1
|
Mashalchi S, Pahlavan S, Hejazi M. A novel fluorescent cardiac imaging system for preclinical intraoperative angiography. BMC Med Imaging 2021; 21:37. [PMID: 33632145 PMCID: PMC7905866 DOI: 10.1186/s12880-021-00562-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/08/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Intraoperative coronary angiography can tremendously reduce early coronary bypass graft failures. Fluorescent cardiac imaging provides an advanced method for intraoperative observation and real-time quantitation of blood flow with high resolution. METHODS We devised a system comprised of an LED light source, special filters, lenses and a detector for preclinical coronary artery angiography. The optical setup was implemented by using two achromatic doublet lenses, two positive meniscus lenses, a band-pass filter, a pinhole and a CCD sensor. The setup was optimized by Zemax software. Optical design was further challenged to obtain more parallel light beams, less diffusion and higher resolutions to levels as small as arterioles. Ex vivo rat hearts were prepared and coronary arteries were retrogradely perfused by indocyanine green (ICG). Video angiography was employed to assess blood flow and plot time-dependent fluorescence intensity curve (TIC). Quantitation of blood flow was performed by calculating either the gradient of TIC or area under curve. The correlation between blood flow and each calculated parameters was assessed and used to evaluate the quality of flow. RESULTS High-resolution images of flow in coronary arteries were obtained as precise as 62 µm vessel diameter, by our custom-made ICG angiography system. The gradient of TIC was 3.4-6.3 s-1, while the area under curve indicated 712-1282 s values which ultimately gained correlation coefficients of 0.9938 and 0.9951 with relative blood flow, respectively. CONCLUSION The present ICG angiography system may facilitate evaluation of blood flow in animal studies of myocardial infarction and coronary artery grafts intraoperatively.
Collapse
Affiliation(s)
- Sara Mashalchi
- Medical Physics and Biomedical Engineering Department, School of Medicine, Tehran University of Medical Sciences, 1417613151, Tehran, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem St., Resalat Highway, P.O. Box: 16635-148, 1665659911, Tehran, Iran.
| | - Marjaneh Hejazi
- Medical Physics and Biomedical Engineering Department, School of Medicine, Tehran University of Medical Sciences, 1417613151, Tehran, Iran. .,Research Center for Molecular and Cellular Imaging, Bio-Optical Imaging Group, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
RaviPrakash H, Korostenskaja M, Castillo EM, Lee KH, Salinas CM, Baumgartner J, Anwar SM, Spampinato C, Bagci U. Deep Learning Provides Exceptional Accuracy to ECoG-Based Functional Language Mapping for Epilepsy Surgery. Front Neurosci 2020; 14:409. [PMID: 32435182 PMCID: PMC7218144 DOI: 10.3389/fnins.2020.00409] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/03/2020] [Indexed: 12/02/2022] Open
Abstract
The success of surgical resection in epilepsy patients depends on preserving functionally critical brain regions, while removing pathological tissues. Being the gold standard, electro-cortical stimulation mapping (ESM) helps surgeons in localizing the function of eloquent cortex through electrical stimulation of electrodes placed directly on the cortical brain surface. Due to the potential hazards of ESM, including increased risk of provoked seizures, electrocorticography based functional mapping (ECoG-FM) was introduced as a safer alternative approach. However, ECoG-FM has a low success rate when compared to the ESM. In this study, we address this critical limitation by developing a new algorithm based on deep learning for ECoG-FM and thereby we achieve an accuracy comparable to ESM in identifying eloquent language cortex. In our experiments, with 11 epilepsy patients who underwent presurgical evaluation (through deep learning-based signal analysis on 637 electrodes), our proposed algorithm obtained an accuracy of 83.05% in identifying language regions, an exceptional 23% improvement with respect to the conventional ECoG-FM analysis (∼60%). Our findings have demonstrated, for the first time, that deep learning powered ECoG-FM can serve as a stand-alone modality and avoid likely hazards of the ESM in epilepsy surgery. Hence, reducing the potential for developing post-surgical morbidity in the language function.
