1
|
Hamanishi T, Koga H, Nishimura T, Kobayashi K. Royal Jelly Induces Thin Hair Shaft Formation by Suppressing Proliferation of Hair Follicle Stem Cells in Mice. ACS OMEGA 2025; 10:17228-17236. [PMID: 40352556 PMCID: PMC12059908 DOI: 10.1021/acsomega.4c09123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 05/14/2025]
Abstract
Royal jelly (RJ), a honeybee product, is used as a cosmetic and food ingredient to improve skin condition. However, the influences of RJ on hair growth remain unclear. In this study, we investigated whether RJ regulates hair follicle development, hair shaft formation, and proliferation of hair follicle stem cells (HFSCs) using a gentle anagen induction model by shaving the back skin and a forced anagen induction model by depilating the back skin in mice. The results showed that topical application of RJ on depilated skin induced thinning of the hair shaft and smaller hair bulb formation during the anagen phase. In addition, RJ suppressed the proliferation of CK15-positive HFSCs in hair follicles at the early and middle anagen stages of shaved back skin. RJ suppressed the proliferation of cultured HFSCs in vitro. These findings suggested that RJ induces the formation of thin hair shafts by suppressing the HFSC proliferation.
Collapse
Affiliation(s)
- Takumi Hamanishi
- Laboratory of Cell and Tissue
Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589 Sapporo, Japan
| | - Haruta Koga
- Laboratory of Cell and Tissue
Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589 Sapporo, Japan
| | - Takanori Nishimura
- Laboratory of Cell and Tissue
Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589 Sapporo, Japan
| | - Ken Kobayashi
- Laboratory of Cell and Tissue
Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589 Sapporo, Japan
| |
Collapse
|
2
|
Sousa P, Lopes B, Sousa AC, Coelho A, de Sousa Moreira A, Rêma A, Gonçalves-Maia M, Amorim I, Alvites R, Alves N, Geuna S, Maurício AC. Isolation, Expansion, and Characterization of Rat Hair Follicle Stem Cells and Their Secretome: Insights into Wound Healing Potential. Biomedicines 2024; 12:2854. [PMID: 39767760 PMCID: PMC11672956 DOI: 10.3390/biomedicines12122854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/23/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Stem cells are capable of self-renewal and differentiation into various specialized cells, making them a potential therapeutic option in regenerative medicine. This study establishes a comprehensive methodology for isolating, culturing, and characterizing rat hair follicle stem cells. Methods and Results: Hair follicles were harvested from Sprague-Dawley rats and subjected to two different isolation techniques. Immunohistochemical analysis and real-time PCR confirm the expression of specific surface markers and genes, validating the cells' identity. Growth kinetics, colony formation units (CFU), and tri-differentiation capacity were also assessed. Additionally, the cells' secretome was analyzed, regarding its content in biofactors with wound healing properties. Conclusions: These findings highlight the potential of these cells as a valuable cell source for skin regeneration applications. They contribute to advancing our understanding of stem cell applications in regenerative medicine and hold promise for therapeutic interventions in various clinical contexts, aligning with broader research on the diverse capabilities of hair follicle stem cells.
