1
|
Yang X, Li Y, Wei Z. Histogram-based analysis for confocal microscope images with immunofluorescent staining: A graphical-user-interface tool. MethodsX 2025; 14:103306. [PMID: 40271047 PMCID: PMC12017866 DOI: 10.1016/j.mex.2025.103306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025] Open
Abstract
Immunofluorescent staining is widely utilized in biomedical research. However, reliable and reproducible quantification remains challenging and often depend on the experience of the raters heavily. As a result, variations caused by different raters or the same rater at different times confound quantitative interpretations. In this study, we propose a histogram-based analytical method to explore the sources of signals at various intensities and, subsequently, identify the signals of interest using the histograms as a reference. Our method aims to alleviate inter-rater and intra-rater inconsistencies and improve the quantification of microscope images with immunofluorescent staining.•Identification of signal sources for image pixels at different intensities•Reduction of quantification variations using the proposed histogram-based analysis.
Collapse
Affiliation(s)
- Xiuli Yang
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, United States
| | - Yuguo Li
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, United States
| | - Zhiliang Wei
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, United States
| |
Collapse
|
2
|
Morton KS, George AJ, Meyer JN. Complex I superoxide anion production is necessary and sufficient for complex I inhibitor-induced dopaminergic neurodegeneration in Caenorhabditis elegans. Redox Biol 2025; 81:103538. [PMID: 39952197 PMCID: PMC11875150 DOI: 10.1016/j.redox.2025.103538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
Parkinson's Disease (PD) is the 2nd most prevalent neurodegenerative disease, but there is currently no cure and limited understanding of the pathogenesis resulting in dopaminergic neurodegeneration. Inhibitors of electron transport chain Complex I (CI) have long been associated with and are now used to model PD, but CI inhibition results in multiple effects including ATP depletion and reactive oxygen species (ROS) generation. The lack of tools to isolate effects of CI inhibition have rendered it difficult to determine which mechanistic step is critical for CI inhibitor-induced dopaminergic neurodegeneration. Here we report that CI-derived superoxide anion, not ATP depletion, is the critical driver of CI inhibitor-induced dopaminergic neurodegeneration in the model organism Caenorhabditis elegans. We first use SuperNova, a light-activated ROS-generating protein, fused to CI to demonstrate that in absence of enzymatic inhibition CI-localized ROS production is sufficient to drive morphological damage and loss of function of the dopaminergic neurons. Second, we prevented superoxide anion production during exposure to the CI inhibitors rotenone and pyridaben and report a full rescue of CI inhibitor-induced degeneration and functional loss, without rescue of inhibitor-induced ATP depletion. We highlight the importance of mitochondrial superoxide anion generation in the pathogenesis of PD and build a foundation for further definition of the pathways activated by mitochondrial ROS that led to neuronal dysfunction and death. Identification of these underlying mechanisms allows for future prevention of toxicant exposure-induced PD based on mechanistic knowledge.
Collapse
Affiliation(s)
| | - Alex J George
- Nicholas School of Environment, Duke University, Durham, NC, USA
| | - Joel N Meyer
- Nicholas School of Environment, Duke University, Durham, NC, USA.
| |
Collapse
|
3
|
Wu P, Vandemeulebroucke L, Claeys M, Bert W, Braeckman BP. The Effect of Axenic Dietary Restriction on the Age-Related Changes in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2024; 79:glae205. [PMID: 39171522 DOI: 10.1093/gerona/glae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Indexed: 08/23/2024] Open
Abstract
Axenic dietary restriction (ADR) is highly effective in extending lifespan of Caenorhabditis elegans, but its effects on healthspan improvement are less well characterized. Using transmission electron microscopy, morphometric analyses, and functional assays, we found ADR can preserve tissue ultrastructure, including the cuticle, epidermis, and intestinal lumen, and reduce age-associated pathologies like gonad degeneration, uterine tumor clusters, pharyngeal deterioration, and intestinal atrophy. However, there was no notable improvement in behavioral and functional metrics. Our results underscore that lifespan extension through ADR does not inherently translate to broad healthspan improvements.
