1
|
Wang Y, Xu D, Zhao Y, Zhu H, Xiu X, Jiang H, Liu Y, Shan G, Wu S. Age- and Sex-Specific Regulation of Serine Racemase in the Retina of an Alzheimer's Disease Mouse. Invest Ophthalmol Vis Sci 2025; 66:36. [PMID: 39813057 PMCID: PMC11741067 DOI: 10.1167/iovs.66.1.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose Changes associated with Alzheimer's disease (AD) may have measurable effects on the retina, which may facilitate early detection due to the eye's accessibility. Retinal pathology and the regulation of serine racemase (SR) were investigated in the retinas of APP(SW)/PS1(∆E9) mice. Methods SR in the retinas and the content of D-serine in the aqueous humor were analyzed. The structure and function of the retina were assessed. Additionally, the regulation of SR in primary Müller cell cultures was investigated. Results SR levels were significantly higher in the retinas of 18- and 24-month-old male APP/PS1 mice, whereas aqueous humor D-serine was lower in 24-month-old APP/PS1 male mice compared to wild-type (WT) mice. Neither Aβ nor 17β-estradiol increased SR, but the combination of both did in Müller cell cultures. In contrast, 17β-estradiol increased Srr mRNA in the cultures. At 8 months of age, male APP/PS1 mice began to display reduced b-wave amplitude in scotopic and photopic electroretinography (ERG) recordings, unlike female APP/PS1 mice. Although the retinal layer thickness in APP/PS1 mice did not differ from WT mice, there was overt apoptosis in the inner and outer nuclear layers of the APP/PS1 mice retinas. Conclusions The age- and sex-specific regulation of SR is correlated with the pathology of an AD retina. Because the time window for SR regulation and D-serine alteration occurs after photoreceptor dysfunction in the AD retinas, it has limited value as a detection biomarker but may be useful as a topographic biomarker for staging severity and monitoring drug interventions in the eye or central nervous system.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Ophthalmology, Optometry, and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dehuan Xu
- State Key Laboratory of Ophthalmology, Optometry, and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuhang Zhao
- State Key Laboratory of Ophthalmology, Optometry, and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Haiyu Zhu
- State Key Laboratory of Ophthalmology, Optometry, and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyu Xiu
- State Key Laboratory of Ophthalmology, Optometry, and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Haiyan Jiang
- State Key Laboratory of Ophthalmology, Optometry, and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yimei Liu
- State Key Laboratory of Ophthalmology, Optometry, and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ge Shan
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Shengzhou Wu
- State Key Laboratory of Ophthalmology, Optometry, and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Moustafa M, Khalil A, Darwish NHE, Zhang DQ, Tawfik A, Al-Shabrawey M. 12-HETE activates Müller glial cells: The potential role of GPR31 and miR-29. Prostaglandins Other Lipid Mediat 2024; 171:106805. [PMID: 38141777 PMCID: PMC10939904 DOI: 10.1016/j.prostaglandins.2023.106805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/28/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
Diabetic retinopathy (DR) is a neurovascular complication of diabetes, driven by an intricate network of cellular and molecular mechanisms. This study sought to explore the mechanisms by investigating the role of 12-hydroxyeicosatetraenoic acid (12-HETE), its receptor GPR31, and microRNA (miR-29) in the context of DR, specifically focusing on their impact on Müller glial cells. We found that 12-HETE activates Müller cells (MCs), elevates glutamate production, and induces inflammatory and oxidative responses, all of which are instrumental in DR progression. The expression of GPR31, the receptor for 12-HETE, was prominently found in the retina, especially in MCs and retinal ganglion cells, and was upregulated in diabetes. Interestingly, miR29 showed potential as a protective agent, mitigating the harmful effects of 12-HETE by attenuating inflammation and oxidative stress, and restoring the expression of pigment epithelium-derived factor (PEDF). Our results underline the central role of 12-HETE in DR progression through activation of a neurovascular toxic pathway in MCs and illuminate the protective capabilities of miR-29, highlighting both as promising therapeutic targets for the management of DR.
