1
|
Zhou G, Li R, Bartolik O, Ma Y, Wan WW, Meng J, Hu Y, Ye B, Wang W. An improved FLARE system for recording and manipulating neuronal activity. CELL REPORTS METHODS 2025; 5:101012. [PMID: 40120579 DOI: 10.1016/j.crmeth.2025.101012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/22/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025]
Abstract
To address the need for methods for tagging and manipulating neuronal ensembles underlying specific behaviors, we present an improved version of FLARE, termed cytoFLARE (cytosol-expressed FLARE). cytoFLARE incorporates cytosolic tethering of a transcription factor and expression of a more sensitive pair of calcium-sensing domains. We show that cytoFLARE captures more calcium- and light-dependent signals in HEK293T cells and higher signal-to-background ratios in neuronal cultures. We further establish cytoFLARE transgenic Drosophila models and apply cytoFLARE to label activated neurons upon sensory or optogenetic stimulation within a defined time window. Notably, through the cytoFLARE-driven expression of optogenetic actuators, we successfully reactivated and inhibited neurons involved in the larval nociceptive system. Our findings demonstrate the characterization and application of time-gated calcium integrators for both recording and manipulating neuronal activity in Drosophila larvae.
Collapse
Affiliation(s)
- Guanwei Zhou
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ruonan Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ola Bartolik
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Yuqian Ma
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Wei Wei Wan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer Meng
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Yujia Hu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Bing Ye
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA.
| | - Wenjing Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Patel AA, Cardona A, Cox DN. Neural substrates of cold nociception in Drosophila larva. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.07.31.551339. [PMID: 37577520 PMCID: PMC10418107 DOI: 10.1101/2023.07.31.551339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Metazoans detect and differentiate between innocuous (non-painful) and/or noxious (harmful) environmental cues using primary sensory neurons, which serve as the first node in a neural network that computes stimulus specific behaviors to either navigate away from injury-causing conditions or to perform protective behaviors that mitigate extensive injury. The ability of an animal to detect and respond to various sensory stimuli depends upon molecular diversity in the primary sensors and the underlying neural circuitry responsible for the relevant behavioral action selection. Recent studies in Drosophila larvae have revealed that somatosensory class III multidendritic (CIII md) neurons function as multimodal sensors regulating distinct behavioral responses to innocuous mechanical and nociceptive thermal stimuli. Recent advances in circuit bases of behavior have identified and functionally validated Drosophila larval somatosensory circuitry involved in innocuous (mechanical) and noxious (heat and mechanical) cues. However, central processing of cold nociceptive cues remained unexplored. We implicate multisensory integrators (Basins), premotor (Down-and-Back) and projection (A09e and TePns) neurons as neural substrates required for cold-evoked behavioral and calcium responses. Neural silencing of cell types downstream of CIII md neurons led to significant reductions in cold-evoked behaviors and neural co-activation of CIII md neurons plus additional cell types facilitated larval contraction (CT) responses. Further, we demonstrate that optogenetic activation of CIII md neurons evokes calcium increases in these neurons. Finally, we characterize the premotor to motor neuron network underlying cold-evoked CT and delineate the muscular basis of CT response. Collectively, we demonstrate how Drosophila larvae process cold stimuli through functionally diverse somatosensory circuitry responsible for generating stimulus-specific behaviors.
Collapse
Affiliation(s)
- Atit A. Patel
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Albert Cardona
- HHMI Janelia Research Campus, Ashburn, VA, USA
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Physiology, Development, and Neuroscience, University of Cambridge, UK
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
3
|
Zhou G, Li R, Bartolik O, Ma Y, Wan WW, Meng J, Hu Y, Ye B, Wang W. An improved FLARE system for recording and manipulating neuronal activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632875. [PMID: 39868209 PMCID: PMC11760262 DOI: 10.1101/2025.01.13.632875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Recording and manipulating neuronal ensembles that underlie cognition and behavior in vivo is challenging. FLARE is a light- and calcium-gated transcriptional reporting system for labeling activated neurons on the order of minutes. However, FLARE is limited by its sensitivity to prolonged neuronal activities. Here, we present an improved version of FLARE, termed cytoFLARE. cytoFLARE incorporates cytosolic expression of the transcription factor and a more sensitive pair of calcium sensing domains. We showed that cytoFLARE provides more calcium- and light- dependent signals in HEK293T cells and higher signal-to-background ratios in neuronal cultures. We further established cytoFLARE transgenic Drosophila models and applied cytoFLARE to label activated neurons upon sensory or optogenetic stimulation within a defined time window. Notably, through cytoFLARE-driven expression of an optogenetic actuator, we successfully reactivated neurons involved in the larval nociceptive system. Our findings demonstrate the first characterization and application of time-gated calcium integrators in Drosophila.