Collapse
Affiliation(s)
- Ping Wu
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
| | - Lieselot Vandemeulebroucke
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
| | - Myriam Claeys
- Nematology Research Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Wim Bert
- Nematology Research Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Bart P Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Schippers P, Rösch G, Sohn R, Holzapfel M, Junker M, Rapp AE, Jenei-Lanzl Z, Drees P, Zaucke F, Meurer A. A Lightweight Browser-Based Tool for Collaborative and Blinded Image Analysis. J Imaging 2024; 10:33. [PMID: 38392082 PMCID: PMC10889326 DOI: 10.3390/jimaging10020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Collaborative manual image analysis by multiple experts in different locations is an essential workflow in biomedical science. However, sharing the images and writing down results by hand or merging results from separate spreadsheets can be error-prone. Moreover, blinding and anonymization are essential to address subjectivity and bias. Here, we propose a new workflow for collaborative image analysis using a lightweight online tool named Tyche. The new workflow allows experts to access images via temporarily valid URLs and analyze them blind in a random order inside a web browser with the means to store the results in the same window. The results are then immediately computed and visible to the project master. The new workflow could be used for multi-center studies, inter- and intraobserver studies, and score validations.
Collapse
Affiliation(s)
- Philipp Schippers
- Department of Orthopedics and Traumatology, University Medical Center of the Johannes Gutenberg, University Mainz, 55131 Mainz, Germany
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany
| | - Gundula Rösch
- Department of Orthopedics (Friedrichsheim), Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany
| | - Rebecca Sohn
- Department of Orthopedics (Friedrichsheim), Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany
| | - Matthias Holzapfel
- Department of Orthopedics (Friedrichsheim), Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany
| | - Marius Junker
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany
- Department of Orthopedics, Tabea Hospital Hamburg, 22587 Hamburg, Germany
| | - Anna E Rapp
- Department of Orthopedics (Friedrichsheim), Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany
| | - Zsuzsa Jenei-Lanzl
- Department of Orthopedics (Friedrichsheim), Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany
| | - Philipp Drees
- Department of Orthopedics and Traumatology, University Medical Center of the Johannes Gutenberg, University Mainz, 55131 Mainz, Germany
| | - Frank Zaucke
- Department of Orthopedics (Friedrichsheim), Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany
| | - Andrea Meurer
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany
- Department of Orthopedics (Friedrichsheim), Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany
- Medical Park St. Hubertus Klinik, 83707 Bad Wiessee, Germany
| |
Collapse
|
5
|
Clark AS, Huayta J, Morton KS, Meyer JN, San-Miguel A. Morphological hallmarks of dopaminergic neurodegeneration are associated with altered neuron function in Caenorhabditis elegans. Neurotoxicology 2024; 100:100-106. [PMID: 38070655 PMCID: PMC10872346 DOI: 10.1016/j.neuro.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Caenorhabditis elegans (C. elegans) is an excellent model system to study neurodegenerative diseases, such as Parkinson's disease, as it enables analysis of both neuron morphology and function in live animals. Multiple structural changes in neurons, such as cephalic dendrite morphological abnormalities, have been considered hallmarks of neurodegeneration in this model, but their relevance to changes in neuron function are not entirely clear. We sought to test whether hallmark morphological changes associated with chemically induced dopaminergic neuron degeneration, such as dendrite blebbing, breakage, and loss, are indicative of neuronal malfunction and result in changes in behavior. We adapted an established dopaminergic neuronal function assay by measuring paralysis in the presence of exogenous dopamine, which revealed clear differences between cat-2 dopamine deficient mutants, wildtype worms, and dat-1 dopamine abundant mutants. Next, we integrated an automated image processing algorithm and a microfluidic device to segregate worm populations by their cephalic dendrite morphologies. We show that nematodes with dopaminergic dendrite degeneration markers, such as blebbing or breakage, paralyze at higher rates in a dopamine solution, providing evidence that dopaminergic neurodegeneration morphologies are correlated with functional neuronal outputs.
