW METHOD We evaluated the potential of multispectral optoacoustic tomography (MSOT) to monitor neurovascular changes and assess therapeutic strategies in a mouse model of rTBI. Mice were subjected to rTBI or sham via controlled cortical impact and administered pioglitazone (PG) or vehicle. Oxygenated and deoxygenated hemoglobin were monitored using MSOT. Indocyanine green clearance was imaged via MSOT to evaluate blood-brain-barrier (BBB) integrity. RESULTS Mice subjected to rTBI show a transient increase in oxygenated/total hemoglobin ratio which can be mitigated by PG administration. rTBI mice also show BBB disruption shortly after injury and reduction of oxygenated/total hemoglobin in the chronic stage, neither of which were affected by PG intervention. COMPARISON WITH EXISTING METHODS MSOT imaging has the potential as a noninvasive in vivo imaging method to monitor neurovascular changes and assess therapeutics in mouse models of rTBI. In comparison to standard methods of tracking inflammation and BBB disruption, MSOT can be used multiple times throughout the course of injury without the need for surgery. Thus, MSOT is especially useful in research of rTBI models for screening therapeutics, and with further technological improvements may be extended for use in rTBI patients.
Collapse
Affiliation(s)
- Courtney Penn
- James A. Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA
| | - Chris Katnik
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA
| | - Javier Cuevas
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA
| | - Shyam S Mohapatra
- James A. Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; Department of Internal Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA
| | - Subhra Mohapatra
- James A. Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
7
|
Churchill NW, Graham SJ, Schweizer TA. Perfusion Imaging of Traumatic Brain Injury. Neuroimaging Clin N Am 2023; 33:315-324. [PMID: 36965948 DOI: 10.1016/j.nic.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
The mechanisms for regulating cerebral blood flow (CBF) are highly sensitive to traumatic brain injury (TBI). The perfusion imaging technique may be used to assess CBF and identify perfusion abnormalities following a TBI. Studies have identified CBF disturbances across the injury severity spectrum and correlations with both acute and long-term indices of clinical outcome. Although not yet widely used in the clinical context, this is an important area of ongoing research.
Collapse
Affiliation(s)
- Nathan W Churchill
- Neuroscience Research Program, Saint Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1M8, Canada; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1M8, Canada; Physics Department, Toronto Metropolitan University, 60 St George St, Toronto, ON M5S 1A7, Canada.
| | - Simon J Graham
- Department of Medical Biophysics, University of Toronto, 101 College Street, Suite 15-701, Toronto, ON M5G 1L7, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Wellness Way, Toronto, ON M4N 3M5, Canada; Physical Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Tom A Schweizer
- Neuroscience Research Program, Saint Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1M8, Canada; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1M8, Canada; Faculty of Medicine (Neurosurgery), University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
8
|
Choudhary SK, Sharma A. Comparative Study of Cerebral Perfusion in Different Types of Decompressive Surgery for Traumatic Brain Injury. INDIAN JOURNAL OF NEUROTRAUMA 2023. [DOI: 10.1055/s-0043-1760727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Abstract
Introduction Computed tomography perfusion (CTP) brain usefulness in the treatment of traumatic brain injury (TBI) is still being investigated. Comparative research of CTP in the various forms of decompressive surgery has not yet been reported to our knowledge. Patients with TBI who underwent decompressive surgery were studied using pre- and postoperative CTP. CTP findings were compared with patient's outcome.
Materials and Methods This was a single-center, prospective cohort study. A prospective analysis of patients who were investigated with CTP from admission between 2019 and 2021 was undertaken. The patients in whom decompressive surgery was required for TBI, were included in our study after applying inclusion and exclusion criteria. CTP imaging was performed preoperatively and 5 days after decompressive surgery to measure cerebral perfusion. Numbers of cases included in the study were 75. Statistical analysis was done.
Results In our study, cerebral perfusion were improved postoperatively in the all types of decompressive surgery (p-value < 0.05). But association between type of surgery with improvement in cerebral perfusion, Glasgow Coma Scale at discharge, and Glasgow Outcome Scale-extended at 3 months were found to be statistically insignificant (p-value > 0.05).
Conclusion CTP brain may play a role as a prognostic tool in TBI patients undergoing decompressive surgery.