Collapse
Affiliation(s)
- Guanwei Zhou
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
- These authors contributed equally
| | - Ruonan Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
- These authors contributed equally
| | - Ola Bartolik
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Yuqian Ma
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Wei Wei Wan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer Meng
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Yujia Hu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Bing Ye
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Wenjing Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
- Lead contact
| |
Collapse
|
4
|
Maksymchuk N, Sakurai A, Cox DN, Cymbalyuk GS. Cold-Temperature Coding with Bursting and Spiking Based on TRP Channel Dynamics in Drosophila Larva Sensory Neurons. Int J Mol Sci 2023; 24:14638. [PMID: 37834085 PMCID: PMC10572325 DOI: 10.3390/ijms241914638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 10/15/2023] Open
Abstract
Temperature sensation involves thermosensitive TRP (thermoTRP) and non-TRP channels. Drosophila larval Class III (CIII) neurons serve as the primary cold nociceptors and express a suite of thermoTRP channels implicated in noxious cold sensation. How CIII neurons code temperature remains unclear. We combined computational and electrophysiological methods to address this question. In electrophysiological experiments, we identified two basic cold-evoked patterns of CIII neurons: bursting and spiking. In response to a fast temperature drop to noxious cold, CIII neurons distinctly mark different phases of the stimulus. Bursts frequently occurred along with the fast temperature drop, forming a peak in the spiking rate and likely coding the high rate of the temperature change. Single spikes dominated at a steady temperature and exhibited frequency adaptation following the peak. When temperature decreased slowly to the same value, mainly spiking activity was observed, with bursts occurring sporadically throughout the stimulation. The spike and the burst frequencies positively correlated with the rate of the temperature drop. Using a computational model, we explain the distinction in the occurrence of the two CIII cold-evoked patterns bursting and spiking using the dynamics of a thermoTRP current. A two-parameter activity map (Temperature, constant TRP current conductance) marks parameters that support silent, spiking, and bursting regimes. Projecting on the map the instantaneous TRP conductance, governed by activation and inactivation processes, reflects temperature coding responses as a path across silent, spiking, or bursting domains on the map. The map sheds light on how various parameter sets for TRP kinetics represent various types of cold-evoked responses. Together, our results indicate that bursting detects the high rate of temperature change, whereas tonic spiking could reflect both the rate of change and magnitude of steady cold temperature.
Collapse
Affiliation(s)
- Natalia Maksymchuk
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302-5030, USA; (N.M.); (A.S.); (D.N.C.)
| | - Akira Sakurai
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302-5030, USA; (N.M.); (A.S.); (D.N.C.)
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302-5030, USA; (N.M.); (A.S.); (D.N.C.)
| | - Gennady S. Cymbalyuk
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302-5030, USA; (N.M.); (A.S.); (D.N.C.)
- Department of Biology, Georgia State University, Atlanta, GA 30302-5030, USA
| |
Collapse
|
5
|
Pan G, Li R, Xu G, Weng S, Yang XL, Yang L, Ye B. Cross-modal modulation gates nociceptive inputs in Drosophila. Curr Biol 2023; 33:1372-1380.e4. [PMID: 36893758 PMCID: PMC10089977 DOI: 10.1016/j.cub.2023.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/24/2022] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
Animals' response to a stimulus in one sensory modality is usually influenced by other modalities.1 One important type of multisensory integration is the cross-modal modulation, in which one sensory modality modulates (typically inhibits) another. Identification of the mechanisms underlying cross-modal modulations is crucial for understanding how sensory inputs shape animals' perception and for understanding sensory processing disorders.2,3,4 However, the synaptic and circuit mechanisms that underlie cross-modal modulation are poorly understood. This is due to the difficulty of separating cross-modal modulation from multisensory integrations in neurons that receive excitatory inputs from two or more sensory modalities5-in which case it is unclear what the modulating or modulated modality is. In this study, we report a unique system for studying cross-modal modulation by taking advantage of the genetic resources in Drosophila. We show that gentle mechanical stimuli inhibit nociceptive responses in Drosophila larvae. Low-threshold mechanosensory neurons inhibit a key second-order neuron in the nociceptive pathway through metabotropic GABA receptors on nociceptor synaptic terminals. Strikingly, this cross-modal inhibition is only effective when nociceptor inputs are weak, thus serving as a gating mechanism for filtering out weak nociceptive inputs. Our findings unveil a novel cross-modal gating mechanism for sensory pathways.