Collapse
Affiliation(s)
- Andrew S Clark
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Javier Huayta
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | | | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Adriana San-Miguel
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
6
|
Morton KS, Hartman JH, Heffernan N, Ryde IT, Kenny-Ganzert IW, Meng L, Sherwood DR, Meyer JN. Chronic high-sugar diet in adulthood protects Caenorhabditis elegans from 6-OHDA-induced dopaminergic neurodegeneration. BMC Biol 2023; 21:252. [PMID: 37950228 PMCID: PMC10636816 DOI: 10.1186/s12915-023-01733-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Diets high in saturated fat and sugar, termed "Western diets," have been associated with several negative health outcomes, including increased risk for neurodegenerative disease. Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and is characterized by the progressive death of dopaminergic neurons in the brain. We build upon previous work characterizing the impact of high-sugar diets in Caenorhabditis elegans to mechanistically evaluate the relationship between high-sugar diets and dopaminergic neurodegeneration. RESULTS Adult high-glucose and high-fructose diets, or exposure from day 1 to 5 of adulthood, led to increased lipid content, shorter lifespan, and decreased reproduction. However, in contrast to previous reports, we found that adult chronic high-glucose and high-fructose diets did not induce dopaminergic neurodegeneration alone and were protective from 6-hydroxydopamine (6-OHDA) induced degeneration. Neither sugar altered baseline electron transport chain function and both increased vulnerability to organism-wide ATP depletion when the electron transport chain was inhibited, arguing against energetic rescue as a basis for neuroprotection. The induction of oxidative stress by 6-OHDA is hypothesized to contribute to its pathology, and high-sugar diets prevented this increase in the soma of the dopaminergic neurons. However, we did not find increased expression of antioxidant enzymes or glutathione levels. Instead, we found evidence suggesting downregulation of the dopamine reuptake transporter dat-1 that could result in decreased 6-OHDA uptake. CONCLUSIONS Our work uncovers a neuroprotective role for high-sugar diets, despite concomitant decreases in lifespan and reproduction. Our results support the broader finding that ATP depletion alone is insufficient to induce dopaminergic neurodegeneration, whereas increased neuronal oxidative stress may drive degeneration. Finally, our work highlights the importance of evaluating lifestyle by toxicant interactions.
Collapse
Affiliation(s)
| | - Jessica H Hartman
- Nicholas School of Environment, Duke University, Durham, USA
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, USA
| | | | - Ian T Ryde
- Nicholas School of Environment, Duke University, Durham, USA
| | | | - Lingfeng Meng
- Nicholas School of Environment, Duke University, Durham, USA
| | | | - Joel N Meyer
- Nicholas School of Environment, Duke University, Durham, USA.
| |
Collapse
|
7
|
Morton KS, Hartman JS, Heffernan N, Ryde I, Kenny-Ganzert IW, Meng L, Sherwood DR, Meyer JN. Chronic high-sugar diet in adulthood protects Caenorhabditis elegans from 6-OHDA induced dopaminergic neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542737. [PMID: 37398434 PMCID: PMC10312447 DOI: 10.1101/2023.05.29.542737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
BACKGROUND Diets high in saturated fat and sugar, termed western diets, have been associated with several negative health outcomes, including increased risk for neurodegenerative disease. Parkinson s Disease (PD) is the second most prevalent neurodegenerative disease and is characterized by the progressive death of dopaminergic neurons in the brain. We build upon previous work characterizing the impact of high sugar diets in Caenorhabditis elegans to mechanistically evaluate the relationship between high sugar diets and dopaminergic neurodegeneration. RESULTS Non-developmental high glucose and fructose diets led to increased lipid content and shorter lifespan and decreased reproduction. However, in contrast to previous reports, we found that non-developmental chronic high-glucose and high-fructose diets did not induce dopaminergic neurodegeneration alone and were protective from 6-hydroxydopamine (6-OHDA) induced degeneration. Neither sugar altered baseline electron transport chain function, and both increased vulnerability to organism-wide ATP depletion when the electron transport chain was inhibited, arguing against energetic rescue as a basis for neuroprotection. The induction of oxidative stress by 6-OHDA is hypothesized to contribute to its pathology, and high sugar diets prevented this increase in the soma of the dopaminergic neurons. However, we did not find increased expression of antioxidant enzymes or glutathione levels. Instead, we found evidence suggesting alterations to dopamine transmission that could result in decreased 6-OHDA uptake. CONCLUSION Our work uncovers a neuroprotective role for high sugar diets, despite concomitant decreases in lifespan and reproduction. Our results support the broader finding that ATP depletion alone is insufficient to induce dopaminergic neurodegeneration, whereas increased neuronal oxidative stress may drive degeneration. Finally, our work highlights the importance of evaluating lifestyle by toxicant interactions.