Collapse
Affiliation(s)
- Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Alícia de Sousa Moreira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Alexandra Rêma
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Maria Gonçalves-Maia
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Maia & Muller-Biotech, Rua Alfredo Allen, 455/461, 4200-135 Porto, Portugal
| | - Irina Amorim
- Departamento de Patologia e Imunologia Molecular, ICBAS—School of Medicine and Biomedical Sciences, University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Instituto Universitário de Ciências da Saúde (CESPU), Avenida Central de Gandra 1317, 4585-116 Paredes, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal;
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Ospedale San Luigi, 10043 Turin, Italy;
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.C.); (A.d.S.M.); (A.R.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
3
|
Chen Y, Lu Z, Feng J, Chen Z, Liu Z, Wang X, Yan H, Gao C. Novel recombinant R-spondin1 promotes hair regeneration by targeting the Wnt/β-catenin signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1213-1221. [PMID: 37475547 PMCID: PMC10448039 DOI: 10.3724/abbs.2023112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/10/2023] [Indexed: 07/22/2023] Open
Abstract
Roof plate-specific spondin 1 (R-spondin1, RSPO1) is a Wnt/β-catenin signaling pathway activator that binds with Wnt ligands to stimulate the Wnt/β-catenin signaling pathway, which is key to hair regeneration. However, it is not clear whether recombinant RSPO1 (rRSPO1) affects hair regeneration. Here, we treat C57BL/6 male mice with rRSPO1 and investigate the expression of the Wnt/β-catenin signaling pathway and the activation of hair follicle stem cells in the dorsal skin. The mouse skin color score and hair-covered area are determined to describe hair growth, and the skin samples are subjected to H&E staining, western blot analysis and immunofluorescence staining to evaluate hair follicle development and the expressions of Wnt/β-catenin signaling pathway-related proteins. We find that rRSPO1 activates mouse hair follicle stem cells (mHFSCs) and accelerates hair regeneration. rRSPO1 increases the hair-covered area, the number of hair follicles, and the hair follicle diameter and length. Moreover, rRSPO1 enhances the activity of Wnt/β-catenin signaling pathway-related proteins and the expressions of HFSC markers, as well as mHFSC viability. These results indicate that subcutaneous injection of rRSPO1 can improve hair follicle development by activating the Wnt/β-catenin signaling pathway, thereby promoting hair regeneration. This study demonstrates that rRSPO1 has the potential to treat hair loss by activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yijun Chen
- />College of Animal ScienceSouth China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding IndustryGuangzhou510642China
| | - Zhujin Lu
- />College of Animal ScienceSouth China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding IndustryGuangzhou510642China
| | - Jiaxin Feng
- />College of Animal ScienceSouth China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding IndustryGuangzhou510642China
| | - Zefeng Chen
- />College of Animal ScienceSouth China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding IndustryGuangzhou510642China
| | - Zejian Liu
- />College of Animal ScienceSouth China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding IndustryGuangzhou510642China
| | - Xiuqi Wang
- />College of Animal ScienceSouth China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding IndustryGuangzhou510642China
| | - Huichao Yan
- />College of Animal ScienceSouth China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding IndustryGuangzhou510642China
| | - Chunqi Gao
- />College of Animal ScienceSouth China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding IndustryGuangzhou510642China
| |
Collapse
|
4
|
Zhu YF, Qiu WY, Xu YS, Yao YF. Clinical efficacy of a new surgical technique of oral mucosal epithelial transplantation for severe ocular surface disorders. BMC Ophthalmol 2023; 23:145. [PMID: 37029360 PMCID: PMC10080810 DOI: 10.1186/s12886-023-02879-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/22/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Severe ocular surface disorders are one of the major blinding diseases, and a paucity of original tissue obscures successful reconstruction. We developed a new surgical technique of direct oral mucosal epithelial transplantation (OMET) to reconstruct severely damaged ocular surfaces in 2011. This study elaborates on the clinical efficacy of OMET. METHODS A retrospective review of patients with severe ocular surface disorders who underwent OMET from 2011 to 2021 at the Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine was conducted. Patients who were followed up for at least 3 months postoperatively and had sufficient pre or postoperative records were included. Surgical efficacy was evaluated by comparing the best-corrected visual acuity (BCVA), corneal transparency, neovascularization grade, and symblepharon grade. Additionally, postoperative ocular surface impression cytology was used to study the morphology of the newborn epithelial cells. RESULTS Forty-eight patients (49 eyes; mean age: 42.55 ± 12.40 years, range:12-66 years) were enrolled in the study. The etiology included chemical burns (30 eyes), thermal burns (16 eyes), explosive injuries (1 eye), Stevens-Johnson syndrome (1 eye), and multiple pterygiums (1 eye). The mean follow-up period was 25.97 ± 22.99 months. Postoperatively, 29 eyes (59.18%) showed improved corneal transparency, 26 eyes (53.06%) had improved BCVA, 47 eyes (95.92%) had a stable epithelium until the final follow-up, 44 eyes (89.80%) had a reduced neovascularization grade. Of the 20 eyes with preoperative symblepharon, 15 (75%) were completely resolved, and five (25%) were partially resolved. Impression cytological studies showed no postoperative conjunctival invasion onto the corneal surface. CONCLUSIONS OMET is a safe and effective surgical technique for reconstruction in severe ocular surface disorder by maintaining a stable epithelium and reducing the neovascularization and symblepharon grade.