Collapse
Affiliation(s)
- Suresh Kumar Choudhary
- Department of Neurosurgery, Sawai Man Singh Medical College and Hospital, Jaipur, Rajasthan, India
| | - Achal Sharma
- Department of Neurosurgery, Sawai Man Singh Medical College and Hospital, Jaipur, Rajasthan, India
| |
Collapse
|
9
|
Lohia D, Agrawal M, Babal R, Purohit DK. Cerebral Perfusion and Functional Outcome in Pediatric Head Injury Patients. World Neurosurg 2022; 167:e620-e628. [PMID: 36007770 DOI: 10.1016/j.wneu.2022.08.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the usefulness and degree of perfusion abnormalities in pediatric head injury patients by using computed tomography perfusion (CTP) and to assess its co-relation with neurologic outcome based on Glasgow Outcome Scale Extended Pediatric revision (GOSE-P). METHODS Prospective evaluation of pediatric head injury patients who were taken for CTP after admission and then on discharge. We evaluated 5 regions of interest: orbitofrontal cortex, internal capsule, thalamus, caudate nucleus, and sensorimotor cortex for cerebral blood perfusion. The patient's clinical and radiologic findings were analyzed, correlated with cerebral blood flow (CBF) and MTT (mean transient time), and the outcome assessed using the GOSE-P scale on 3-month follow-up. RESULTS Both CBF and MTT showed a correlation with the GOSE-P scale. In mild head injury patients, the Pearson correlation of GOSE-P with mean CBF and mean MTT was -0.11 and 0.56, respectively (P < 0.05) in the sensorimotor cortex; in moderate head injury patients the Pearson correlation of GOSE-P with mean CBF in the caudate nucleus and mean MTT in the internal capsule was -0.32 and 0.36, respectively (P < 0.05); and in severe head injury patients, the Pearson correlation of GOSE-P with mean CBF and mean MTT was -0.78 and 0.56, respectively (P < 0.05) in the caudate nucleus, which had the highest Pearson co-relation among the regions studied. CONCLUSIONS We conclude that CBF and MTT are 2 important radiologic parameters that can be used as prognostic indicators in pediatric head injury patients.
Collapse
Affiliation(s)
- Deepak Lohia
- Department of Neurosurgery, Sawai Man Singh Medical College, Jaipur, Rajasthan, India
| | - Manish Agrawal
- Department of Neurosurgery, Sawai Man Singh Medical College, Jaipur, Rajasthan, India.
| | - Rohit Babal
- Department of Neurosurgery, Sawai Man Singh Medical College, Jaipur, Rajasthan, India
| | | |
Collapse
|
10
|
Phaphuangwittayakul A, Guo Y, Ying F, Dawod AY, Angkurawaranon S, Angkurawaranon C. An optimal deep learning framework for multi-type hemorrhagic lesions detection and quantification in head CT images for traumatic brain injury. APPL INTELL 2021; 52:7320-7338. [PMID: 34764620 PMCID: PMC8475375 DOI: 10.1007/s10489-021-02782-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 11/21/2022]
Abstract
Traumatic Brain Injury (TBI) could lead to intracranial hemorrhage (ICH), which has now been identified as a major cause of death after trauma if it is not adequately diagnosed and properly treated within the first 24 hours. CT examination is widely preferred for urgent ICH diagnosis, which enables the fast identification and detection of ICH regions. However, the use of it requires the clinical interpretation by experts to identify the subtypes of ICH. Besides, it is unable to provide the details needed to conduct quantitative assessment, such as the volume and thickness of hemorrhagic lesions, which may have prognostic importance to the decision-making on emergency treatment. In this paper, an optimal deep learning framework is proposed to assist the quantitative assessment for ICH diagnosis and the accurate detection of different subtypes of ICH through head CT scan. Firstly, the format of raw input data is converted from 3D DICOM to NIfTI. Secondly, a pre-trained multi-class semantic segmentation model is applied to each slice of CT images, so as to obtain a precise 3D mask of the whole ICH region. Thirdly, a fine-tuned classification neural network is employed to extract the key features from the raw input data and identify the subtypes of ICH. Finally, a quantitative assessment algorithm is adopted to automatically measure both thickness and volume via the 3D shape mask combined with the output probabilities of the classification network. The results of our extensive experiments demonstrate the effectiveness of the proposed framework where the average accuracy of 96.21 percent is achieved for three types of hemorrhage. The capability of our optimal classification model to distinguish between different types of lesion plays a significant role in reducing the false-positive rate in the existing work. Furthermore, the results suggest that our automatic quantitative assessment algorithm is effective in providing clinically relevant quantification in terms of volume and thickness. It is more important than the qualitative assessment conducted through visual inspection to the decision-making on emergency surgical treatment.