Collapse
Affiliation(s)
- Mohamed Moustafa
- Eye Research Center, Oakland University William Beaumont School of Medicine (OUWB-SOM), Rochester, MI, USA; Eye Research Institute, Oakland University, Rochester, MI, USA; Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, USA
| | - Abraham Khalil
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Noureldien H E Darwish
- Eye Research Center, Oakland University William Beaumont School of Medicine (OUWB-SOM), Rochester, MI, USA; Eye Research Institute, Oakland University, Rochester, MI, USA; Department of Clinical Pathology, Mansoura College of Medicine, Mansoura University-Egypt
| | - Dao-Qi Zhang
- Eye Research Center, Oakland University William Beaumont School of Medicine (OUWB-SOM), Rochester, MI, USA; Eye Research Institute, Oakland University, Rochester, MI, USA; Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, USA
| | - Amany Tawfik
- Eye Research Center, Oakland University William Beaumont School of Medicine (OUWB-SOM), Rochester, MI, USA; Eye Research Institute, Oakland University, Rochester, MI, USA; Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, USA
| | - Mohamed Al-Shabrawey
- Eye Research Center, Oakland University William Beaumont School of Medicine (OUWB-SOM), Rochester, MI, USA; Eye Research Institute, Oakland University, Rochester, MI, USA; Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, USA.
| |
Collapse
|
3
|
Taylor BE, Lee CA, Zapadka TE, Zhou AY, Barber KG, Taylor ZRR, Howell SJ, Taylor PR. IL-17A Enhances Retinal Neovascularization. Int J Mol Sci 2023; 24:ijms24021747. [PMID: 36675261 PMCID: PMC9866094 DOI: 10.3390/ijms24021747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/17/2023] Open
Abstract
Retinal neovascularization occurs in proliferative diabetic retinopathy, neovascular glaucoma, and age-related macular degeneration. This type of retinal pathology normally occurs in the later stages of these ocular diseases and is a prevalent cause of vision loss. Previously, we determined that Interleukin (IL)-17A plays a pivotal role in the onset and progression of non-proliferative diabetic retinopathy in diabetic mice. Unfortunately, none of our diabetic murine models progress to proliferative diabetic retinopathy. Hence, the role of IL-17A in vascular angiogenesis, neovascularization, and the onset of proliferative diabetic retinopathy was unclear. In the current study, we determined that diabetes-mediated IL-17A enhances vascular endothelial growth factor (VEGF) production in the retina, Muller glia, and retinal endothelial cells. Further, we determined that IL-17A can initiate retinal endothelial cell proliferation and can enhance VEGF-dependent vascular angiogenesis. Finally, by utilizing the oxygen induced retinopathy model, we determined that IL-17A enhances retinal neovascularization. Collectively, the results of this study provide evidence that IL-17A plays a pivotal role in vascular proliferation in the retina. Hence, IL-17A could be a potentially novel therapeutic target for retinal neovascularization, which can cause blindness in multiple ocular diseases.
Collapse
Affiliation(s)
- Brooklyn E. Taylor
- Department of Ophthalmology and Visual Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Chieh A. Lee
- Department of Ophthalmology and Visual Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Thomas E. Zapadka
- Department of Ophthalmology and Visual Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
| | - Amy Y. Zhou
- Department of Ophthalmology and Visual Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | - Zakary R. R. Taylor
- Department of Ophthalmology and Visual Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Scott J. Howell
- Department of Ophthalmology and Visual Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
| | - Patricia R. Taylor
- Department of Ophthalmology and Visual Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
4
|
Abstract
Visual information processing in the retina requires the rhythmic expression of clock genes. The intrinsic retinal circadian clock is independent of the master clock located in the hypothalamic suprachiasmatic nucleus and emerges from retinal cells, including glia. Less clear is how glial oscillators influence the daily regulation of visual information processing in the mouse retina. Here, we demonstrate that the adult conditional deletion of the gene Bmal1 in GLAST-positive glial cells alters retinal physiology. Specifically, such deletion was sufficient to lower the amplitude of the electroretinogram b-wave recorded under light-adapted conditions. Furthermore, recordings from > 20,000 retinal ganglion cells (RGCs), the retina output, showed a non-uniform effect on RGCs activity in response to light across different cell types and over a 24-h period. Overall, our results suggest a new role of a glial circadian gene in adjusting mammalian retinal output throughout the night-day cycle.