Collapse
Affiliation(s)
- Harish RaviPrakash
- Center for Research in Computer Vision, University of Central Florida, Orlando, FL, United States
| | - Milena Korostenskaja
- Functional Brain Mapping and Brain Computer Interface Lab, AdventHealth Orlando, Orlando, FL, United States.,MEG Lab, AdventHealth Orlando, Orlando, FL, United States.,AdventHealth Medical Group Epilepsy at Orlando, AdventHealth Orlando, Orlando, FL, United States
| | - Eduardo M Castillo
- MEG Lab, AdventHealth Orlando, Orlando, FL, United States.,AdventHealth Medical Group Epilepsy at Orlando, AdventHealth Orlando, Orlando, FL, United States
| | - Ki H Lee
- AdventHealth Medical Group Epilepsy at Orlando, AdventHealth Orlando, Orlando, FL, United States
| | - Christine M Salinas
- AdventHealth Medical Group Epilepsy at Orlando, AdventHealth Orlando, Orlando, FL, United States
| | - James Baumgartner
- AdventHealth Medical Group Epilepsy at Orlando, AdventHealth Orlando, Orlando, FL, United States
| | - Syed M Anwar
- Center for Research in Computer Vision, University of Central Florida, Orlando, FL, United States
| | - Concetto Spampinato
- Center for Research in Computer Vision, University of Central Florida, Orlando, FL, United States.,Department of Electrical, Electronics and Computer Engineering, University of Catania, Catania, Italy
| | - Ulas Bagci
- Center for Research in Computer Vision, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
3
|
Kamada K, Kapeller C, Takeuchi F, Gruenwald J, Guger C. Tailor-Made Surgery Based on Functional Networks for Intractable Epilepsy. Front Neurol 2020; 11:73. [PMID: 32117032 PMCID: PMC7031351 DOI: 10.3389/fneur.2020.00073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Normal and pathological networks related to seizure propagation have got attention to elucide complex seizure semiology and contribute to diagnosis and surgical monitoring in epilepsy treatment. Since focal and generalized epileptogenic syndromes abnormalities might involve multiple foci and large-scale networks, we applied electrophysiolpgy (cortco-cortico evoked potential; CCEP), and tractography to make detailed diagnosis for complex syndrome. All 14 epilepsy patients with no or little abnormality on images investigations underwent subdural grid implantation for epilepsy diagnosis. To perform quick network analysis, we recorded and analyzed high gamma activity (HGA) of epileptogenic activity and CCEPs to identify pathological activity distribution and network connectivity. [Results] Pathological CCEPs showed two negative deflections consisting of early (>40 ms) and late (>150 ms) components in electrically stable circumstance at bed side and early CCEPs appeared in 57% of the patients. On the basis of the CCEP findings, tractography detected anatomical connections. Early components of pathological CCEPs diminished after complete disconnection of tractoography-based fibers between the foci in seven of eight cases. One case with residual pathological CCEPs showed poorer outcome. Thirteen (92.8%) patients with or without CCEPs who underwent network surgery had favorable prognosis except for a case with wide traumatic epilepsy. Intraoperative CCEP measurements and HGA mapping enabled visualization of pathological networks and clinical impotence as a biomarker to improve functional prognosis. HGA/CCEP recording should shed light on pathological and complex propagation for epilepsy surgery.