Collapse
Affiliation(s)
- Aniwat Phaphuangwittayakul
- Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Yi Guo
- Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai, China
- National Engineering Laboratory for Big Data Distribution and Exchange Technologies, Shanghai, China
- Shanghai Engineering Research Center of Big Data and Internet Audience, Shanghai, China
| | - Fangli Ying
- Department of Computer Science and Engineering, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ahmad Yahya Dawod
- International College of Digital Innovation (ICDI), Chiang Mai University, Chiang Mai, Thailand
| | - Salita Angkurawaranon
- Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chaisiri Angkurawaranon
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
11
|
Maegawa T, Sasahara A, Ohbuchi H, Chernov M, Kasuya H. Cerebral vasospasm and hypoperfusion after traumatic brain injury: Combined CT angiography and CT perfusion imaging study. Surg Neurol Int 2021; 12:361. [PMID: 34345501 PMCID: PMC8326138 DOI: 10.25259/sni_859_2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/17/2021] [Indexed: 12/03/2022] Open
Abstract
Background: Timely identification of the cerebral perfusion abnormalities after traumatic brain injury (TBI) is highly important. The objective of this study was the evaluation of the post traumatic vasospasm and cerebral hypoperfusion with the serial combined CT angiography (CTA) and CT perfusion (CTP) imaging examinations. Methods: The case series comprised 25 adult patients with closed TBI accompanied by various types of intracranial hematoma. Emergency surgery was done in 15 cases (60%). Combined CTA and CTP were performed on days 0 (D0) and 7 ± 1 (D7) after trauma. Results: CTA on D0 did not demonstrate vasospasm in any case but revealed it on D7 in 9 patients (36%). In the multivariate analysis, only the presence of subarachnoid hemorrhage (SAH) on D7 had confirmed a significant association with the development of vasospasm (P = 0.0201). Cerebral hypoperfusion at least in one evaluated brain region was noted on D0 and D7 in 76% and 60% of patients, respectively, and showed highly variable spatial distribution and temporal development. Treatment results were not associated with the presence of vasospasm (P = 0.7337) or the number of brain regions affected by hypoperfusion on D0 (P = 0.2285), but the number of brain regions affected by hypoperfusion on D7 was significantly greater in cases of unfavorable outcome (P = 0.0187). Conclusion: Vasospasm is merely related to SAH sustained at the subacute stage of TBI, but its spatial and temporary interrelationships with the post traumatic cerebral hypoperfusion are complex. Serial combined CTA and CTP examinations may facilitate monitoring of perfusion abnormalities and treatment guidance.
Collapse
Affiliation(s)
- Tatsuya Maegawa
- Department of Neurosurgery, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Atsushi Sasahara
- Department of Neurosurgery, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Hidenori Ohbuchi
- Department of Neurosurgery, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Mikhail Chernov
- Department of Neurosurgery, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Hidetoshi Kasuya
- Department of Neurosurgery, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| |
Collapse
|
12
|
Avsenik J, Bajrović FF, Gradišek P, Kejžar N, Šurlan Popović K. Prognostic value of CT perfusion and permeability imaging in traumatic brain injury. J Trauma Acute Care Surg 2021; 90:484-491. [PMID: 33009337 DOI: 10.1097/ta.0000000000002964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Currently established prognostic models in traumatic brain injury (TBI) include noncontrast computed tomography (CT) which is insensitive to early perfusion alterations associated with secondary brain injury. Perfusion CT (PCT) on the other hand offers insight into early perfusion abnormalities. We hypothesized that adding CT perfusion and permeability data to the established outcome predictors improves the performance of the prognostic model. METHODS A prospective cohort study of consecutive 50 adult patients with head injury and Glasgow Coma Scale score of 12 or less was performed at a single Level 1 Trauma Centre. Perfusion CT was added to routine control CT 12 hours to 24 hours after admission. Region of interest analysis was performed in six major vascular territories on perfusion and permeability parametric maps. Glasgow Outcome Scale (GOS) was used 6 months later to categorize patients' functional outcomes to favorable (GOS score > 3) or unfavorable (GOS score ≤ 3). We defined core prognostic model, consisting of age, motor Glasgow Coma Scale score, pupillary reactivity, and CT Rotterdam Score. Next, we added perfusion and permeability data as predictors and compared updated models to the core model using cross-validated areas under the receiver operator curves (cv-AUC). RESULTS Significant advantage over core model was shown by the model, containing both mean cerebral extravascular-extracellular volume per unit of tissue volume and cerebral blood volume of the least perfused arterial territory in addition to core predictors (cv-AUC, 0.75; 95% confidence interval, 0.51-0.84 vs. 0.6; 95% confidence interval, 0.37-0.74). CONCLUSION The development of cerebral ischemia and traumatic cerebral edema constitutes the secondary brain injury and represents the target for therapeutic interventions. Our results suggest that adding CT perfusion and permeability data to the established outcome predictors improves the performance of the prognostic model in the setting of moderate and severe TBI. LEVEL OF EVIDENCE Prognostic study, level III.