Collapse
|
8
|
Schippers P, Meurer A, Schnetz M, Ewald L, Ruckes C, Hoffmann R, Gramlich Y. A Novel Tool for Collaborative and Blinded Orthopedic Image Analysis. Life (Basel) 2023; 13:1805. [PMID: 37763209 PMCID: PMC10532740 DOI: 10.3390/life13091805] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Image analysis plays a central role in orthopedics and research but comes with many challenges, including anonymization, bias, and achieving efficient analyses using multiple independent observers. Appropriate software is still lacking. Tyche is a free online tool that displays images in a random order without showing any metadata. Additionally, when using Tyche, observers can store results in the same window, and the final results are immediately visible to the project manager. In this study, we compared results from Tyche with those from a validated tool. One hundred pelvic radiographs were analyzed separately by five orthopedic surgeons using both Tyche and the validated software. Common orthopedic measurement modalities and scores were determined. The methods were compared using intra-class correlations and Fleiss' kappa coefficients as well as Bland-Altman plots. Significant correlations ranging from r = 0.17 (Kallgren and Lawrence Score) to r = 0.99 (area measurements) were calculated for inter- and intraobserver agreements between the two tools for all measurements. The Bland-Altman plots indicated the non-inferiority of either tool. The images were analyzed significantly faster when Tyche was used. We conclude that Tyche is a valid tool for use in orthopedic image analysis. Tyche could be utilized for determining inter- and intraobserver agreements, in multicenter studies and for score validations.
Collapse
Affiliation(s)
- Philipp Schippers
- Department of Orthopedic Surgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Andrea Meurer
- Medical Park Kliniken Bad Wiessee, 83707 Bad Wiessee, Germany;
| | - Matthias Schnetz
- BG Unfallklinik Frankfurt am Main gGmbH, 60389 Frankfurt am Main, Germany (L.E.); (Y.G.)
| | - Larissa Ewald
- BG Unfallklinik Frankfurt am Main gGmbH, 60389 Frankfurt am Main, Germany (L.E.); (Y.G.)
| | - Christian Ruckes
- Interdisciplinary Centre for Clinical Trials Mainz, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| | - Reinhard Hoffmann
- BG Unfallklinik Frankfurt am Main gGmbH, 60389 Frankfurt am Main, Germany (L.E.); (Y.G.)
| | - Yves Gramlich
- BG Unfallklinik Frankfurt am Main gGmbH, 60389 Frankfurt am Main, Germany (L.E.); (Y.G.)
| |
Collapse
|
9
|
Clark AS, Huayta J, Morton KS, Meyer JN, San-Miguel A. Morphological hallmarks of dopaminergic neurodegeneration are associated with altered neuron function in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554364. [PMID: 37662210 PMCID: PMC10473754 DOI: 10.1101/2023.08.22.554364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Caenorhabditis elegans (C. elegans) is an excellent model system to study neurodegenerative diseases, such as Parkinson's disease, as it enables analysis of both neuron morphology and function in live animals. Multiple structural changes in neurons, such as cephalic dendrite morphological abnormalities, have been considered hallmarks of neurodegeneration in this model, but their relevance to changes in neuron function are not entirely clear. We sought to test whether hallmark morphological changes associated with chemically induced dopaminergic neuron degeneration, such as dendrite blebbing, breakage, and loss, are indicative of neuronal malfunction and result in changes in behavior. We adapted an established dopaminergic neuronal function assay by measuring paralysis in the presence of exogenous dopamine, which revealed clear differences between cat-2 dopamine deficient mutants, wildtype worms, and dat-1 dopamine abundant mutants. Next, we integrated an automated image processing algorithm and a microfluidic device to segregate worm populations by their cephalic dendrite morphologies. We show that nematodes with dopaminergic dendrite degeneration markers, such as blebbing or breakage, paralyze at higher rates in a dopamine solution, providing evidence that dopaminergic neurodegeneration morphologies are correlated with functional neuronal outputs.