Collapse
Affiliation(s)
- Yuan-Fang Zhu
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory for Corneal Diseases Research of Zhejiang Province, NO. 3 East QingChun Rd, Hangzhou, Zhejiang, China
| | - Wen-Ya Qiu
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory for Corneal Diseases Research of Zhejiang Province, NO. 3 East QingChun Rd, Hangzhou, Zhejiang, China
| | - Ye-Sheng Xu
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory for Corneal Diseases Research of Zhejiang Province, NO. 3 East QingChun Rd, Hangzhou, Zhejiang, China
| | - Yu-Feng Yao
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory for Corneal Diseases Research of Zhejiang Province, NO. 3 East QingChun Rd, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Pooled evidence from preclinical and clinical studies for stem cell-based therapy in ARDS and COVID-19. Mol Cell Biochem 2022; 478:1487-1518. [PMID: 36394787 DOI: 10.1007/s11010-022-04601-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
|
6
|
Yan W, Hao F, Zhe X, Wang Y, Liu D. Neural, adipocyte and hepatic differentiation potential of primary and secondary hair follicle stem cells isolated from Arbas Cashmere goats. BMC Vet Res 2022; 18:313. [PMID: 35971123 PMCID: PMC9377108 DOI: 10.1186/s12917-022-03420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background Arbas Cashmere goats are excellent domestic breeds with high yields of wool and cashmere. Their wool and cashmere can bring huge benefits to the livestock industry. Our studies intend to more fully understand the biological characteristics of hair follicle stem cells (HFSCs) in order to further explore the mechanisms of wool and cashmere regular regeneration. And they have been increasingly considered as promising multipotent cells in regenerative medicine because of their capacity to self-renew and differentiate. However, many aspects of the specific growth characteristics and differentiation ability of HFSCs remain unknown. This study aimed to further explore the growth characteristics and pluripotency of primary hair follicle stem cells (PHFSCs) and secondary hair follicle stem cells (SHFCs). Results We obtained PHFSCs and SHFSCs from Arbas Cashmere goats using combined isolation and purification methods. The proliferation and vitality of the two types of HFSCs, as well as the growth patterns, were examined. HFSC-specific markers and genes related to pluripotency, were subsequently identified. The PHFSCs and SHFSCs of Arbas Cashmere goat have a typical cobblestone morphology. Moreover, the PHFSCs and SHFSCs express HFSC surface markers, including CD34, K14, K15, K19 and LGR5. We also identified pluripotency-associated gene expression, including SOX2, OCT4 and SOX9, in PHFSCs and SHFSCs. Finally, PHFSCs and SHFSCs displayed multipotent abilities. PHFSCs and SHFSCs can be directed to differentiate into adipocyte-like, neural-like, and hepatocyte-like cells. Conclusions In conclusion, this study confirmed that the biological characteristics and differentiation potential of PHFSCs and SHFSCs from Arbas Cashmere goats. These findings broaden and refine our knowledge of types and characteristics of adult stem cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03420-3.