Collapse
|
5
|
Zhu Y, Cao B, Tolone A, Yan J, Christensen G, Arango-Gonzalez B, Ueffing M, Paquet-Durand F. In vitro Model Systems for Studies Into Retinal Neuroprotection. Front Neurosci 2022; 16:938089. [PMID: 35873807 PMCID: PMC9301112 DOI: 10.3389/fnins.2022.938089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Therapy development for neurodegenerative diseases of the retina constitutes a major unmet medical need, and this may be particularly relevant for inherited diseases of the retina, which are largely untreatable to this day. Therapy development necessitates appropriate models to improve the understanding of the underlying degenerative mechanisms, as well as for the testing and evaluation of novel treatment approaches. This review provides an overview of various in vitro model systems used to study retinal neuroprotection. The in vitro methods and technologies discussed range from primary retinal cell cultures and cell lines, to retinal organoids and organotypic retinal explants, to the cultivation of whole eyeballs. The advantages and disadvantages of these methods are compared and evaluated, also in view of the 3R principles (i.e., the refinement, reduction, and replacement of live animal testing), to identify suitable in vitro alternatives for in vivo experimentation. The article further expands on the use of in vitro models to test and evaluate neuroprotective treatments and to aid the development of retinal drug delivery systems. Among the pharmacological agents tested and characterized in vitro are such that interfere with aberrant cyclic guanosine monophosphate (cGMP) -signaling or such that inhibit the activities of poly (ADP-ribose) polymerase (PARP), histone deacetylases (HDAC), calpain-type proteases, as well as unfolded protein response-related stress. We then introduce nanoparticle-based drug delivery systems and discuss how different in vitro systems may be used to assess their efficacy in the treatment of retinal diseases. The summary provides a brief comparison of available in vitro models and relates their advantages and limitations to the various experimental requirements, for instance, for studies into disease mechanisms, novel treatments, or retinal toxicity. In many cases, combinations of different in vitro models may be required to obtain a comprehensive view of the efficacy of a given retinal neuroprotection approach.
Collapse
Affiliation(s)
- Yu Zhu
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Bowen Cao
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
- Molecular Biology of Retinal Degenerations, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Arianna Tolone
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Jie Yan
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Gustav Christensen
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Blanca Arango-Gonzalez
- Molecular Biology of Retinal Degenerations, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Marius Ueffing
- Molecular Biology of Retinal Degenerations, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- *Correspondence: Marius Ueffing,
| | - François Paquet-Durand
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- François Paquet-Durand,
| |
Collapse
|
6
|
Pereiro X, Beriain S, Rodriguez L, Roiz-Valle D, Ruzafa N, Vecino E. Characteristics of Whale Müller Glia in Primary and Immortalized Cultures. Front Neurosci 2022; 16:854278. [PMID: 35360150 PMCID: PMC8964101 DOI: 10.3389/fnins.2022.854278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Müller cells are the principal glial cells in the retina and they assume many of the functions carried out by astrocytes, oligodendrocytes and ependymal cells in other regions of the central nervous system. Müller cells express growth factors, neurotransmitter transporters and antioxidant agents that could fulfill important roles in preventing excitotoxic damage to retinal neurons. Vertebrate Müller cells are well-defined cells, characterized by a common set of features throughout the phylum. Nevertheless, several major differences have been observed among the Müller cells in distinct vertebrates, such as neurogenesis, the capacity to reprogram fish Müller glia to neurons. Here, the Müller glia of the largest adult mammal in the world, the whale, have been analyzed, and given the difficulties in obtaining cetacean cells for study, these whale glia were analyzed both in primary cultures and as immortalized whale Müller cells. After isolating the retina from the eye of a beached sei whale (Balaenoptera borealis), primary Müller cell cultures were established and once the cultures reached confluence, half of the cultures were immortalized with the simian virus 40 (SV40) large T-antigen commonly used to immortalize human cell lines. The primary cell cultures were grown until cells reached senescence. Expression of the principal molecular markers of Müller cells (GFAP, Vimentin and Glutamine synthetase) was studied in both primary and immortalized cells at each culture passage. Proliferation kinetics of the cells were analyzed by time-lapse microscopy: the time between divisions, the time that cells take to divide, and the proportion of dividing cells in the same field. The karyotypes of the primary and immortalized whale Müller cells were also characterized. Our results shown that W21M proliferate more rapidly and they have a stable karyotype. W21M cells display a heterogeneous cell morphology, less motility and a distinctive expression of some typical molecular markers of Müller cells, with an increase in dedifferentiation markers like α-SMA and β-III tubulin, while they preserve their GS expression depending on the culture passage. Here we also discuss the possible influence of the animal's age and size on these cells, and on their senescence.
