1
|
Jabas A, Abello Mercado MA, Altmann S, Ringel F, Booz C, Kronfeld A, Sanner AP, Brockmann MA, Othman AE. Single-Energy Metal Artifact Reduction (SEMAR) in Ultra-High-Resolution CT Angiography of Patients with Intracranial Implants. Diagnostics (Basel) 2023; 13:diagnostics13040620. [PMID: 36832109 PMCID: PMC9955916 DOI: 10.3390/diagnostics13040620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
PURPOSE To evaluate the effects of single-energy metal artifact reduction (SEMAR) on image quality of ultra-high-resolution CT-angiography (UHR-CTA) with intracranial implants after aneurysm treatment. METHODS Image quality of standard and SEMAR-reconstructed UHR-CT-angiography images of 54 patients who underwent coiling or clipping was retrospectively evaluated. Image noise (i.e., index for metal-artifact strength) was analyzed in close proximity to and more distally from the metal implant. Frequencies and intensities of metal artifacts were additionally measured and intensity-differences between both reconstructions were compared in different frequencies and distances. Qualitative analysis was performed by two radiologists using a four-point Likert-scale. All measured results from both quantitative and qualitative analysis were then compared between coils and clips. RESULTS Metal artifact index (MAI) and the intensity of coil-artifacts were significantly lower in SEMAR than in standard CTA in close vicinity to and more distally from the coil-package (p < 0.001, each). MAI and the intensity of clip-artifacts were significantly lower in close vicinity (p = 0.036; p < 0.001, respectively) and more distally from the clip (p = 0.007; p < 0.001, respectively). In patients with coils, SEMAR was significantly superior in all qualitative categories to standard images (p < 0.001), whereas in patients with clips, only artifacts were significantly less (p < 0.05) for SEMAR. CONCLUSION SEMAR significantly reduces metal artifacts in UHR-CT-angiography images with intracranial implants and improves image quality and diagnostic confidence. SEMAR effects were strongest in patients with coils, whereas the effects were minor in patients with titanium-clips due to the absent of or minimal artifacts.
Collapse
Affiliation(s)
- Abdullah Jabas
- Department of Neuroradiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | | | - Sebastian Altmann
- Department of Neuroradiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Christian Booz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Andrea Kronfeld
- Department of Neuroradiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Antoine P. Sanner
- Department of Neuroradiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Department of Computer Science, Technical University Darmstad, Fraunhofer IGD, Fraunhoferstraße 5, 64283 Darmstadt, Germany
| | - Marc A. Brockmann
- Department of Neuroradiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Ahmed E. Othman
- Department of Neuroradiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Correspondence: ; Tel.: +49-6131-177139
| |
Collapse
|
2
|
Schmitt N, Wucherpfennig L, Rotkopf LT, Sawall S, Kauczor HU, Bendszus M, Möhlenbruch MA, Schlemmer HP, Vollherbst DF. Metal artifacts and artifact reduction of neurovascular coils in photon-counting detector CT versus energy-integrating detector CT - in vitro comparison of a standard brain imaging protocol. Eur Radiol 2023; 33:803-811. [PMID: 35986773 PMCID: PMC9889475 DOI: 10.1007/s00330-022-09073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/11/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Photon-counting detector computed tomography (PCD-CT) is a promising new technique for CT imaging. The aim of the present study was the in vitro comparison of coil-related artifacts in PCD-CT and conventional energy-integrating detector CT (EID-CT) using a comparable standard brain imaging protocol before and after metal artifact reduction (MAR). METHODS A nidus-shaped rubber latex, resembling an aneurysm of the cerebral arteries, was filled with neurovascular platinum coils and inserted into a brain imaging phantom. Image acquisition and reconstruction were repeatedly performed for PCD-CT and EID-CT (n = 10, respectively) using a standard brain imaging protocol. Moreover, linear interpolation MAR was performed for PCD-CT and EID-CT images. The degree of artifacts was analyzed quantitatively (standard deviation in a donut-shaped region of interest) and qualitatively (5-point scale analysis). RESULTS Quantitative and qualitative analysis demonstrated a lower degree of metal artifacts in the EID-CT images compared to the total-energy PCD-CT images (e.g., 82.99 ± 7.89 Hounsfield units (HU) versus 90.35 ± 6.28 HU; p < 0.001) with no qualitative difference between the high-energy bin PCD-CT images and the EID-CT images (4.18 ± 0.37 and 3.70 ± 0.64; p = 0.575). After MAR, artifacts were more profoundly reduced in the PCD-CT images compared to the EID-CT images in both analyses (e.g., 2.35 ± 0.43 and 3.18 ± 0.34; p < 0.001). CONCLUSION PCD-CT in combination with MAR have the potential to provide an improved option for reduction of coil-related artifacts in cerebral imaging in this in vitro study. KEY POINTS • Photon-counting detector CT produces more artifacts compared to energy-integrating detector CT without metal artifact reduction in cerebral in vitro imaging after neurovascular coil-embolization. • Spectral information of PCD-CT provides the potential for new post-processing techniques, since the coil-related artifacts were lower in PCD-CT images compared to EID-CT images after linear interpolation metal artifact reduction in this in vitro study.
