1
|
Singh A, Gong S, Vu A, Li S, Obenaus A. Social deficits mirror delayed cerebrovascular dysfunction after traumatic brain injury. Acta Neuropathol Commun 2024; 12:126. [PMID: 39107831 PMCID: PMC11304659 DOI: 10.1186/s40478-024-01840-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
Traumatic brain injury (TBI) survivors face debilitating long-term psychosocial consequences, including social isolation and depression. TBI modifies neurovascular physiology and behavior but the chronic physiological implications of altered brain perfusion on social interactions are unknown. Adult C57/BL6 male mice received a moderate cortical TBI, and social behaviors were assessed at baseline, 3-, 7-, 14-, 30-, and 60-days post injury (dpi). Magnetic resonance imaging (MRI, 9.4T) using dynamic susceptibility contrast perfusion weighted MRI were acquired. At 60dpi mice underwent histological angioarchitectural mapping. Analysis utilized standardized protocols followed by cross-correlation metrics. Social behavior deficits at 60dpi emerged as reduced interactions with a familiar cage-mate (partner) that mirrored significant reductions in cerebral blood flow (CBF) at 60dpi. CBF perturbations were dynamic temporally and across brain regions including regions known to regulate social behavior such as hippocampus, hypothalamus, and rhinal cortex. Social isolation in TBI-mice emerged with a significant decline in preference to spend time with a cage mate. Cortical vascular density was also reduced corroborating the decline in brain perfusion and social interactions. Thus, the late emergence of social interaction deficits mirrored the reduced vascular density and CBF in regions known to be involved in social behaviors. Vascular morphology and function improved prior to the late decrements in social function and our correlations strongly implicate a linkage between vascular density, cerebral perfusion, and social interactions. Our study provides a clinically relevant timeline of alterations in social deficits alongside functional vascular recovery that can guide future therapeutics.
Collapse
Affiliation(s)
- Aditya Singh
- Department of Pediatrics, School of Medicine, University of California Irvine, Hewitt Hall Rm. 2066, Irvine, CA, 92697, USA
- Department of Neurology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA, 120 Walter P Martin Research Center, Torrance, California, 90502, USA
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Steven Gong
- Department of Pediatrics, School of Medicine, University of California Irvine, Hewitt Hall Rm. 2066, Irvine, CA, 92697, USA
| | - Anh Vu
- Department of Pediatrics, School of Medicine, University of California Irvine, Hewitt Hall Rm. 2066, Irvine, CA, 92697, USA
| | - Scott Li
- Department of Pediatrics, School of Medicine, University of California Irvine, Hewitt Hall Rm. 2066, Irvine, CA, 92697, USA
| | - Andre Obenaus
- Department of Pediatrics, School of Medicine, University of California Irvine, Hewitt Hall Rm. 2066, Irvine, CA, 92697, USA.
- Division of Biomedical Sciences, 206 SOM Research Bldg, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
2
|
Dale II J, Harberson MT, Hill JW. From Parental Behavior to Sexual Function: Recent Advances in Oxytocin Research. CURRENT SEXUAL HEALTH REPORTS 2024; 16:119-130. [PMID: 39224135 PMCID: PMC11365839 DOI: 10.1007/s11930-024-00386-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 09/04/2024]
Abstract
Purpose of Review Oxytocin plays many diverse roles in physiological and behavioral processes, including social activity, parental nurturing, stress responses, and sexual function. In this narrative review, we provide an update on the most noteworthy recent findings in this fascinating field. Recent Findings The development of techniques such as serial two-photon tomography and fiber photometry have provided a window into oxytocin neuroanatomy and real-time neuronal activity during social interactions. fMRI and complementary mapping techniques offer new insights into oxytocin's influence on brain activity and connectivity. Indeed, oxytocin has recently been found to influence the acquisition of maternal care behaviors and to mediate the influence of social touch on brain development and social interaction. Additionally, oxytocin plays a crucial role in male sexual function, affecting erectile activity and ejaculation, while its role in females remains controversial. Recent studies also highlight oxytocin's interaction with other neuropeptides, such as melanin-concentrating hormone, serotonin, and arginine vasopressin, influencing social and affective behaviors. Finally, an update is provided on the status of clinical trials involving oxytocin as a therapeutic intervention. Summary The exploration of oxytocin's complexities and its interplay with other neuropeptides holds promise for targeted treatment in various health and disease contexts. Overall, these findings contribute to the discovery of new and specific pathways to allow therapeutic targeting of oxytocin to treat disorders.
Collapse
Affiliation(s)
- Joseph Dale II
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH USA
- Department of Biology, University of Toledo College of Medicine, Toledo, OH USA
| | - Mitchell T. Harberson
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, OH USA
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH USA
| | - Jennifer W. Hill
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, OH USA
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH USA
- Department of Obstetrics and Gynecology, University of Toledo College of Medicine, Toledo, OH USA
| |
Collapse
|
3
|
Dinckol O, Wenger NH, Zachry JE, Kutlu MG. Nucleus accumbens core single cell ensembles bidirectionally respond to experienced versus observed aversive events. Sci Rep 2023; 13:22602. [PMID: 38114559 PMCID: PMC10730531 DOI: 10.1038/s41598-023-49686-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023] Open
Abstract
Fear learning is a critical feature of survival skills among mammals. In rodents, fear learning manifests itself through direct experience of the aversive event or social transmission of aversive stimuli such as observing and acting on conspecifics' distress. The neuronal network underlying the social transmission of information largely overlaps with the brain regions that mediate behavioral responses to aversive and rewarding stimuli. In this study, we recorded single cell activity patterns of nucleus accumbens (NAc) core neurons using in vivo optical imaging of calcium transients via miniature scopes. This cutting-edge imaging methodology not only allows us to record activity patterns of individual neurons but also lets us longitudinally follow these individual neurons across time and different behavioral states. Using this approach, we identified NAc core single cell ensembles that respond to experienced and/or observed aversive stimuli. Our results showed that experienced and observed aversive stimuli evoke NAc core ensemble activity that is largely positive, with a smaller subset of negative responses. The size of the NAc single cell ensemble response was greater for experienced aversive stimuli compared to observed aversive events. Our results also revealed sex differences in the NAc core single cell ensembles responses to experience aversive stimuli, where females showed a greater accumbal response. Importantly, we found a subpopulation within the NAc core single cell ensembles that show a bidirectional response to experienced aversive stimuli versus observed aversive stimuli (i.e., negative response to experienced and positive response to observed). Our results suggest that the NAc plays a role in differentiating somatosensory experience from social observation of aversion at a single cell level. These results have important implications for psychopathologies where social information processing is maladaptive, such as autism spectrum disorders.