Collapse
Affiliation(s)
- Xandra Pereiro
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Barakaldo, Spain
| | - Sandra Beriain
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
| | - Lara Rodriguez
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
| | - David Roiz-Valle
- Department of Biochemistry and Molecular Biology, University Institute of Oncology (IUOPA), University of Oviedo, Oviedo, Spain
| | - Noelia Ruzafa
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Barakaldo, Spain
| | - Elena Vecino
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Barakaldo, Spain
| |
Collapse
|
7
|
Sun X, Chen C, Liu H, Tang S. High glucose induces HSP47 expression and promotes the secretion of inflammatory factors through the IRE1α/XBP1/HIF-1α pathway in retinal Müller cells. Exp Ther Med 2021; 22:1411. [PMID: 34676004 DOI: 10.3892/etm.2021.10847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/28/2021] [Indexed: 11/05/2022] Open
Abstract
Diabetic retinopathy, a common complication of diabetes, is the leading cause of blindness globally. Müller cells are key players in diabetes-associated retinal inflammation and dysfunction. However, the pathological changes of Müller cells in response to high glucose (HG) and the underlying mechanism remain unclear. The aim of the present study was to investigate the key role of heat shock protein 47 (HSP47) in HG-induced unfolded protein and inflammatory responses. Primary mouse Müller cells were starved in serum-free DMEM overnight and then treated with HG (30 mM) for 0, 6, 12 or 24 h. It was observed that HG (30 mM) significantly induced the protein expression of HSP47, inositol-requiring transmembrane kinase and endonuclease-1α (IRE1α) and spliced X-box-binding protein 1 (XBP1s) in primary mouse Müller cells compared with the untreated group. In addition, the immunoprecipitation results revealed that HSP47 directly interacted with IRE1α, and this interaction was significantly enhanced by HG exposure for 12 or 24 h compared with the untreated group. Furthermore, small interfering RNA-mediated silencing of HSP47 significantly suppressed HG-induced activation of the IRE1α/XBP1s/hypoxia inducible factor-1 subunit α (HIF-1α) pathway and upregulation of the mRNA expression levels of the inflammatory cytokines vascular endothelial growth factor, platelet-derived growth factor subunit B, inducible nitric oxide synthase and angiopoietin-2 in Müller cells. Furthermore, overexpression of IRE1α or HIF-1α partially attenuated HSP47-siRNA-mediated inhibition of inflammatory cytokine expression in Müller cells. Collectively, these results indicated that HG may induce HSP47 expression and promote the inflammatory response through enhancing the interaction between HSP47 and IRE1α, and activating the IRE1α/XBP1s/HIF-1α pathway in retinal Müller cells.