Collapse
Affiliation(s)
- Jernej Avsenik
- From the Clinical Institute of Radiology (J.A., K.Š.P.), University Medical Centre Ljubljana; Department of Radiology (J.A., K.Š.P.), Faculty of Medicine, University of Ljubljana; Division of Neurology (F.F.B.), University Medical Centre Ljubljana; Institute of Pathophysiology (F.F.B.), Faculty of Medicine, University of Ljubljana; Clinical Department of Anaesthesiology and Intensive Therapy (P.G.), Centre for Intensive Therapy, University Medical Centre Ljubljana; Department of Anaesthesiology with Reanimatology (P.G.), Faculty of Medicine, University of Ljubljana and Institute for Biostatistics and Medical Informatics (N.K.), Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
13
|
Cooper S, Bendinelli C, Bivard A, Parsons M, Balogh ZJ. Abnormalities on Perfusion CT and Intervention for Intracranial Hypertension in Severe Traumatic Brain Injury. J Clin Med 2020; 9:E2000. [PMID: 32630511 PMCID: PMC7356931 DOI: 10.3390/jcm9062000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 11/16/2022] Open
Abstract
The role of invasive intracranial pressure (ICP) monitoring in patients with severe traumatic brain injury (STBI) remain unclear. Perfusion computed tomography (CTP) provides crucial information about the cerebral perfusion status in these patients. We hypothesised that CTP abnormalities would be associated with the severity of intracranial hypertension (ICH). To investigate this hypothesis, twenty-eight patients with STBI and ICP monitors were investigated with CTP within 48 h from admission. Treating teams were blind to these results. Patients were divided into five groups based on increasing intervention required to control ICH and were compared. Group I required no intervention above routine sedation, group II required a single first tier intervention, group III required multiple different first-tier interventions, group IV required second-tier medical therapy and group V required second-tier surgical therapy. Analysis of the results showed demographics and injury severity did not differ among groups. In group I no patients showed CTP abnormality, while patients in all other groups had abnormal CTP (p = 0.003). Severe ischaemia observed on CTP was associated with increasing intervention for ICH. This study, although limited by small sample size, suggests that CTP abnormalities are associated with the need to intervene for ICH. Larger scale assessment of our results is warranted to potentially avoid unnecessary invasive procedures in head injury patients.
Collapse
Affiliation(s)
- Shannon Cooper
- Department of Traumatology, John Hunter Hospital Newcastle, Newcastle, NSW 2305, Australia; (S.C.); (C.B.)
| | - Cino Bendinelli
- Department of Traumatology, John Hunter Hospital Newcastle, Newcastle, NSW 2305, Australia; (S.C.); (C.B.)
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2300, Australia; (A.B.); (M.P.)
| | - Andrew Bivard
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2300, Australia; (A.B.); (M.P.)
- Department of Neurology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Mark Parsons
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2300, Australia; (A.B.); (M.P.)
- Department of Neurology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Zsolt J. Balogh
- Department of Traumatology, John Hunter Hospital Newcastle, Newcastle, NSW 2305, Australia; (S.C.); (C.B.)
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2300, Australia; (A.B.); (M.P.)
| |
Collapse
|
14
|
Ware JB, Dolui S, Duda J, Gaggi N, Choi R, Detre J, Whyte J, Diaz-Arrastia R, Kim JJ. Relationship of Cerebral Blood Flow to Cognitive Function and Recovery in Early Chronic Traumatic Brain Injury. J Neurotrauma 2020; 37:2180-2187. [PMID: 32349614 DOI: 10.1089/neu.2020.7031] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity worldwide, for which biomarkers are needed to better understand the underlying pathophysiology. Microvascular injury represents a subset of pathological mechanisms contributing to cognitive dysfunction after TBI, which may also impair subsequent neural repair thereby inhibiting cognitive recovery. Magnetic resonance imaging (MRI)-based measurement of cerebral blood flow (CBF) by arterial spin labeling (ASL) provides an appealing means of assessing microvascular disruption in TBI; however, the relationship between CBF alterations in the early chronic post-TBI setting and cognitive dysfunction as well as subsequent cognitive recovery remain poorly understood. Structural MRI and ASL were performed in 42 TBI subjects 3 months post-injury and 35 matched healthy controls. Neuropsychological testing was performed in each subject, as well as in a subset of TBI patients (n = 33) at 6 and/or 12 months post-injury. TBI and control subject CBF data were compared between groups in a voxel-wise fashion while controlling for the effects of structural atrophy. A region-of-interest approach was then used to compare CBF to clinical and neuropsychological measures within the TBI group in a cross-sectional fashion, as well as to the degree of subsequent cognitive recovery among subjects with follow-up testing. At 3 months post-injury, the TBI group demonstrated lower performance in each cognitive domain (p < 0.05), as well as widespread reductions in gray matter CBF independent of structural atrophy (p < 0.05). Within the TBI group, CBF was moderately correlated with injury severity (r = -0.43; p = 0.009) and executive function (r = 0.43; p = 0.01). In the longitudinal analysis, there was a positive correlation between initial CBF and processing speed recovery (r = 0.43; p = 0.015) independent of age, education level, and initial test score. Early chronic TBI is associated with widespread gray matter CBF deficits, which are correlated with injury severity and cognitive dysfunction. CBF may predict subsequent recovery in some cognitive domains.