Collapse
Affiliation(s)
- Geng Pan
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ruonan Li
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; School of Medicine, Dalian University, Dalian, Liaoning 116622, China
| | - Guozhong Xu
- Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Shijun Weng
- Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xiong-Li Yang
- Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Limin Yang
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; School of Medicine, Dalian University, Dalian, Liaoning 116622, China.
| | - Bing Ye
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Himmel NJ, Sakurai A, Patel AA, Bhattacharjee S, Letcher JM, Benson MN, Gray TR, Cymbalyuk GS, Cox DN. Chloride-dependent mechanisms of multimodal sensory discrimination and nociceptive sensitization in Drosophila. eLife 2023; 12:76863. [PMID: 36688373 PMCID: PMC9904763 DOI: 10.7554/elife.76863] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Individual sensory neurons can be tuned to many stimuli, each driving unique, stimulus-relevant behaviors, and the ability of multimodal nociceptor neurons to discriminate between potentially harmful and innocuous stimuli is broadly important for organismal survival. Moreover, disruptions in the capacity to differentiate between noxious and innocuous stimuli can result in neuropathic pain. Drosophila larval class III (CIII) neurons are peripheral noxious cold nociceptors and innocuous touch mechanosensors; high levels of activation drive cold-evoked contraction (CT) behavior, while low levels of activation result in a suite of touch-associated behaviors. However, it is unknown what molecular factors underlie CIII multimodality. Here, we show that the TMEM16/anoctamins subdued and white walker (wwk; CG15270) are required for cold-evoked CT, but not for touch-associated behavior, indicating a conserved role for anoctamins in nociception. We also evidence that CIII neurons make use of atypical depolarizing chloride currents to encode cold, and that overexpression of ncc69-a fly homologue of NKCC1-results in phenotypes consistent with neuropathic sensitization, including behavioral sensitization and neuronal hyperexcitability, making Drosophila CIII neurons a candidate system for future studies of the basic mechanisms underlying neuropathic pain.
Collapse
Affiliation(s)
| | - Akira Sakurai
- Neuroscience Institute, Georgia State UniversityAtlantaGeorgia
| | - Atit A Patel
- Neuroscience Institute, Georgia State UniversityAtlantaGeorgia
| | | | - Jamin M Letcher
- Neuroscience Institute, Georgia State UniversityAtlantaGeorgia
| | - Maggie N Benson
- Neuroscience Institute, Georgia State UniversityAtlantaGeorgia
| | - Thomas R Gray
- Neuroscience Institute, Georgia State UniversityAtlantaGeorgia
| | | | - Daniel N Cox
- Neuroscience Institute, Georgia State UniversityAtlantaGeorgia
| |
Collapse
|
7
|
Himmel NJ, Sakurai A, Donaldson KJ, Cox DN. Protocols for measuring cold-evoked neural activity and cold tolerance in Drosophila larvae following fictive cold acclimation. STAR Protoc 2022; 3:101510. [PMID: 35776643 PMCID: PMC9253850 DOI: 10.1016/j.xpro.2022.101510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/02/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
Here, we outline protocols to study cold acclimation in Drosophila from a neurobiological perspective, starting with fictive cold acclimation using a custom-built optogenetics-housing apparatus we call the OptoBox. We also provide detailed steps for single-unit electrophysiological recordings from larval cold nociceptors and a high-throughput cold-tolerance assay. These protocols expand the toolkit for the study of insect cold acclimation and nociception. For complete details on the use and execution of this protocol, please refer to Himmel et al. (2021).