Collapse
Affiliation(s)
- Andrew S Clark
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Javier Huayta
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Katherine S Morton
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Adriana San-Miguel
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
10
|
Clark AS, Kalmanson Z, Morton K, Hartman J, Meyer J, San-Miguel A. An unbiased, automated platform for scoring dopaminergic neurodegeneration in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526781. [PMID: 36778421 PMCID: PMC9915681 DOI: 10.1101/2023.02.02.526781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Caenorhabditis elegans ( C. elegans ) has served as a simple model organism to study dopaminergic neurodegeneration, as it enables quantitative analysis of cellular and sub-cellular morphologies in live animals. These isogenic nematodes have a rapid life cycle and transparent body, making high-throughput imaging and evaluation of fluorescently tagged neurons possible. However, the current state-of-the-art method for quantifying dopaminergic degeneration requires researchers to manually examine images and score dendrites into groups of varying levels of neurodegeneration severity, which is time consuming, subject to bias, and limited in data sensitivity. We aim to overcome the pitfalls of manual neuron scoring by developing an automated, unbiased image processing algorithm to quantify dopaminergic neurodegeneration in C. elegans . The algorithm can be used on images acquired with different microscopy setups and only requires two inputs: a maximum projection image of the four cephalic neurons in the C. elegans head and the pixel size of the user’s camera. We validate the platform by detecting and quantifying neurodegeneration in nematodes exposed to rotenone, cold shock, and 6-hydroxydopamine using 63x epifluorescence, 63x confocal, and 40x epifluorescence microscopy, respectively. Analysis of tubby mutant worms with altered fat storage showed that, contrary to our hypothesis, increased adiposity did not sensitize to stressor-induced neurodegeneration. We further verify the accuracy of the algorithm by comparing code-generated, categorical degeneration results with manually scored dendrites of the same experiments. The platform, which detects 19 different metrics of neurodegeneration, can provide comparative insight into how each exposure affects dopaminergic neurodegeneration patterns.
Collapse
Affiliation(s)
- Andrew S Clark
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Zachary Kalmanson
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Katherine Morton
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Jessica Hartman
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Joel Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Adriana San-Miguel
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
11
|
Grundy TJ, Orcheston-Findlay L, de Silva E, Jegathees T, Prior V, Sarker FA, O'Neill GM. Mechanosensitive expression of the mesenchymal subtype marker connective tissue growth factor in glioblastoma. Sci Rep 2022; 12:14982. [PMID: 36056123 PMCID: PMC9440209 DOI: 10.1038/s41598-022-19175-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/25/2022] [Indexed: 12/05/2022] Open
Abstract
Mechanical forces created by the extracellular environment regulate biochemical signals that modulate the inter-related cellular phenotypes of morphology, proliferation, and migration. A stiff microenvironment induces glioblastoma (GBM) cells to develop prominent actin stress fibres, take on a spread morphology and adopt trapezoid shapes, when cultured in 2D, which are phenotypes characteristic of a mesenchymal cell program. The mesenchymal subtype is the most aggressive among the molecular GBM subtypes. Recurrent GBM have been reported to transition to mesenchymal. We therefore sought to test the hypothesis that stiffer microenvironments-such as those found in different brain anatomical structures and induced following treatment-contribute to the expression of markers characterising the mesenchymal subtype. We cultured primary patient-derived cell lines that reflect the three common GBM subtypes (mesenchymal, proneural and classical) on polyacrylamide (PA) hydrogels with controlled stiffnesses spanning the healthy and pathological tissue range. We then assessed the canonical mesenchymal markers Connective Tissue Growth Factor (CTGF) and yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) expression, via immunofluorescence. Replating techniques and drug-mediated manipulation of the actin cytoskeleton were utilised to ascertain the response of the cells to differing mechanical environments. We demonstrate that CTGF is induced rapidly following adhesion to a rigid substrate and is independent of actin filament formation. Collectively, our data suggest that microenvironmental rigidity can stimulate expression of mesenchymal-associated molecules in GBM.