Collapse
Affiliation(s)
- Jeffrey B Ware
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sudipto Dolui
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeffrey Duda
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Naomi Gaggi
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robin Choi
- Department of Molecular, Cellular, and Biomedical Sciences, City University of New York School of Medicine, New York, New York, USA
| | - John Detre
- Moss Rehabilitation Research Institute, Philadelphia, Pennsylvania, USA
| | - John Whyte
- Department of Molecular, Cellular, and Biomedical Sciences, City University of New York School of Medicine, New York, New York, USA
| | | | - Junghoon J Kim
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Kulesza B, Litak J, Grochowski C, Nogalski A, Rola R. The Initial Factors with Strong Predictive Value in Relation to Six-Month Outcome among Patients Operated due to Extra-Axial Hematomas. Diagnostics (Basel) 2020; 10:diagnostics10030174. [PMID: 32209970 PMCID: PMC7151066 DOI: 10.3390/diagnostics10030174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/15/2023] Open
Abstract
Introduction: Traumatic brain injuries (TBI) are a real social problem, with an upward trend worldwide. The most frequent consequence of a traumatic brain injury is extra-axial hemorrhage, i.e., an acute subdural (SDH) and epidural hematoma (EDH). Most of the factors affecting the prognosis have been analyzed on a wide group of traumatic brain injuries. Nonetheless, there are few studies analyzing factors influencing the prognosis regarding patients undergoing surgery due to acute subdural and epidural hematoma. The aim of this study was to identify the factors which have the strongest prognostic value in relation to the 6-month outcome of the patients undergoing surgery for SDH and EDH. Patients and methods: The study included a group of 128 patients with isolated craniocerebral injuries. Twenty eight patients were operated upon due to EDH, and a group of 100 patients were operated upon due to SDH. The following factors from the groups were analyzed: demographic data, physiological factors, laboratory factors, computed tomography scan characteristics, and time between the trauma and the surgery. All of these factors were correlated in a multivariate analysis with the six-month outcome in the Glasgow outcome scale. Results: The factors with the strongest prognostic value are GCS score, respiration rate, saturation, glycaemia and systolic blood pressure. Conclusion: Initial GCS score, respiratory rate, saturation, glycaemia and systolic blood pressure were the factors with the strongest prognostic value.
Collapse
Affiliation(s)
- Bartłomiej Kulesza
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (B.K.); (R.R.)
| | - Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (B.K.); (R.R.)
- Department of Immunology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence:
| | - Cezary Grochowski
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland;
- Laboratory of Virtual Man, Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Adam Nogalski
- Department of Trauma Surgery and Emergency Medicine, Medical University of Lublin, Staszica 16, 20-090 Lublin, Poland;
| | - Radosław Rola
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (B.K.); (R.R.)
| |
Collapse
|
16
|
Ssebakumba MK, Lule H, Olweny F, Mabweijano J, Kiryabwire J. Thirty-day clinical outcome of traumatic brain injury patients with acute extradural and subdural hematoma: a cohort study at Mulago National Referral Hospital, Uganda. EGYPTIAN JOURNAL OF NEUROSURGERY 2020. [DOI: 10.1186/s41984-020-0073-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Increasing traumatic brain injury (TBI) has paralleled the need for decompression surgery for acute subdural (ASDH) and acute extradural haematoma (AEDH). Knowledge of key determinants of clinical outcomes of such patients is mandatory to guide treatment protocols.
Objective
To determine the 30-day clinical outcomes and predictor variables for patients with extra-axial hematomas at Mulago National Referral Hospital in Uganda.
Methods
Prospective observational cohort study of 109 patients with computed tomography (CT) confirmed extra-axial hematomas. Ethical clearance was obtained from the School of Medicine Research and Ethics Committee of College of Health Sciences, Makerere University (REC REF. 2018-185). Admitted patients were followed-up and reassessed for Glasgow Outcome Scale (GOS) and final disposition. Multivariate regression analysis was performed using Stata 14.0 (StataCorp. 2015) at 95% confidence interval, regarding p < 0.05 as statistically significant.
Results
The overall proportion of favorable outcome was 71.7% (n = 71), with 42.3% (n = 11) and 81.7% (n = 58) for ASDH and AEDH, respectively (p = 0.111). Factors associated with a favorable outcome were admission systolic BP > 90 mmHg [IRR = 0.88 (0.26–0.94) 95%CI, p = 0.032), oxygen saturation > 90% [IRR = 0.5 (0.26–0.94) 95%CI, p = 0.030] and diagnosis AEDH [IRR = 0.53 (0.30–0.92) 95%CI, p = 0.025). Moderate TBI [IRR = 4.57 (1.15–18.06) 95%CI, p = 0.03] and severe TBI [IRR = 6.79 (2.32–19.86) 95%CI, p < 0.001] were significantly associated with unfavorable outcomes.
Conclusion
The study revealed that post resuscitation GCS, systolic BP, oxygen circulation, and diagnosis of AEDH at admission are the most important determinants of outcome for patients with extra-axial intracranial hematomas. These findings are valuable for the triaging teams in resource-constrained settings.