Collapse
Affiliation(s)
- Nathaniel J Himmel
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Akira Sakurai
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Kevin J Donaldson
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Daniel N Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
8
|
Patel AA, Sakurai A, Himmel NJ, Cox DN. Modality specific roles for metabotropic GABAergic signaling and calcium induced calcium release mechanisms in regulating cold nociception. Front Mol Neurosci 2022; 15:942548. [PMID: 36157080 PMCID: PMC9502035 DOI: 10.3389/fnmol.2022.942548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Calcium (Ca2+) plays a pivotal role in modulating neuronal-mediated responses to modality-specific sensory stimuli. Recent studies in Drosophila reveal class III (CIII) multidendritic (md) sensory neurons function as multimodal sensors regulating distinct behavioral responses to innocuous mechanical and nociceptive thermal stimuli. Functional analyses revealed CIII-mediated multimodal behavioral output is dependent upon activation levels with stimulus-evoked Ca2+ displaying relatively low vs. high intracellular levels in response to gentle touch vs. noxious cold, respectively. However, the mechanistic bases underlying modality-specific differential Ca2+ responses in CIII neurons remain incompletely understood. We hypothesized that noxious cold-evoked high intracellular Ca2+ responses in CIII neurons may rely upon Ca2+ induced Ca2+ release (CICR) mechanisms involving transient receptor potential (TRP) channels and/or metabotropic G protein coupled receptor (GPCR) activation to promote cold nociceptive behaviors. Mutant and/or CIII-specific knockdown of GPCR and CICR signaling molecules [GABA B -R2, Gαq, phospholipase C, ryanodine receptor (RyR) and Inositol trisphosphate receptor (IP3R)] led to impaired cold-evoked nociceptive behavior. GPCR mediated signaling, through GABA B -R2 and IP3R, is not required in CIII neurons for innocuous touch evoked behaviors. However, CICR via RyR is required for innocuous touch-evoked behaviors. Disruptions in GABA B -R2, IP3R, and RyR in CIII neurons leads to significantly lower levels of cold-evoked Ca2+ responses indicating GPCR and CICR signaling mechanisms function in regulating Ca2+ release. CIII neurons exhibit bipartite cold-evoked firing patterns, where CIII neurons burst during rapid temperature change and tonically fire during steady state cold temperatures. GABA B -R2 knockdown in CIII neurons resulted in disorganized firing patterns during cold exposure. We further demonstrate that application of GABA or the GABA B specific agonist baclofen potentiates cold-evoked CIII neuron activity. Upon ryanodine application, CIII neurons exhibit increased bursting activity and with CIII-specific RyR knockdown, there is an increase in cold-evoked tonic firing and decrease in bursting. Lastly, our previous studies implicated the TRPP channel Pkd2 in cold nociception, and here, we show that Pkd2 and IP3R genetically interact to specifically regulate cold-evoked behavior, but not innocuous mechanosensation. Collectively, these analyses support novel, modality-specific roles for metabotropic GABAergic signaling and CICR mechanisms in regulating intracellular Ca2+ levels and cold-evoked behavioral output from multimodal CIII neurons.
Collapse
Affiliation(s)
| | | | | | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
9
|
Massingham JN, Baron O, Neely GG. Evaluating Baseline and Sensitised Heat Nociception in Adult Drosophila. Bio Protoc 2021; 11:e4079. [PMID: 34327276 PMCID: PMC8292120 DOI: 10.21769/bioprotoc.4079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/01/2021] [Accepted: 03/30/2021] [Indexed: 11/02/2022] Open
Abstract
Chronic pain is a complex disease that affects a large proportion of the population. With little to no effective treatments currently available for patients, this malady presents a large burden to society. Drosophila melanogaster has been previously used to describe conserved molecular components of nociception in larvae and adults. However, adult assays tend to rely on avoidance behaviours, and whilst larval acute thermal avoidance assays exist, larvae are not best suited to a chronic pain scenario as the condition must be long-term. Therefore, an adult thermal nociception response assay was required to study injury-evoked changes in heat nociception threshold (allodynia and hyperalgesia) over time, and we describe such a protocol here. Following leg amputation, flies display increased thermal sensitivity (allodynia) to innocuous temperatures but not an increase in magnitude of response (hyperalgesia) to noxious heat. Our method allows for individualised analysis of both allodynia and hyperalgesia.