Collapse
Affiliation(s)
- Kyousuke Kamada
- Department of Neurosurgery, Megumino Hospital, Eniwa, Japan.,ATR Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Christoph Kapeller
- g.tec Guger Technologies OG/g.tec Medical Engineering GmbH, Schiedlberg, Austria
| | - Fumiya Takeuchi
- Department of Research Promotion Center, Asahikawa Medical University, Asahikawa, Japan
| | - Johannes Gruenwald
- g.tec Guger Technologies OG/g.tec Medical Engineering GmbH, Schiedlberg, Austria
| | - Christoph Guger
- g.tec Guger Technologies OG/g.tec Medical Engineering GmbH, Schiedlberg, Austria
| |
Collapse
|
4
|
Yu J, Zhang J, Li J, Zhang J, Chen J. Cerebral Hyperperfusion Syndrome After Revascularization Surgery in Patients with Moyamoya Disease: Systematic Review and Meta-Analysis. World Neurosurg 2019; 135:357-366.e4. [PMID: 31759149 DOI: 10.1016/j.wneu.2019.11.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 11/12/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Cerebral hyperperfusion syndrome (CHS) after bypass surgery is known as a complication of moyamoya disease (MMD). However, the incidence of CHS has not been accurately reported, and there is no consensus on related risk factors. OBJECTIVE To evaluate the incidence and characteristics of CHS in patients with MMD after revascularization surgery via meta-analysis. METHODS Relevant cohort studies were retrieved through a literature search of PubMed, Embase, and Ovid until December 1, 2018. Eligible studies were identified per search criteria. A systematic review and meta-analysis were used to assess the CHS total incidence, incidence in pediatric patients with MMD and adult patients with MMD, incidence for direct and combined bypass surgery, progress rate, and proportion of each symptom (including transient neurologic deficits [TNDs], hemorrhage, and seizure). RESULTS A total of 27 cohort studies with 2225 patients were included in this meta-analysis. The weighted proportions per random-effects model were 16.5% (range, 11.3%-22.3%) for CHS total incidence, 3.8% (range, 0.3%-9.6%) for pediatric patients with MMD, 19.9% (range, 11.7%-29.4%) for adult patients with MMD, 15.4% (range, 5.4%-28.8%) for direct bypass surgery, and 15.2% (range, 8.4%-23.2%) for combined bypass surgery. Progress rate was 39.5% (range, 28.7%-50.8%). The most common CHS-related symptom was TNDs (70.2%; range, 56.3%-82.7%), followed by hemorrhage (15.0%; range, 5.5%-26.9%) and seizure (5.3%; range, 0.6%-12.9%). CONCLUSIONS CHS is a common complication after revascularization surgery in MMD. It is more frequently seen in adult patients. The most common CHS-related symptom was TNDs, followed by hemorrhage and seizure.
Collapse
Affiliation(s)
- Jin Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jibo Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jieli Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianjian Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Kamada K, Guger C, Takeuchi F. Multispectrum Indocyanine Green Videography for Visualizing Brain Vascular Pathology. World Neurosurg 2019; 132:e545-e553. [PMID: 31442653 DOI: 10.1016/j.wneu.2019.08.078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Currently, neurosurgical vascular surgery frequently uses indocyanine green (ICG)-videography (VG) to evaluate the blood flow in brain vessels. Although ICG-VG delineates intravascular ICG fluorescence as a high-intensity signal in gray-scale with dark background, it is hard to identify anatomical structures, including vasculature or surgical devices simultaneously. This report developed combination of a near-infrared (NIR) camera with particular sensitivity and an optical filter to observe the blood-flow conditions and anatomical structures. METHODS To overcome the specific issues of ICG-VG, we applied a high-sensitivity camera with a 980-nm NIR component to delineate anatomical and fluorescence images, detecting signals between 830 and 1000 nm simultaneously during operation. We used a diluted ICG phantom to evaluate fluorescence signal changes by changing wavelength of the emission light. For clinical use, we used a high-sensitivity NIR camera with a high-pass filter on a surgical microscope. The new NIR system detected signals between 770 and 1000 nm, and the lighting system illuminated objects mainly at 980-nm wavelength. Both images with the blood flow and anatomical structures were projected to the smart glasses in real time. RESULTS In the phantom experiment, we found that the emission light with wide band widths (575-800 nm) evoked various intensities of ICG fluorescence. This new NIR system allowed us to observe ICG fluorescence and anatomical structures without image fusion or time-delay. The both information of anatomy and fluorescence was projected on wearable smart glasses. Furthermore, the new NIR system detected ICG-fluorescence signals for a longer duration than the original camera, which allowed us to achieve careful and detailed observation of more vasculature and fine vessels. CONCLUSIONS This study proposes a new NIR system and emphasizes simultaneous observation of anatomy and fluorescence signals during operation. It paves the way for further possibilities in the development of optical systems. To understand the natural phenomena and combination of different scientific and clinical fields, it might be important to understand and combine not only fluorescence, but also natural science, optics, and background pathology. This simple system would be available for neuroendoscope and robotic surgery.