Collapse
Affiliation(s)
- Xincheng Sun
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Department of Ophthalmology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Chen Chen
- Department of Ophthalmology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Hu Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shaowen Tang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
8
|
Niu L, Fang Y, Yao X, Zhang Y, Wu J, Chen DF, Sun X. TNFα activates MAPK and Jak-Stat pathways to promote mouse Müller cell proliferation. Exp Eye Res 2020; 202:108353. [PMID: 33171193 DOI: 10.1016/j.exer.2020.108353] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 10/23/2022]
Abstract
Mouse Müller cells, considered as dormant retinal progenitors, often respond to retinal injury by undergoing reactive gliosis rather than displaying neural regenerative responses. Tumor necrosis factor alpha (TNFα) is a key cytokines induced after injury and implicated in mediating inflammatory and neural regenerative responses in zebrafish. To investigate the involvement of TNFα in mouse retinal injury, adult C57BL/6J mice were subjected to light damage for 14 consecutive days. TNFα was elevated in the retina of mice exposed to light damage, which induced Müller cell proliferation in vitro. Affymetrix microarray showed that, in Müller cells, TNFα induces up-regulation of inflammatory and proliferation-related genes, including NFKB2, leukemia inhibitory factor, interleukin-6, janus kinase (Jak) 1, Jak2, signal transducer and activator of transcription (Stat) 1, Stat2, mitogen-activated protein kinase (MAPK) 7, and MAP4K4 but down-regulation of neuroprogenitor genes, including Sox9, Ascl1, Wnt2 and Hes1. Blocking the Jak/Stat and MAPK pathways attenuated TNFα-induced Müller cell proliferation. These results suggest that TNFα may drive the proliferation and inflammatory response, rather than the neural regenerative potential, of mouse Müller cells.
Collapse
Affiliation(s)
- Liangliang Niu
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Yuan Fang
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Xiaoqian Yao
- Department of Ophthalmology, Jin Shan Hospital, Fudan University, Shanghai 200540, China
| | - Yi Zhang
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Jihong Wu
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Dong Feng Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; Key Laboratory of Myopia, Chinese Academy of Medical Sciences (Fudan University), and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200031, China; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
9
|
Schnichels S, Paquet-Durand F, Löscher M, Tsai T, Hurst J, Joachim SC, Klettner A. Retina in a dish: Cell cultures, retinal explants and animal models for common diseases of the retina. Prog Retin Eye Res 2020; 81:100880. [PMID: 32721458 DOI: 10.1016/j.preteyeres.2020.100880] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
For many retinal diseases, including age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy (DR), the exact pathogenesis is still unclear. Moreover, the currently available therapeutic options are often unsatisfactory. Research designed to remedy this situation heavily relies on experimental animals. However, animal models often do not faithfully reproduce human disease and, currently, there is strong pressure from society to reduce animal research. Overall, this creates a need for improved disease models to understand pathologies and develop treatment options that, at the same time, require fewer or no experimental animals. Here, we review recent advances in the field of in vitro and ex vivo models for AMD, glaucoma, and DR. We highlight the difficulties associated with studies on complex diseases, in which both the initial trigger and the ensuing pathomechanisms are unclear, and then delineate which model systems are optimal for disease modelling. To this end, we present a variety of model systems, ranging from primary cell cultures, over organotypic cultures and whole eye cultures, to animal models. Specific advantages and disadvantages of such models are discussed, with a special focus on their relevance to putative in vivo disease mechanisms. In many cases, a replacement of in vivo research will mean that several different in vitro models are used in conjunction, for instance to analyze and validate causative molecular pathways. Finally, we argue that the analytical decomposition into appropriate cell and tissue model systems will allow making significant progress in our understanding of complex retinal diseases and may furthermore advance the treatment testing.