Collapse
|
17
|
Using computerized tomography perfusion to measure cerebral hemodynamics following treatment of traumatic brain injury in rabbits. Exp Ther Med 2019; 18:2104-2110. [PMID: 31410165 PMCID: PMC6676178 DOI: 10.3892/etm.2019.7785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/16/2019] [Indexed: 11/09/2022] Open
Abstract
The present study aimed to investigate the use of computerized tomography (CT) perfusion for evaluating cerebral hemodynamics following traumatic brain injury (TBI) in rabbits. The animals were randomly assigned into four groups (n=10 animals/group): i) Control, ii) TBI, iii) TBI + common decompression and iv) TBI + controlled decompression groups. A TBI model was established in rabbits using epidural balloon inflation. In the groups receiving intervention, animals were provided common decompression or controlled decompression treatments. Conventional CT and CT perfusion scanning were performed, with cerebral hemodynamic indices, including regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV) and mean transit time (MTT) being measured. Blood-brain barrier (BBB) permeability was evaluated using Evans blue staining. Compared with those in the control group, rCBF and rCBV values of the bilateral temporal lobes and basal ganglion in the TBI, TBI + common decompression and TBI + controlled decompression groups were significantly lower, whereas the MTT values were markedly prolonged and Evans blue dye content was greatly increased (P<0.01). Controlled decompression was demonstrated to be more potent than common decompression for preventing TBI-induced decline in rCBF and rCBV values in the bilateral temporal lobes and basal ganglion, as well as reversing TBI-induced extension of MTT in the bilateral temporal lobes (P<0.01 vs. TBI group). However, neither common nor controlled decompression could reduce TBI-induced increase in BBB permeability. In conclusion, these findings indicate that CT perfusion may be used to monitor cerebral hemodynamics following TBI in rabbits. Controlled decompression was deduced to be more potent than common decompression for preventing abnormalities in cerebral hemodynamics after TBI.
Collapse
|
18
|
Mufti O, Mathew S, Harris A, Siesky B, Burgett KM, Verticchio Vercellin AC. Ocular changes in traumatic brain injury: A review. Eur J Ophthalmol 2019; 30:867-873. [PMID: 31378077 DOI: 10.1177/1120672119866974] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury is represented by a penetrating or non-penetrating head injury, which causes disruption in the normal functioning of the brain. Traumatic brain injury has been an ardently debated topic of discussion due to its prevalence in media centric persons such as military personnel and athletes. Current assessments for traumatic brain injury have looked at vestibulo-ocular and vascular parameters to aid in diagnosis. Innovations in non-invasive ophthalmic imaging have allowed for the visualization of specific tissue structure/function relationships in a variety of ophthalmic and neurodegenerative diseases. As the eye and brain share significant embryological and physiological pathways, ocular imaging modalities may provide a novel and impactful tool in advancing assessment of traumatic brain injury. Herein, we examined the available literature and data on visual fields, mean retinal nerve fiber layer thickness, retinal ganglion cell layer thickness, and cerebral blood flow following traumatic brain injury. This review of published individual and population-based studies was performed in order to explore the feasibility and importance of considering ocular imaging biomarkers following traumatic brain injury.
Collapse
Affiliation(s)
- Osama Mufti
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sunu Mathew
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alon Harris
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brent Siesky
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kendall M Burgett
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
19
|
Honda M, Ichibayashi R, Suzuki G, Yokomuro H, Seiki Y, Sase S, Kishi T. Consideration of the Intracranial Pressure Threshold Value for the Initiation of Traumatic Brain Injury Treatment: A Xenon CT and Perfusion CT Study. Neurocrit Care 2018; 27:308-315. [PMID: 28762185 DOI: 10.1007/s12028-017-0432-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Monitoring of intracranial pressure (ICP) is considered to be fundamental for the care of patients with severe traumatic brain injury (TBI) and is routinely used to direct medical and surgical therapy. Accordingly, some guidelines for the management of severe TBI recommend that treatment be initiated for ICP values >20 mmHg. However, it remained to be accounted whether there is a scientific basis to this instruction. The purpose of the present study was to clarify whether the basis of ICP values >20 mmHg is appropriate. SUBJECT AND METHODS We retrospectively reviewed 25 patients with severe TBI who underwent neuroimaging during ICP monitoring within the first 7 days. We measured cerebral blood flow (CBF), mean transit time (MTT), cerebral blood volume (CBV), and ICP 71 times within the first 7 days. RESULTS Although the CBF, MTT, and CBV values were not correlated with the ICP value at ICP values ≤20 mmHg, the CBF value was significantly negatively correlated with the ICP value (r = -0.381, P < 0.05) at ICP values >20 mmHg. The MTT value was also significantly positively correlated with the ICP value (r = 0.638, P < 0.05) at ICP values >20 mmHg. CONCLUSION The cerebral circulation disturbance increased with the ICP value. We demonstrated the cerebral circulation disturbance at ICP values >20 mmHg. This study suggests that an ICP >20 mmHg is the threshold to initiate treatments. An active treatment intervention would be required for severe TBI when the ICP was >20 mmHg.