Collapse
Affiliation(s)
- Thomas James Grundy
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| | - Louise Orcheston-Findlay
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| | - Eshana de Silva
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| | - Thuvarahan Jegathees
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
- Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, 2006, Australia
| | - Victoria Prior
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
- Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, 2006, Australia
| | - Farhana Amy Sarker
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
- Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, 2006, Australia
| | - Geraldine Margaret O'Neill
- Children's Cancer Research Unit, Kids Research Institute at the Children's Hospital at Westmead, Westmead, NSW, 2145, Australia.
- Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, 2006, Australia.
| |
Collapse
|
12
|
Leuthner T, Benzing L, Kohrn B, Bergemann C, Hipp M, Hershberger K, Mello D, Sokolskyi T, Stevenson K, Merutka I, Seay S, Gregory S, Kennedy S, Meyer J. Resistance of mitochondrial DNA to cadmium and Aflatoxin B1 damage-induced germline mutation accumulation in C. elegans. Nucleic Acids Res 2022; 50:8626-8642. [PMID: 35947695 PMCID: PMC9410910 DOI: 10.1093/nar/gkac666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 01/12/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is prone to mutation in aging and over evolutionary time, yet the processes that regulate the accumulation of de novo mtDNA mutations and modulate mtDNA heteroplasmy are not fully elucidated. Mitochondria lack certain DNA repair processes, which could contribute to polymerase error-induced mutations and increase susceptibility to chemical-induced mtDNA mutagenesis. We conducted error-corrected, ultra-sensitive Duplex Sequencing to investigate the effects of two known nuclear genome mutagens, cadmium and Aflatoxin B1, on germline mtDNA mutagenesis in Caenorhabditis elegans. Detection of thousands of mtDNA mutations revealed pervasive heteroplasmy in C. elegans and that mtDNA mutagenesis is dominated by C:G → A:T mutations generally attributed to oxidative damage. However, there was no effect of either exposure on mtDNA mutation frequency, spectrum, or trinucleotide context signature despite a significant increase in nuclear mutation rate after aflatoxin B1 exposure. Mitophagy-deficient mutants pink-1 and dct-1 accumulated significantly higher levels of mtDNA damage compared to wild-type C. elegans after exposures. However, there were only small differences in mtDNA mutation frequency, spectrum, or trinucleotide context signature compared to wild-type after 3050 generations, across all treatments. These findings suggest mitochondria harbor additional previously uncharacterized mechanisms that regulate mtDNA mutational processes across generations.
Collapse
Affiliation(s)
- Tess C Leuthner
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Laura Benzing
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Brendan F Kohrn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Michael J Hipp
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Danielle F Mello
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Tymofii Sokolskyi
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Kevin Stevenson
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - Ilaria R Merutka
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Sarah A Seay
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA,Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Joel N Meyer
- To whom correspondence should be addressed. Tel: +1 919 613 8109;
| |
Collapse
|
13
|
Markovich ZR, Hartman JH, Ryde IT, Hershberger KA, Joyce AS, Ferguson PL, Meyer JN. Mild pentachlorophenol-mediated uncoupling of mitochondria depletes ATP but does not cause an oxidized redox state or dopaminergic neurodegeneration in Caenorhabditis elegans. Curr Res Toxicol 2022; 3:100084. [PMID: 35957653 PMCID: PMC9361317 DOI: 10.1016/j.crtox.2022.100084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022] Open
Abstract