Collapse
Affiliation(s)
- Josephine N. Massingham
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, and School of Life and Environmental Sciences, The University of Sydney, Camperdown NSW 2006, Australia
| | - Olga Baron
- Department of Basic and Clinical Neuroscience, King’s College London, London, United Kingdom
- Wolfson Centre for Age-Related Disorders, King’s College London, London, United Kingdom
| | - G. Gregory Neely
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, and School of Life and Environmental Sciences, The University of Sydney, Camperdown NSW 2006, Australia
| |
Collapse
|
10
|
Himmel NJ, Letcher JM, Sakurai A, Gray TR, Benson MN, Donaldson KJ, Cox DN. Identification of a neural basis for cold acclimation in Drosophila larvae. iScience 2021; 24:102657. [PMID: 34151240 PMCID: PMC8192725 DOI: 10.1016/j.isci.2021.102657] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/05/2021] [Accepted: 05/25/2021] [Indexed: 11/29/2022] Open
Abstract
Low temperatures can be fatal to insects, but many species have evolved the ability to cold acclimate, thereby increasing their cold tolerance. It has been previously shown that Drosophila melanogaster larvae perform cold-evoked behaviors under the control of noxious cold-sensing neurons (nociceptors), but it is unknown how the nervous system might participate in cold tolerance. Herein, we describe cold-nociceptive behavior among 11 drosophilid species; we find that the predominant cold-evoked larval response is a head-to-tail contraction behavior, which is likely inherited from a common ancestor, but is unlikely to be protective. We therefore tested the hypothesis that cold nociception functions to protect larvae by triggering cold acclimation. We found that Drosophila melanogaster Class III nociceptors are sensitized by and critical to cold acclimation and that cold acclimation can be optogenetically evoked, sans cold. Collectively, these findings demonstrate that cold nociception constitutes a peripheral neural basis for Drosophila larval cold acclimation.
Collapse
Affiliation(s)
- Nathaniel J Himmel
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Jamin M Letcher
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Akira Sakurai
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Thomas R Gray
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA.,Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Maggie N Benson
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Kevin J Donaldson
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Daniel N Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
11
|
Himmel NJ, Letcher JM, Cox DN. Dissecting the Molecular and Neural Circuit Bases of Behavior as an Introduction to Discovery-Driven Research; A Report on a Course-Based Undergraduate Research Experience. JOURNAL OF UNDERGRADUATE NEUROSCIENCE EDUCATION : JUNE : A PUBLICATION OF FUN, FACULTY FOR UNDERGRADUATE NEUROSCIENCE 2020; 19:A21-A29. [PMID: 33880089 PMCID: PMC8040840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/23/2020] [Indexed: 06/12/2023]
Abstract
Herein we discuss a Course-Based Undergraduate Research Experience (CURE) developed in order to engage novice undergraduates in active learning and discovery-driven original research. This course leverages the powerful genetic toolkits available for Drosophila melanogaster in order to investigate the cellular and molecular bases of cold nociception. Given the relatively inexpensive nature of Drosophila rearing, a growing suite of publicly available neurogenomic data, large collections of transgenic stocks available through community stock centers, and Drosophila's highly stereotyped behaviors, this CURE design constitutes a cost-effective approach to introduce students to principles and techniques in genetics, genomics, behavioral neuroscience, research design, and scientific presentation. Moreover, we discuss how this paradigm might be adapted for continued use in investigating any number of systems and/or behaviors - a property we posit is key to impactful CURE design.