Collapse
Affiliation(s)
- Kyousuke Kamada
- Department of Neurosurgery, Megumino Hospital, Eniwa, Japan; Computational Imaging Laboratory, Advanced Telecommunications Research Institute International, Kyoto, Japan.
| | | | - Fumiya Takeuchi
- Center for Advanced Research and Education, School of Medicine, Asahikawa Medical University, Hokkaido, Japan
| |
Collapse
|
6
|
Uda K, Araki Y, Muraoka S, Ota S, Wada K, Yokoyama K, Nishihori M, Izumi T, Okamoto S, Wakabayashi T. Intraoperative evaluation of local cerebral hemodynamic change by indocyanine green videoangiography: prediction of incidence and duration of postoperative transient neurological events in patients with moyamoya disease. J Neurosurg 2019; 130:1367-1375. [PMID: 29676693 DOI: 10.3171/2017.10.jns171523] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/16/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Transient neurological events (TNEs) occur frequently in the acute phase after direct bypass surgery for moyamoya disease (MMD), but there is currently no way to predict them. FlowInsight is a specialized software for analyzing indocyanine green (ICG) videoangiography taken with a surgical microscope. The purpose of this study was to investigate whether intraoperative evaluation of local hemodynamic changes around anastomotic sites using FlowInsight could predict the incidence and duration of TNEs. METHODS From patients who were diagnosed with MMD in our hospital between August 2014 and March 2017 and who underwent superficial temporal artery-middle cerebral artery bypass surgery, we investigated 25 hemispheres (in 22 patients) in which intraoperative ICG analysis was performed using FlowInsight. To evaluate the local cerebral hemodynamics before and after anastomosis, regions of interest were set at 3 locations on the brain surface around the anastomotic site, and the mean cerebral blood flow (CBF), mean gradation (Grad), mean transit time (MTT), and mean time to peak (TTP) were calculated from the 3 regions of interest. Furthermore, the change rate in CBF (ΔCBF [%]) was calculated using the formula (postanastomosis mean CBF - preanastomosis mean CBF)/preanastomosis mean CBF. ΔGrad (%), ΔMTT (%), and ΔTTP (%) were similarly calculated. RESULTS Postoperative stroke without TNE occurred in 2 of the 25 hemispheres. These 2 hemispheres (in 2 patients) were excluded from the study, and data from the remaining 23 hemispheres (in 20 patients) were analyzed. For each parameter (ΔCBF, ΔGrad, ΔMTT, and ΔTTP) calculated by FlowInsight, the difference between the groups with and without TNEs was significant. The median values for ΔCBF and ΔGrad were significantly higher in the TNE group than in the no-TNE group (ΔCBF 30.13 vs 3.54, p = 0.0106; ΔGrad 62.05 vs 10.78, p = 0.00435), whereas the median values for ΔMTT and ΔTTP were significantly lower in the TNE group (ΔMTT -16.90 vs -7.393, p = 0.023; ΔTTP -29.07 vs -7.02, p = 0.00342). Comparison of the area under the curve (AUC) for each parameter showed that ΔTTP had the highest AUC and was the parameter with the highest diagnostic accuracy (AUC 0.857). The Youden index revealed that the optimal cutoff value of ΔTTP was -11.61 (sensitivity 77.8%, specificity 71.4%) as a predictor of TNEs. In addition, Spearman's rank correlation coefficients were calculated, and ΔCBF, ΔGrad, ΔMTT, and ΔTTP each showed a strong correlation with the duration of TNEs. The larger the change in each parameter, the longer the TNEs persisted. CONCLUSIONS Intraoperative ICG videoangiography findings were correlated with the occurrence and duration of TNEs after direct bypass surgery for MMD. Screening for cases at high risk of TNEs can be achieved by ICG analysis using FlowInsight.