Collapse
Affiliation(s)
- Mitsuru Honda
- Department of Critical Care Center, Toho University Medical Center Omori Hospital, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan.
| | - Ryo Ichibayashi
- Department of Critical Care Center, Toho University Medical Center Omori Hospital, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Ginga Suzuki
- Department of Critical Care Center, Toho University Medical Center Omori Hospital, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Hiroki Yokomuro
- Department of Critical Care Center, Toho University Medical Center Omori Hospital, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Yoshikatsu Seiki
- Department of Neurosurgery, Toho University Medical Center Omori Hospital, Tokyo, Japan
| | - Shigeru Sase
- Department of Neurosurgery, Toho University Medical Center Omori Hospital, Tokyo, Japan
| | - Taichi Kishi
- Department of Education Planning and Development, Faculty of Medicine, School of Medicine, Toho University, Tokyo, Japan
| |
Collapse
|
20
|
Bendinelli C, Cooper S, Evans T, Bivard A, Pacey D, Parson M, Balogh ZJ. Perfusion Abnormalities are Frequently Detected by Early CT Perfusion and Predict Unfavourable Outcome Following Severe Traumatic Brain Injury. World J Surg 2018; 41:2512-2520. [PMID: 28455815 DOI: 10.1007/s00268-017-4030-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND In patients with severe traumatic brain injury (TBI), early CT perfusion (CTP) provides additional information beyond the non-contrast CT (NCCT) and may alter clinical management. We hypothesized that this information may prognosticate functional outcome. METHODS Five-year prospective observational study was performed in a level-1 trauma centre on consecutive severe TBI patients. CTP (obtained in conjunction with first routine NCCT) was interpreted as: abnormal, area of altered perfusion more extensive than on NCCT, and the presence of ischaemia. Six months Glasgow Outcome Scale-Extended of four or less was considered an unfavourable outcome. Logistic regression analysis of CTP findings and core variables [preintubation Glasgow Coma Scale (GCS), Rotterdam score, base deficit, age] was conducted using Bayesian model averaging to identify the best predicting model for unfavourable outcome. RESULTS Fifty patients were investigated with CTP (one excluded for the absence of TBI) [male: 80%, median age: 35 (23-55), prehospital intubation: 7 (14.2%); median GCS: 5 (3-7); median injury severity score: 29 (20-36); median head and neck abbreviated injury scale: 4 (4-5); median days in ICU: 10 (5-15)]. Thirty (50.8%) patients had an unfavourable outcome. GCS was a moderate predictor of unfavourable outcome (AUC = 0.74), while CTP variables showed greater predictive ability (AUC for abnormal CTP = 0.92; AUC for area of altered perfusion more extensive than NCCT = 0.83; AUC for the presence of ischaemia = 0.81). CONCLUSION Following severe TBI, CTP performed at the time of the first follow-up NCCT, is a non-invasive and extremely valuable tool for early outcome prediction. The potential impact on management and its cost effectiveness deserves to be evaluated in large-scale studies. LEVEL OF EVIDENCE III Prospective study.
Collapse
Affiliation(s)
- Cino Bendinelli
- Department of Traumatology, John Hunter Hospital, University of Newcastle, Newcastle, NSW, Australia
| | - Shannon Cooper
- Department of Traumatology, John Hunter Hospital, University of Newcastle, Newcastle, NSW, Australia
| | - Tiffany Evans
- Clinical Research Design, Information Technology and Statistical Support, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Andrew Bivard
- Department of Neurology, John Hunter Hospital, University of Newcastle, Newcastle, NSW, Australia
| | - Dianne Pacey
- Department of Rehabilitation, John Hunter Hospital, University of Newcastle, Newcastle, NSW, Australia
| | - Mark Parson
- Department of Neurology, John Hunter Hospital, University of Newcastle, Newcastle, NSW, Australia
| | - Zsolt J Balogh
- Department of Traumatology, John Hunter Hospital, University of Newcastle, Newcastle, NSW, Australia.
| |
Collapse
|
21
|
Douglas DB, Chaudhari R, Zhao JM, Gullo J, Kirkland J, Douglas PK, Wolin E, Walroth J, Wintermark M. Perfusion Imaging in Acute Traumatic Brain Injury. Neuroimaging Clin N Am 2018; 28:55-65. [PMID: 29157853 PMCID: PMC7890940 DOI: 10.1016/j.nic.2017.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Traumatic brain injury (TBI) is a significant problem worldwide and neuroimaging plays a critical role in diagnosis and management. Recently, perfusion neuroimaging techniques have been explored in TBI to determine and characterize potential perfusion neuroimaging biomarkers to aid in diagnosis, treatment, and prognosis. In this article, computed tomography (CT) bolus perfusion, MR imaging bolus perfusion, MR imaging arterial spin labeling perfusion, and xenon CT are reviewed with a focus on their applications in acute TBI. Future research directions are also discussed.
Collapse
Affiliation(s)
- David B Douglas
- Department of Neuroradiology, Stanford University Medical Center, 300 Pasteur Drive, Room S047, Stanford, CA 94305-5105, USA; Department of Radiology, David Grant Medical Center, 101 Bodin Circle, Travis Air Force Base, CA 94535, USA
| | - Ruchir Chaudhari
- Department of Neuroradiology, Stanford University Medical Center, 300 Pasteur Drive, Room S047, Stanford, CA 94305-5105, USA
| | - Jason M Zhao
- Department of Radiology, David Grant Medical Center, 101 Bodin Circle, Travis Air Force Base, CA 94535, USA
| | - James Gullo
- Department of Radiology, David Grant Medical Center, 101 Bodin Circle, Travis Air Force Base, CA 94535, USA
| | - Jared Kirkland
- Department of Radiology, David Grant Medical Center, 101 Bodin Circle, Travis Air Force Base, CA 94535, USA
| | - Pamela K Douglas
- Institute for Simulation and Training, University of Central Florida, 3100 Technology Parkway, Orlando, FL 32826, USA
| | - Ely Wolin
- Department of Radiology, David Grant Medical Center, 101 Bodin Circle, Travis Air Force Base, CA 94535, USA
| | - James Walroth
- Department of Radiology, David Grant Medical Center, 101 Bodin Circle, Travis Air Force Base, CA 94535, USA
| | - Max Wintermark
- Department of Neuroradiology, Stanford University Medical Center, 300 Pasteur Drive, Room S047, Stanford, CA 94305-5105, USA.