Collapse
Affiliation(s)
| | - Jamin M. Letcher
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
| |
Collapse
|
12
|
Perez-Alvarez A, Fearey BC, O'Toole RJ, Yang W, Arganda-Carreras I, Lamothe-Molina PJ, Moeyaert B, Mohr MA, Panzera LC, Schulze C, Schreiter ER, Wiegert JS, Gee CE, Hoppa MB, Oertner TG. Freeze-frame imaging of synaptic activity using SynTagMA. Nat Commun 2020; 11:2464. [PMID: 32424147 PMCID: PMC7235013 DOI: 10.1038/s41467-020-16315-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/23/2020] [Indexed: 12/16/2022] Open
Abstract
Information within the brain travels from neuron to neuron across billions of synapses. At any given moment, only a small subset of neurons and synapses are active, but finding the active synapses in brain tissue has been a technical challenge. Here we introduce SynTagMA to tag active synapses in a user-defined time window. Upon 395-405 nm illumination, this genetically encoded marker of activity converts from green to red fluorescence if, and only if, it is bound to calcium. Targeted to presynaptic terminals, preSynTagMA allows discrimination between active and silent axons. Targeted to excitatory postsynapses, postSynTagMA creates a snapshot of synapses active just before photoconversion. To analyze large datasets, we show how to identify and track the fluorescence of thousands of individual synapses in an automated fashion. Together, these tools provide an efficient method for repeatedly mapping active neurons and synapses in cell culture, slice preparations, and in vivo during behavior.
Collapse
Affiliation(s)
- Alberto Perez-Alvarez
- Institute for Synaptic Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, D-20251, Germany
| | - Brenna C Fearey
- Institute for Synaptic Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, D-20251, Germany
| | - Ryan J O'Toole
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Wei Yang
- Research Group Synaptic Wiring and Information Processing, University Medical Center Hamburg-Eppendorf, Hamburg, D-20251, Germany
| | - Ignacio Arganda-Carreras
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Dept. of Computer Science and Artificial Intelligence, Basque Country University, San Sebastian, Spain
- Donostia International Physics Center (DIPC), San Sebastian, Spain
| | - Paul J Lamothe-Molina
- Institute for Synaptic Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, D-20251, Germany
| | | | - Manuel A Mohr
- HHMI, Janelia Farm Research Campus, Ashburn, VA, 20147, USA
| | - Lauren C Panzera
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Christian Schulze
- Institute for Synaptic Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, D-20251, Germany
| | | | - J Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, University Medical Center Hamburg-Eppendorf, Hamburg, D-20251, Germany
| | - Christine E Gee
- Institute for Synaptic Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, D-20251, Germany
| | - Michael B Hoppa
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Thomas G Oertner
- Institute for Synaptic Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, D-20251, Germany.
| |
Collapse
|
13
|
Edwards KA, Hoppa MB, Bosco G. The Photoconvertible Fluorescent Probe, CaMPARI, Labels Active Neurons in Freely-Moving Intact Adult Fruit Flies. Front Neural Circuits 2020; 14:22. [PMID: 32457580 PMCID: PMC7227398 DOI: 10.3389/fncir.2020.00022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/14/2020] [Indexed: 01/27/2023] Open
Abstract
Linking neural circuitry to behavior by mapping active neurons in vivo is a challenge. Both genetically encoded calcium indicators (GECIs) and intermediate early genes (IEGs) have been used to pinpoint active neurons during a stimulus or behavior but have drawbacks such as limiting the movement of the organism, requiring a priori knowledge of the active region or having poor temporal resolution. Calcium-modulated photoactivatable ratiometric integrator (CaMPARI) was engineered to overcome these spatial-temporal challenges. CaMPARI is a photoconvertible protein that only converts from green to red fluorescence in the presence of high calcium concentration and 405 nm light. This allows the experimenter to precisely mark active neurons within defined temporal windows. The photoconversion can then be quantified by taking the ratio of the red fluorescence to the green. CaMPARI promises the ability to trace active neurons during a specific stimulus; however, CaMPARI's uses in adult Drosophila have been limited to photoconversion during fly immobilization. Here, we demonstrate a method that allows photoconversion of multiple freely-moving intact adult flies during a stimulus. Flies were placed in a dish with filter paper wet with acetic acid (pH = 2) or neutralized acetic acid (pH = 7) and exposed to photoconvertible light (60 mW) for 30 min (500 ms on, 200 ms off). Immediately following photoconversion, whole flies were fixed and imaged by confocal microscopy. The red:green ratio was quantified for the DC4 glomerulus, a bundle of neurons expressing Ir64a, an ionotropic receptor that senses acids in the Drosophila antennal lobe. Flies exposed to acetic acid showed 1.3-fold greater photoconversion than flies exposed to neutralized acetic acid. This finding was recapitulated using a more physiological stimulus of apple cider vinegar. These results indicate that CaMPARI can be used to label neurons in intact, freely-moving adult flies and will be useful for identifying the circuitry underlying complex behaviors.