Collapse
Affiliation(s)
- Sven Schnichels
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany.
| | - François Paquet-Durand
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Germany
| | - Marina Löscher
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany
| | - Teresa Tsai
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Germany
| | - José Hurst
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Germany
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Kiel, Germany
| |
Collapse
|
10
|
Liu X, Chen F, Chen Y, Lu H, Lu X, Peng X, Kaplan HJ, Dean DC, Gao L, Liu Y. Paracrine effects of intraocularly implanted cells on degenerating retinas in mice. Stem Cell Res Ther 2020; 11:142. [PMID: 32234075 PMCID: PMC7326149 DOI: 10.1186/s13287-020-01651-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/18/2020] [Accepted: 03/12/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Retinal degeneration is a leading cause of blindness in the world; its etiology is complex and involves genetic defects and stress-associated aging. In addition to gene therapies for known genetically defective retinal degeneration, cellular therapies have been widely explored for restoring vision in both preclinical animal models and clinical trials. Stem cells of distinct tissue sources and their derived lineages have been tested for treating retinal degeneration; most of them were reported to be effective to some extent in restoring/improving deteriorated vision. Whether this visual improvement is due to a functional integration of grafted cells to substitute for lost retinal neurons in recipients or due to their neuroprotective and neurotrophic effects to retain recipient functional neurons, or both, is still under debate. METHODS We compared the results of subretinal transplantation of various somatic cell types, such as stem cells and differentiated cells, into RhoP23H/+ mice, a retinal degeneration model for human retinitis pigmentosa (RP) by evaluating their optokinetic response (OKR) and retinal histology. We identified some paracrine factors in the media that cultured cells secreted by western blotting (WB) and functionally evaluated the vascular endothelial growth factor Vegfa for its potential neurotrophic and neuroprotective effects on the neuroretina of model animals by intravitreal injection of VEGF antibody. RESULTS We found that live cells, regardless of whether they were stem cells or differentiated cell types, had a positive effect on improving degenerating retinas after subretinal transplantation; the efficacy depended on their survival duration in the host tissue. A few paracrine factors were identified in cell culture media; Vegfa was the most relevant neurotrophic and neuroprotective factor identified by our experiments to extend neuron survival duration in vivo. CONCLUSIONS Cellular therapy-produced benefits for remediating retinal degeneration are mostly, if not completely, due to a paracrine effect of implanted cells on the remaining host retinal neurons.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
- Department of Ophthalmology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Fenghua Chen
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yao Chen
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
- Department of Ophthalmology, Xiangya Hospital of Central South University, Changsha, China
| | - Huayi Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
- Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiaoqin Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - Xiaoyan Peng
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - Douglas C Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, KY, 40202, USA.
- James Graham Brown Cancer Center, Louisville, USA.
- Birth Defects Center, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Ling Gao
- Department of Ophthalmology, Second Xiangya Hospital of Central South University, Changsha, China.
| | - Yongqing Liu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, KY, 40202, USA.
- James Graham Brown Cancer Center, Louisville, USA.
- Birth Defects Center, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
11
|
Hombrebueno JR, Cairns L, Dutton LR, Lyons TJ, Brazil DP, Moynagh P, Curtis TM, Xu H. Uncoupled turnover disrupts mitochondrial quality control in diabetic retinopathy. JCI Insight 2019; 4:129760. [PMID: 31661466 PMCID: PMC6962019 DOI: 10.1172/jci.insight.129760] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 10/23/2019] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial quality control (MQC) is crucial for regulating CNS homeostasis, and its disruption has been implicated in the pathogenesis of some of the most common neurodegenerative diseases. In healthy tissues, the maintenance of MQC depends upon an exquisite balance between mitophagy (removal of damaged mitochondria by autophagy) and biogenesis (de novo synthesis of mitochondria). Here, we show that mitophagy is disrupted in diabetic retinopathy (DR) and decoupled from mitochondrial biogenesis during the progression of the disease. Diabetic retinas from human postmortem donors and experimental mice exhibit a net loss of mitochondrial contents during the early stages of the disease process. Using diabetic mitophagy-reporter mice (mitoQC-Ins2Akita) alongside pMitoTimer (a molecular clock to address mitochondrial age dynamics), we demonstrate that mitochondrial loss arose due to an inability of mitochondrial biogenesis to compensate for diabetes-exacerbated mitophagy. However, as diabetes duration increases, Pink1-dependent mitophagy deteriorates, leading to the build-up of mitochondria primed for degradation in DR. Impairment of mitophagy during prolonged diabetes is linked with the development of retinal senescence, a phenotype that blunted hyperglycemia-induced mitophagy in mitoQC primary Müller cells. Our findings suggest that normalizing mitochondrial turnover may preserve MQC and provide therapeutic options for the management of DR-associated complications. Uncoupled mitophagy and mitochondrial biogenesis leads to mitochondrial damage in the retina during the progression of diabetes.