Collapse
|
7
|
Kamada K, Ogawa H, Kapeller C, Prueckl R, Hiroshima S, Tamura Y, Takeuchi F, Guger C. Disconnection of the pathological connectome for multifocal epilepsy surgery. J Neurosurg 2018; 129:1182-1194. [PMID: 29271713 DOI: 10.3171/2017.6.jns17452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/02/2017] [Indexed: 02/05/2023]
Abstract
OBJECTIVERecent neuroimaging studies suggest that intractable epilepsy involves pathological functional networks as well as strong epileptogenic foci. Combining cortico-cortical evoked potential (CCEP) recording and tractography is a useful strategy for mapping functional connectivity in normal and pathological networks. In this study, the authors sought to demonstrate the efficacy of preoperative combined CCEP recording, high gamma activity (HGA) mapping, and tractography for surgical planning, and of intraoperative CCEP measures for confirmation of selective pathological network disconnection.METHODSThe authors treated 4 cases of intractable epilepsy. Diffusion tensor imaging-based tractography data were acquired before the first surgery for subdural grid implantation. HGA and CCEP investigations were done after the first surgery, before the second surgery was performed to resect epileptogenic foci, with continuous CCEP monitoring during resection.RESULTSAll 4 patients in this report had measurable pathological CCEPs. The mean negative peak-1 latency of normal CCEPs related to language functions was 22.2 ± 3.5 msec, whereas pathological CCEP latencies varied between 18.1 and 22.4 msec. Pathological CCEPs diminished after complete disconnection in all cases. At last follow-up, all of the patients were in long-term postoperative seizure-free status, although 1 patient still suffered from visual aura every other month.CONCLUSIONSCombined CCEP measurement, HGA mapping, and tractography greatly facilitated targeted disconnection of pathological networks in this study. Although CCEP recording requires technical expertise, it allows for assessment of pathological network involvement in intractable epilepsy and may improve seizure outcome.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fumiya Takeuchi
- 3Center for Advanced Research and Education, School of Medicine, Asahikawa Medical University, Hokkaido, Japan; and
| | | |
Collapse
|
8
|
Quantitative Blood Flow Assessment by Multiparameter Analysis of Indocyanine Green Video Angiography. World Neurosurg 2018; 116:e187-e193. [PMID: 29729470 DOI: 10.1016/j.wneu.2018.04.148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Measurements of quantitative blood flow are crucial during brain vascular surgery. Indocyanine green video angiography (ICG-VAG) is an accepted method of blood flow visualization; however, quantitative techniques have not yet been established. Thus, the aim of this study was to further develop ICG analysis for visualizing intraoperative flow changes. METHODS We conducted basic experiments and clinical investigations to establish a relationship between ICG-VAG and measured blood flow. We evaluated several parameters and identified optimal indicators that precisely reflect blood (or fluid) flow. Both in vitro and in vivo studies were performed to calculate the interval between baseline and the intensity peak (Grad) and to measure actual flow rate. RESULTS Grad and actual flow rate showed good exponential correlation, with R2 values of 0.90 in vitro and 0.82 in vivo. In a representative patient (case 3), we performed intraoperative flow analysis using FlowInsight, which identified a marked elevation in Grad on the brain surface. Because this observation is predictive of brain hyperperfusion, we used these data to carefully manage blood pressure postoperatively. CONCLUSIONS Grad is the optimum parameter for estimating flow conditions. Although ICG-VAG provides only visual profiles of blood circulation in the brain, this procedure has the potential to be widely used in clinical situations. ICG-based flow measurement can be used to identify normal and abnormal blood flow conditions, such as graft flow and vascular pathology. The novelty of this technique is that the fluorescence intensity of Grad enables surgeons to quantitatively measure real blood flow.
Collapse
|
9
|
Ojemann JG. Editorial: Passive language mapping. J Neurosurg 2016; 125:1577-1579. [PMID: 26991385 DOI: 10.3171/2015.6.jns15927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jeffrey G Ojemann
- Department of Neurological Surgery, University of Washington, Seattle Children's Hospital, Seattle, Washington
| |
Collapse
|