Collapse
Affiliation(s)
- Katie A. Edwards
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - Michael B. Hoppa
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| | - Giovanni Bosco
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
14
|
Lopez-Bellido R, Himmel NJ, Gutstein HB, Cox DN, Galko MJ. An assay for chemical nociception in Drosophila larvae. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190282. [PMID: 31544619 PMCID: PMC6790381 DOI: 10.1098/rstb.2019.0282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2019] [Indexed: 12/14/2022] Open
Abstract
Chemically induced nociception has not yet been studied intensively in genetically tractable models. Hence, our goal was to establish a Drosophila assay that can be used to study the cellular and molecular/genetic bases of chemically induced nociception. Drosophila larvae exposed to increasing concentrations of hydrochloric acid (HCl) produced an increasingly intense aversive rolling response. HCl (0.5%) was subthreshold and provoked no response. All classes of peripheral multidendritic (md) sensory neurons (classes I-IV) are required for full responsiveness to acid, with class IV making the largest contribution. At the cellular level, classes IV, III and I showed increases in calcium following acid exposure. In the central nervous system, Basin-4 second-order neurons are the key regulators of chemically induced nociception, with a slight contribution from other types. Finally, chemical nociception can be sensitized by tissue damage. Subthreshold HCl provoked chemical allodynia in larvae 4 h after physical puncture wounding. Pinch wounding and UV irradiation, which do not compromise the cuticle, did not cause chemical allodynia. In sum, we developed a novel assay to study chemically induced nociception in Drosophila larvae. This assay, combined with the high genetic resolving power of Drosophila, should improve our basic understanding of fundamental mechanisms of chemical nociception. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
- Roger Lopez-Bellido
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nathaniel J. Himmel
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA 30303, USA
| | - Howard B. Gutstein
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA 30303, USA
| | - Michael J. Galko
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Neuroscience Graduate Program, The MD Anderson UT Health Graduate School of Biomedical Sciences, TX 77030, USA
- Genetics and Epigenetics Graduate Program, The MD Anderson UT Health Graduate School of Biomedical Sciences, TX 77030, USA
| |
Collapse
|
15
|
Himmel NJ, Letcher JM, Sakurai A, Gray TR, Benson MN, Cox DN. Drosophila menthol sensitivity and the Precambrian origins of transient receptor potential-dependent chemosensation. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190369. [PMID: 31544603 DOI: 10.1098/rstb.2019.0369] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transient receptor potential (TRP) cation channels are highly conserved, polymodal sensors which respond to a wide variety of stimuli. Perhaps most notably, TRP channels serve critical functions in nociception and pain. A growing body of evidence suggests that transient receptor potential melastatin (TRPM) and transient receptor potential ankyrin (TRPA) thermal and electrophile sensitivities predate the protostome-deuterostome split (greater than 550 Ma). However, TRPM and TRPA channels are also thought to detect modified terpenes (e.g. menthol). Although terpenoids like menthol are thought to be aversive and/or harmful to insects, mechanistic sensitivity studies have been largely restricted to chordates. Furthermore, it is unknown if TRP-menthol sensing is as ancient as thermal and/or electrophile sensitivity. Combining genetic, optical, electrophysiological, behavioural and phylogenetic approaches, we tested the hypothesis that insect TRP channels play a conserved role in menthol sensing. We found that topical application of menthol to Drosophila melanogaster larvae elicits a Trpm- and TrpA1-dependent nocifensive rolling behaviour, which requires activation of Class IV nociceptor neurons. Further, in characterizing the evolution of TRP channels, we put forth the hypotheses that three previously undescribed TRPM channel clades (basal, αTRPM and βTRPM), as well as TRPs with residues critical for menthol sensing, were present in ancestral bilaterians. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
- Nathaniel J Himmel
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - Jamin M Letcher
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - Akira Sakurai
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - Thomas R Gray
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - Maggie N Benson
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| | - Daniel N Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA
| |
Collapse
|
16
|