Collapse
Affiliation(s)
- Niclas Schmitt
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Lena Wucherpfennig
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Lukas T Rotkopf
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Stefan Sawall
- Division of X-Ray Imaging and Computed Tomography, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Markus A Möhlenbruch
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Heinz-Peter Schlemmer
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Dominik F Vollherbst
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| |
Collapse
|
3
|
Clinical Evaluation of an Innovative Metal-Artifact-Reduction Algorithm in FD-CT Angiography in Cerebral Aneurysms Treated by Endovascular Coiling or Surgical Clipping. Diagnostics (Basel) 2022; 12:diagnostics12051140. [PMID: 35626296 PMCID: PMC9140112 DOI: 10.3390/diagnostics12051140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 02/01/2023] Open
Abstract
Treated cerebral aneurysms (IA) require follow-up imaging to ensure occlusion. Metal artifacts complicate radiologic assessment. Our aim was to evaluate an innovative metal-artifact-reduction (iMAR) algorithm for flat-detector computed tomography angiography (FD-CTA) regarding image quality (IQ) and detection of aneurysm residua/reperfusion in comparison to 2D digital subtraction angiography (DSA). Patients with IAs treated by endovascular coiling or clipping underwent both FD-CTA and DSA. FD-CTA datasets were postprocessed with/without iMAR algorithm (MAR+/MAR−). Evaluation of all FD-CTA and DSA datasets regarding qualitative (IQ, MAR) and quantitative (coil package diameter/CPD) parameters was performed. Aneurysm occlusion was assessed for each dataset and compared to DSA findings. In total, 40 IAs were analyzed (ncoiling = 24; nclipping = 16). All iMAR+ datasets demonstrated significantly better IQ (pIQ coiling < 0.0001; pIQ clipping < 0.0001). iMAR significantly reduced the metal-artifact burden but did not affect the CPD. iMAR significantly improved the detection of aneurysm residua/reperfusion with excellent agreement with DSA (naneurysm detection MAR+/MAR−/DSA = 22/1/26). The iMAR algorithm significantly improves IQ by effective reduction of metal artifacts in FD-CTA datasets. The proposed algorithm enables reliable detection of aneurysm residua/reperfusion with good agreement to DSA. Thus, iMAR can help to reduce the need for invasive follow-up in treated IAs.