Collapse
Affiliation(s)
- Wei Yan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010021, China
| | - Fei Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010021, China
| | - Xiaoshu Zhe
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010021, China
| | - Yingmin Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010021, China
| | - Dongjun Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
7
|
Li H, Ziemer M, Stojanovic I, Saksida T, Maksimovic-Ivanic D, Mijatovic S, Djmura G, Gajic D, Koprivica I, Krajnovic T, Draca D, Simon JC, Lethaus B, Savkovic V. Mesenchymal Stem Cells From Mouse Hair Follicles Reduce Hypertrophic Scarring in a Murine Wound Healing Model. Stem Cell Rev Rep 2022; 18:2028-2044. [PMID: 35080748 PMCID: PMC9391240 DOI: 10.1007/s12015-021-10288-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 12/11/2022]
Abstract
Wound healing of acute full-thickness injuries and chronic non-healing ulcers leads to delayed wound closure, prolonged recovery period and hypertrophic scarring, generating a demand for an autologous cell therapy and a relevant pre-clinical research models for wound healing. In this study, an immunocompetent model for wound healing was employed using a syngeneic murine cell line of mesenchymal stem cells cultured from the mouse whisker hair follicle outer root sheath (named moMSCORS). moMSCORS were isolated using an air-liquid interface method, expanded in vitro and characterized according to the MSC definition criteria - cell viability, in vitro proliferation, MSC phenotype and multi-lineage differentiations. Moreover, upon applying moMSCORS in an in vivo full-thickness wound model in the syngeneic C57BL/6 mice, the treated wounds displayed different morphology to that of the untreated wound beds. Quantitative evaluation of angiogenesis, granulation and wound closure involving clinical scoring and software-based quantification indicated a lower degree of inflammation in the treated wounds. Histological staining of treated wounds by the means of H&E, Alcian Blue, PicroSirius Red and αSMA immune labelling showed lower cellularity, less collagen filaments as well as thinner dermal and epidermal layers compared with the untreated wounds, indicating a general reduction of hypertrophic scars. The decreased inflammation, accelerated wound closure and non-hypertrophic scarring, which were facilitated by moMSCORS, hereby address a common problem of hypertrophic scars and non-physiological tissue properties upon wound closure, and additionally offer an in vivo model for the autologous cell-based wound healing.
Collapse
Affiliation(s)
- Hanluo Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, 430068, Hubei Province, China.,Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103, Leipzig, Germany
| | - Mirjana Ziemer
- Clinic for Dermatology, Venereology and Allergology, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Ivana Stojanovic
- Institute for Biological Research "Sinisa Stankovic" (IBISS) - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara Saksida
- Institute for Biological Research "Sinisa Stankovic" (IBISS) - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Maksimovic-Ivanic
- Institute for Biological Research "Sinisa Stankovic" (IBISS) - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sanja Mijatovic
- Institute for Biological Research "Sinisa Stankovic" (IBISS) - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Goran Djmura
- Clinic for Dermatology, Venereology and Allergology, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Dragica Gajic
- Institute for Biological Research "Sinisa Stankovic" (IBISS) - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivan Koprivica
- Institute for Biological Research "Sinisa Stankovic" (IBISS) - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara Krajnovic
- Institute for Biological Research "Sinisa Stankovic" (IBISS) - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dijana Draca
- Institute for Biological Research "Sinisa Stankovic" (IBISS) - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jan-Christoph Simon
- Clinic for Dermatology, Venereology and Allergology, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Bernd Lethaus
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103, Leipzig, Germany
| | - Vuk Savkovic
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
8
|