Turner HN, Patel AA, Cox DN, Galko MJ. Injury-induced cold sensitization in Drosophila larvae involves behavioral shifts that require the TRP channel Brv1. PLoS One 2018; 13:e0209577. [PMID: 30586392 PMCID: PMC6306221 DOI: 10.1371/journal.pone.0209577] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/07/2018] [Indexed: 12/16/2022] Open
Abstract
Nociceptive sensitization involves an increase in responsiveness of pain sensing neurons to sensory stimuli, typically through the lowering of their nociceptive threshold. Nociceptive sensitization is common following tissue damage, inflammation, and disease and serves to protect the affected area while it heals. Organisms can become sensitized to a range of noxious and innocuous stimuli, including thermal stimuli. The basic mechanisms underlying sensitization to warm or painfully hot stimuli have begun to be elucidated, however, sensitization to cold is not well understood. Here, we develop a Drosophila assay to study cold sensitization after UV-induced epidermal damage in larvae. Larvae respond to acute cold stimuli with a set of unique behaviors that include a contraction of the head and tail (CT) or a raising of the head and tail into a U-Shape (US). Under baseline, non-injured conditions larvae primarily produce a CT response to an acute cold (10°C) stimulus, however, we show that cold-evoked responses shift following tissue damage: CT responses decrease, US responses increase and some larvae exhibit a lateral body roll (BR) that is typically only observed in response to high temperature and noxious mechanical stimuli. At the cellular level, class III neurons are required for the decrease in CT, chordotonal neurons are required for the increase in US, and chordotonal and class IV neurons are required for the appearance of BR responses after UV. At the molecular level, we found that the transient receptor potential (TRP) channel brivido-1 (brv1) is required for these behavioral shifts. Our Drosophila model will allow us to precisely identify the genes and circuits involved in cold nociceptive sensitization.
Collapse
Affiliation(s)
- Heather N. Turner
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Atit A. Patel
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail: (DNC); (MJG)
| | - Michael J. Galko
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (DNC); (MJG)
| |
Collapse
|
17
|
Im SH, Patel AA, Cox DN, Galko MJ. Drosophila Insulin receptor regulates the persistence of injury-induced nociceptive sensitization. Dis Model Mech 2018; 11:dmm034231. [PMID: 29752280 PMCID: PMC5992604 DOI: 10.1242/dmm.034231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/25/2018] [Indexed: 12/12/2022] Open
Abstract
Diabetes-associated nociceptive hypersensitivity affects diabetic patients with hard-to-treat chronic pain. Because multiple tissues are affected by systemic alterations in insulin signaling, the functional locus of insulin signaling in diabetes-associated hypersensitivity remains obscure. Here, we used Drosophila nociception/nociceptive sensitization assays to investigate the role of Insulin receptor (Insulin-like receptor, InR) in nociceptive hypersensitivity. InR mutant larvae exhibited mostly normal baseline thermal nociception (absence of injury) and normal acute thermal hypersensitivity following UV-induced injury. However, their acute thermal hypersensitivity persists and fails to return to baseline, unlike in controls. Remarkably, injury-induced persistent hypersensitivity is also observed in larvae that exhibit either type 1 or type 2 diabetes. Cell type-specific genetic analysis indicates that InR function is required in multidendritic sensory neurons including nociceptive class IV neurons. In these same nociceptive sensory neurons, only modest changes in dendritic morphology were observed in the InRRNAi -expressing and diabetic larvae. At the cellular level, InR-deficient nociceptive sensory neurons show elevated calcium responses after injury. Sensory neuron-specific expression of InR rescues the persistent thermal hypersensitivity of InR mutants and constitutive activation of InR in sensory neurons ameliorates the hypersensitivity observed with a type 2-like diabetic state. Our results suggest that a sensory neuron-specific function of InR regulates the persistence of injury-associated hypersensitivity. It is likely that this new system will be an informative genetically tractable model of diabetes-associated hypersensitivity.
Collapse
Affiliation(s)
- Seol Hee Im
- Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Atit A Patel
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA 30303, USA
| | - Daniel N Cox
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA 30303, USA
| | - Michael J Galko
- Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- Genetics and Epigenetics Graduate Program, University of Texas Graduate School of Biomedical Sciences, 6767 Bertner Avenue, Houston, TX 77030, USA
| |
Collapse
|