Collapse
|
4
|
Schmitt N, Wucherpfennig L, Hohenstatt S, Weyland CS, Sommer CM, Bendszus M, Möhlenbruch MA, Vollherbst DF. Visibility of liquid embolic agents in fluoroscopy: a systematic in vitro study. J Neurointerv Surg 2022; 15:594-599. [PMID: 35508379 DOI: 10.1136/neurintsurg-2022-018958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/22/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Endovascular embolization using liquid embolic agents (LEAs) is frequently applied for the treatment of intracranial vascular malformations. Appropriate visibility of LEAs during embolization is essential for visual control and to prevent complications. Since LEAs contain different radiopaque components of varying concentrations, our aim was the systematic assessment of the visibility of the most used LEAs in fluoroscopy. METHODS A specifically designed in vitro model, resembling cerebral vessels, was embolized with Onyx 18, Squid 18, Squid 12, PHIL (precipitating hydrophobic injectable liquid) 25%, PHIL LV (low viscosity) and NBCA (n-butyl cyanoacrylate) mixed with iodized oil (n=3 for each LEA), as well as with contrast medium and saline, both serving as a reference. Fluoroscopic image acquisition was performed in accordance with clinical routine settings. Visibility was graded quantitatively (contrast to noise ratio, CNR) and qualitatively (five-point scale). RESULTS Overall, all LEAs provided at least acceptable visibility in this in vitro model. Onyx and Squid as well as NBCA mixed with iodized oil were best visible at a comparable level and superior to the formulations of PHIL, which did not differ in quantitative and qualitative analyses (eg, Onyx 18 vs PHIL 25% along the 2.0 mm sector: mean CNR±SD: 3.02±0.42 vs 1.92±0.35; mean score±SD: 5.00±0.00 vs 3.75±0.45; p≤0.001, respectively). CONCLUSION In this systematic in vitro study, relevant differences in the fluoroscopic visibility of LEAs in neurointerventional embolization procedures were demonstrated, while all investigated LEAs provided acceptable visibility in our in vitro model.
Collapse
Affiliation(s)
- Niclas Schmitt
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lena Wucherpfennig
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sophia Hohenstatt
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Charlotte S Weyland
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christof M Sommer
- Clinic of Radiology, University Hospital Heidelberg, Heidelberg, Germany.,Clinic of Radiology and Neuroradiology, Sana Kliniken Duisburg GmbH, Duisburg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus A Möhlenbruch
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Dominik F Vollherbst
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Schmitt N, Weyland CS, Wucherpfennig L, Sommer CM, Bendszus M, Möhlenbruch MA, Vollherbst DF. The impact of software-based metal artifact reduction on the liquid embolic agent Onyx in cone-beam CT: a systematic in vitro and in vivo study. J Neurointerv Surg 2021; 14:832-836. [PMID: 34433643 PMCID: PMC9304113 DOI: 10.1136/neurintsurg-2021-018018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/15/2021] [Indexed: 11/29/2022]
Abstract
Background Onyx is frequently used for endovascular embolization of intracranial arteriovenous malformations (AVMs) and dural arteriovenous fistulas (dAVFs). One drawback of using Onyx is the generation of artifacts in cone-beam CT (CBCT). These artifacts can represent an obstacle for the detection of periprocedural hemorrhage or planning of subsequent radiosurgery. This study investigates the effect of artifact reduction by the syngo DynaCT SMART Metal Artifact Reduction (MAR) software. Methods A standardized in vitro tube model (n=10) was filled with Onyx 18 and CBCT image acquisition was conducted in a brain imaging phantom. Furthermore, post-interventional CBCT images of 20 patients with AVM (n=13) or dAVF (n=7), each treated with Onyx, were investigated. The MAR software was applied for artifact reduction. Artifacts of the original and the post-processed images were analyzed quantitatively (standard deviation in a region of interest on the layer providing the most artifacts) and qualitatively. For the patient images, the effect of the MAR software on brain parenchyma on artifact-free images was further investigated. Results Quantitative and qualitative analyses of both datasets demonstrated a lower degree of artifacts in the post-processed images (eg, patient images: 38.30±22.03 density units (no MAR; mean SD±SD) vs 19.83±12.31 density units (with MAR; p<0.001). The MAR software had no influence on the brain parenchyma in artifact-free images. Conclusion The MAR software significantly reduced the artifacts evoked by Onyx in CBCT without affecting the visualization of brain parenchyma on artifact-free images. Applying this software could thus improve the quality of periprocedural CBCT images after embolization with Onyx.
Collapse
Affiliation(s)
- Niclas Schmitt
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Charlotte S Weyland
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lena Wucherpfennig
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christof M Sommer
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany.,Clinic of Radiology and Neuroradiology, Sana Kliniken Duisburg, Duisburg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus A Möhlenbruch
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Dominik F Vollherbst
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|