Collapse
Affiliation(s)
- Jose R Hombrebueno
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom.,Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Lauren Cairns
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Louise R Dutton
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Timothy J Lyons
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom.,Division of Endocrinology and Diabetes, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Derek P Brazil
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Paul Moynagh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom.,Institute of Immunology, Department of Biology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland
| | - Tim M Curtis
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Heping Xu
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
12
|
Intra-Vitreal Administration of Microvesicles Derived from Human Adipose-Derived Multipotent Stromal Cells Improves Retinal Functionality in Dogs with Retinal Degeneration. J Clin Med 2019; 8:jcm8040510. [PMID: 31013950 PMCID: PMC6518198 DOI: 10.3390/jcm8040510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/28/2022] Open
Abstract
This study was designed to determine the influence of microvesicles (MVs) derived from multipotent stromal cells isolated from human adipose tissue (hASCs) on retinal functionality in dogs with various types of retinal degeneration. The biological properties of hASC-MVs were first determined using an in vitro model of retinal Muller-like cells (CaMLCs). The in vitro assays included analysis of hASC-MVs influence on cell viability and metabolism. Brain-derived neurotrophic factor (BDNF) expression was also determined. Evaluation of the hASC-MVs was performed under normal and oxidative stress conditions. Preliminary clinical studies were performed on ten dogs with retinal degeneration. The clinical studies included behavioral tests, fundoscopy and electroretinography before and after hASC-MVs intra-vitreal injection. The in vitro study showed that CaMLCs treated with hASC-MVs were characterized by improved viability and mitochondrial potential, both under normal and oxidative stress conditions. Additionally, hASC-MVs under oxidative stress conditions reduced the number of senescence-associated markers, correlating with the increased expression of BDNF. The preliminary clinical study showed that the intra-vitreal administration of hASC-MVs significantly improved the dogs’ general behavior and tracking ability. Furthermore, fundoscopy demonstrated that the retinal blood vessels appeared to be less attenuated, and electroretinography using HMsERG demonstrated an increase in a- and b-wave amplitude after treatment. These results shed promising light on the application of cell-free therapies in veterinary medicine for retinal degenerative disorders treatment.
Collapse
|
13
|
Tsai ELS, Ortin-Martinez A, Gurdita A, Comanita L, Yan N, Smiley S, Delplace V, Shoichet MS, Nickerson PEB, Wallace VA. Modeling of Photoreceptor Donor-Host Interaction Following Transplantation Reveals a Role for Crx, Müller Glia, and Rho/ROCK Signaling in Neurite Outgrowth. Stem Cells 2019; 37:529-541. [DOI: 10.1002/stem.2985] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/20/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Affiliation(s)
- En L. S. Tsai
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
- Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto Ontario Canada
| | - Arturo Ortin-Martinez
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
| | - Akshay Gurdita
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
- Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto Ontario Canada
| | - Lacrimioara Comanita
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
| | - Nicole Yan
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
- Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto Ontario Canada
| | - Sheila Smiley
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
| | - Vianney Delplace
- Department of Chemical Engineering & Applied Chemistry; University of Toronto; Toronto Ontario Canada
| | - Molly S. Shoichet
- Department of Chemical Engineering & Applied Chemistry; University of Toronto; Toronto Ontario Canada
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto Ontario Canada
| | - Philip E. B. Nickerson
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
| | - Valerie A. Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
- Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto Ontario Canada
- Department of Ophthalmology and Vision Sciences; University of Toronto; Toronto Ontario Canada
| |
Collapse
|