Collapse
Affiliation(s)
- Oyku Dinckol
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Rowan University, Stratford, NJ, 08084, USA
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Noah Harris Wenger
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Rowan University, Stratford, NJ, 08084, USA
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Jennifer E Zachry
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Munir Gunes Kutlu
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Rowan University, Stratford, NJ, 08084, USA.
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA.
| |
Collapse
|
4
|
Sato M, Nakai N, Fujima S, Choe KY, Takumi T. Social circuits and their dysfunction in autism spectrum disorder. Mol Psychiatry 2023; 28:3194-3206. [PMID: 37612363 PMCID: PMC10618103 DOI: 10.1038/s41380-023-02201-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
Social behaviors, how individuals act cooperatively and competitively with conspecifics, are widely seen across species. Rodents display various social behaviors, and many different behavioral paradigms have been used for investigating their neural circuit bases. Social behavior is highly vulnerable to brain network dysfunction caused by neurological and neuropsychiatric conditions such as autism spectrum disorders (ASDs). Studying mouse models of ASD provides a promising avenue toward elucidating mechanisms of abnormal social behavior and potential therapeutic targets for treatment. In this review, we outline recent progress and key findings on neural circuit mechanisms underlying social behavior, with particular emphasis on rodent studies that monitor and manipulate the activity of specific circuits using modern systems neuroscience approaches. Social behavior is mediated by a distributed brain-wide network among major cortical (e.g., medial prefrontal cortex (mPFC), anterior cingulate cortex, and insular cortex (IC)) and subcortical (e.g., nucleus accumbens, basolateral amygdala (BLA), and ventral tegmental area) structures, influenced by multiple neuromodulatory systems (e.g., oxytocin, dopamine, and serotonin). We particularly draw special attention to IC as a unique cortical area that mediates multisensory integration, encoding of ongoing social interaction, social decision-making, emotion, and empathy. Additionally, a synthesis of studies investigating ASD mouse models demonstrates that dysfunctions in mPFC-BLA circuitry and neuromodulation are prominent. Pharmacological rescues by local or systemic (e.g., oral) administration of various drugs have provided valuable clues for developing new therapeutic agents for ASD. Future efforts and technological advances will push forward the next frontiers in this field, such as the elucidation of brain-wide network activity and inter-brain neural dynamics during real and virtual social interactions, and the establishment of circuit-based therapy for disorders affecting social functions.
Collapse
Affiliation(s)
- Masaaki Sato
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Kita, Sapporo, 060-8638, Japan
| | - Nobuhiro Nakai
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0017, Japan
| | - Shuhei Fujima
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0017, Japan
| | - Katrina Y Choe
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Toru Takumi
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0017, Japan.
- RIKEN Center for Biosystems Dynamics Research, Chuo, Kobe, 650-0047, Japan.
| |
Collapse
|
5
|
Towner TT, Goyden MA, Coleman HJ, Drumm MK, Ritchie IP, Lieb KR, Varlinskaya EI, Werner DF. Determining the neuronal ensembles underlying sex-specific social impairments following adolescent intermittent ethanol exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533653. [PMID: 36993252 PMCID: PMC10055268 DOI: 10.1101/2023.03.21.533653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Binge drinking during adolescence can have behavioral and neurobiological consequences. We have previously found that adolescent intermittent ethanol (AIE) exposure produces a sex-specific social impairment in rats. The prelimbic cortex (PrL) regulates social behavior, and alterations within the PrL resulting from AIE may contribute to social impairments. The current study sought to determine whether AIE-induced PrL dysfunction underlies social deficits in adulthood. We first examined social stimulus-induced neuronal activation of the PrL and several other regions of interest implicated in social behavior. Male and female cFos-LacZ rats were exposed to water (control) or ethanol (4 g/kg, 25% v/v) via intragastric gavage every other day between postnatal day (P) 25 and 45 (total 11 exposures). Since cFos-LacZ rats express β-galactosidase (β-gal) as a proxy for cFos, activated cells that express of β-gal can be inactivated by Daun02. β-gal expression in most ROIs was elevated in socially tested adult rats relative to home cage controls, regardless of sex. However, differences in social stimulus-induced β-gal expression between controls and AIE-exposed rats was evident only in the PrL of males. A separate cohort underwent PrL cannulation surgery in adulthood and were subjected to Daun02-induced inactivation. Inactivation of PrL ensembles previously activated by a social stimulus led to a reduction of social behavior in control males, with no changes evident in AIE-exposed males or females. These findings highlight the role of the PrL in male social behavior and suggest an AIE-associated dysfunction of the PrL may contribute to social deficits following adolescent ethanol exposure.
Collapse
|