Wen L, Miao Y, Fan Z, Zhang J, Guo Y, Dai D, Huang J, Liu Z, Chen R, Hu Z. Establishment of an Efficient Primary Culture System for Human Hair Follicle Stem Cells Using the Rho-Associated Protein Kinase Inhibitor Y-27632. Front Cell Dev Biol 2021; 9:632882. [PMID: 33748117 PMCID: PMC7973216 DOI: 10.3389/fcell.2021.632882] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Background Hair follicle tissue engineering is a promising strategy for treating hair loss. Human hair follicle stem cells (hHFSCs), which play a key role in the hair cycle, have potential applications in regenerative medicine. However, previous studies did not achieve efficient hHFSC expansion in vitro using feeder cells. Therefore, there is a need to develop an efficient primary culture system for the expansion and maintenance of hHFSCs. Methods The hHFSCs were obtained by two-step proteolytic digestion combined with microscopy. The cell culture dishes were coated with human fibronectin and inoculated with hHFSCs. The hHFSCs were harvested using a differential enrichment procedure. The effect of Rho-associated protein kinase (ROCK) inhibitor Y-27632, supplemented in keratinocyte serum-free medium (K-SFM), on adhesion, proliferation, and stemness of hHFSCs and the underlying molecular mechanisms were evaluated. Results The hHFSCs cultured in K-SFM, supplemented with Y-27632, exhibited enhanced adhesion and proliferation. Additionally, Y-27632 treatment maintained the stemness of hHFSCs and promoted the ability of hHFSCs to regenerate hair follicles in vivo. However, Y-27632-induced proliferation and stemness in hHFSCs were conditional and reversible. Furthermore, Y-27632 maintained propagation and stemness of hHFSCs through the ERK/MAPK pathway. Conclusion An efficient short-term culture system for primary hHFSCs was successfully established using human fibronectin and the ROCK inhibitor Y-27632, which promoted the proliferation, maintained the stemness of hHFSCs and promoted the ability to regenerate hair follicles in vivo. The xenofree culturing method used in this study provided a large number of high-quality seed cells, which have applications in hair follicle tissue engineering and stem cell therapy.
Collapse
Affiliation(s)
- Lihong Wen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhexiang Fan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiarui Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yixuan Guo
- Department of Plastic and Burn Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Damao Dai
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junfei Huang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhen Liu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruosi Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
A crucial role of fibroblast growth factor 2 in the differentiation of hair follicle stem cells toward endothelial cells in a STAT5-dependent manner. Differentiation 2019; 111:70-78. [PMID: 31715508 DOI: 10.1016/j.diff.2019.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 11/23/2022]
Abstract
Fibroblast growth factor (FGF2) is reported to affect the proliferation, differentiation, and survival abilities of stem cells. In this study, we hypothesize that FGF2 might promote the differentiation of hair follicle stem cell (HFSCs) into endothelial cells (ECs), in a manner dependent on STAT5 activation. We first treated human HFSCs with recombinant human FGF2 to determine the involvement of FGF2 in the differentiation of HFSCs. Then the expression of EC-specific markers including von Willebrand factor (vWF), VE-cadherin, CD31, FLT-1, KDR and Tie2 was evaluated using immunofluorescence and flow cytometry, while the expression of HFSC-specific markers such as K15, K19, Lgr5, Sox9 and Lhx2 was determined by flow cytometry. Next, in vitro tube formation was performed to confirm the function of FGF2, and low-density lipoprotein (LDL) uptake by ECs and HFSCs was studied by Dil-acetylated LDL assay. In addition, we transduced FGF2-treated HFSCs with constitutive-active or dominant-negative STAT5A adenovirus vectors. FGF2 up-regulated the expression of EC-specific markers, and promoted the differentiation of HFSCs into ECs, tube formation and LDL uptake. The phosphorylated STAT5 was translocated into the nucleus of HFSCs after FGF2 treatment, but this translocation was blocked by the dominant-negative STAT5A mutant. FGF2 increased the differentiation potential through the activation of STAT5 in vivo. Taken together, we find that FGF2 promotes the differentiation of HFSCs into ECs via activated STAT5, which gives a new perspective on the role of FGF2 in the development of ischemic vascular disease.
Collapse
|