| |
Collapse
|
22
|
Baez-Jurado E, Hidalgo-Lanussa O, Guio-Vega G, Ashraf GM, Echeverria V, Aliev G, Barreto GE. Conditioned Medium of Human Adipose Mesenchymal Stem Cells Increases Wound Closure and Protects Human Astrocytes Following Scratch Assay In Vitro. Mol Neurobiol 2017; 55:5377-5392. [PMID: 28936798 DOI: 10.1007/s12035-017-0771-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/11/2017] [Indexed: 12/16/2022]
Abstract
Astrocytes perform essential functions in the preservation of neural tissue. For this reason, these cells can respond with changes in gene expression, hypertrophy, and proliferation upon a traumatic brain injury event (TBI). Different therapeutic strategies may be focused on preserving astrocyte functions and favor a non-generalized and non-sustained protective response over time post-injury. A recent strategy has been the use of the conditioned medium of human adipose mesenchymal stem cells (CM-hMSCA) as a therapeutic strategy for the treatment of various neuropathologies. However, although there is a lot of information about its effect on neuronal protection, studies on astrocytes are scarce and its specific action in glial cells is not well explored. In the present study, the effects of CM-hMSCA on human astrocytes subjected to scratch assay were assessed. Our findings indicated that CM-hMSCA improved cell viability, reduced nuclear fragmentation, and preserved mitochondrial membrane potential. These effects were accompanied by morphological changes and an increased polarity index thus reflecting the ability of astrocytes to migrate to the wound stimulated by CM-hMSCA. In conclusion, CM-hMSCA may be considered as a promising therapeutic strategy for the protection of astrocyte function in brain pathologies.
Collapse
Affiliation(s)
- Eliana Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Oscar Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Gina Guio-Vega
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Valentina Echeverria
- Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, 33744, USA.,Fac. Cs de la Salud, Universidad San Sebastián, Lientur 1457, 4080871, Concepción, Chile
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia.,GALLY International Biomedical Research Consulting LLC, San Antonio, TX, 78229, USA.,School of Health Science and Healthcare Administration, University of Atlanta, Johns Creek, GA, 30097, USA
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia. .,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
23
|
Li L, Chopp M, Ding G, Li Q, Mahmood A, Jiang Q. Chronic global analysis of vascular permeability and cerebral blood flow after bone marrow stromal cell treatment of traumatic brain injury in the rat: A long-term MRI study. Brain Res 2017; 1675:61-70. [PMID: 28899758 DOI: 10.1016/j.brainres.2017.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 12/11/2022]
Abstract
Vascular permeability and hemodynamic alteration in response to the transplantation of human bone marrow stromal cells (hMSCs) after traumatic brain injury (TBI) were longitudinally investigated in non directly injured and normal-appearing cerebral tissue using magnetic resonance imaging (MRI). Male Wistar rats (300-350g, n=30) subjected to controlled cortical impact TBI were intravenously injected with 1ml of saline (at 6-h or 1-week post-injury, n=5/group) or with hMSCs in suspension (∼3×106 hMSCs, at 6-h or 1-week post-injury, n=10/group). MRI measurements of T2-weighted imaging, cerebral blood flow (CBF) and blood-to-brain transfer constant (Ki) of gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA), and neurological behavioral estimates were performed on all animals at multiple time points up to 3-months post-injury. Our long-term imaging data show that blood-brain barrier (BBB) breakdown and hemodynamic disruption after TBI, as revealed by Ki and CBF, respectively, affect both hemispheres of the brain in a diffuse manner. Our data reveal a sensitive vascular permeability and hemodynamic reaction in response to the time-dependent transplantation of hMSCs. A more rapid reduction of Ki following cell treatment is associated with a higher level of CBF in the injured brain, and acute (6h) cell administration leads to enhanced therapeutic effects on both the recovery of vascular integrity and stabilization of cerebral perfusion compared to delayed (1w) cell engraftment. Our results indicate that cell-enhanced BBB reconstitution plays an important role in underlying the restoration of CBF in the injured brain, which in turn, contributes to the improvement of functional outcome.
Collapse
Affiliation(s)
- Lian Li
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; Department of Physics, Oakland University, Rochester, MI 48309, USA.
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| | - Qingjiang Li
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| | - Asim Mahmood
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI 48208, USA.
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| |
Collapse
|