Aims Mitochondrial dysfunction is implicated in several diseases, including neurological disorders such as Parkinson's disease. However, there is uncertainty about which of the many mechanisms by which mitochondrial function can be disrupted may lead to neurodegeneration. Pentachlorophenol (PCP) is an organic pollutant reported to cause mitochondrial dysfunction including oxidative stress and mitochondrial uncoupling. We investigated the effects of PCP exposure in Caenorhabditis elegans, including effects on mitochondria and dopaminergic neurons. We hypothesized that mild mitochondrial uncoupling by PCP would impair bioenergetics while decreasing oxidative stress, and therefore would not cause dopaminergic neurodegeneration. Results A 48-hour developmental exposure to PCP causing mild growth delay (∼10 % decrease in growth during 48 h, covering all larval stages) reduced whole-organism ATP content > 50 %, and spare respiratory capacity ∼ 30 %. Proton leak was also markedly increased. These findings suggest a main toxic mechanism of mitochondrial uncoupling rather than oxidative stress, which was further supported by a concomitant shift toward a more reduced cellular redox state measured at the whole organism level. However, exposure to PCP did not cause dopaminergic neurodegeneration, nor did it sensitize animals to a neurotoxic challenge with 6-hydroxydopamine. Whole-organism uptake and PCP metabolism measurements revealed low overall uptake of PCP in our experimental conditions (50 μM PCP in the liquid exposure medium resulted in organismal concentrations of < 0.25 μM), and no measurable production of the oxidative metabolites tetra-1,4-benzoquinone and tetrachloro-p-hydroquinone. Innovation This study provides new insights into the mechanistic interplay between mitochondrial uncoupling, oxidative stress, and neurodegeneration in C. elegans. These findings support the premise of mild uncoupling-mediated neuroprotection, but are inconsistent with proposed broad "mitochondrial dysfunction"-mediated neurodegeneration models, and highlight the utility of the C. elegans model for studying mitochondrial and neurotoxicity. Conclusions Developmental exposure to pentachlorophenol causes gross toxicological effects (growth delay and arrest) at high levels. At a lower level of exposure, still causing mild growth delay, we observed mitochondrial dysfunction including uncoupling and decreased ATP levels. However, this was associated with a more-reduced cellular redox tone and did not exacerbate dopaminergic neurotoxicity of 6-hydroxydopamine, instead trending toward protection. These findings may be informative of efforts to define nuanced mitochondrial dysfunction-related adverse outcome pathways that will differ depending on the form of initial mitochondrial toxicity.
Collapse
Affiliation(s)
| | - Jessica H. Hartman
- Nicholas School of the Environment, Duke University, Durham, NC 27708-0328, USA
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ian T. Ryde
- Nicholas School of the Environment, Duke University, Durham, NC 27708-0328, USA
| | | | - Abigail S. Joyce
- Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Patrick L. Ferguson
- Nicholas School of the Environment, Duke University, Durham, NC 27708-0328, USA
- Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, NC 27708-0328, USA
| |
Collapse
|
14
|
Dhondt I, Verschuuren C, Zečić A, Loier T, Braeckman BP, De Vos WH. Prediction of biological age by morphological staging of sarcopenia in Caenorhabditis elegans. Dis Model Mech 2021; 14:272684. [PMID: 34723324 PMCID: PMC8649172 DOI: 10.1242/dmm.049169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/25/2021] [Indexed: 02/01/2023] Open
Abstract
Sarcopenia encompasses a progressive decline in muscle quantity and quality. Given its close association with ageing, it may represent a valuable healthspan marker. The commonalities with human muscle structure and facile visualization possibilities make Caenorhabditis elegans an attractive model for studying the relationship between sarcopenia and healthspan. However, classical visual assessment of muscle architecture is subjective and has low throughput. To resolve this, we have developed an image analysis pipeline for the quantification of muscle integrity in confocal microscopy images from a cohort of ageing myosin::GFP reporter worms. We extracted a variety of morphological descriptors and found a subset to scale linearly with age. This allowed establishing a linear model that predicts biological age from a morphological muscle signature. To validate the model, we evaluated muscle architecture in long-lived worms that are known to experience delayed sarcopenia by targeted knockdown of the daf-2 gene. We conclude that quantitative microscopy allows for staging sarcopenia in C. elegans and may foster the development of image-based screens in this model organism to identify modulators that mitigate age-related muscle frailty and thus improve healthspan. Summary: A tool for quantitative image analysis of muscle deterioration that allows predicting healthspan in the nematode model Caenorhabditis elegans and may lead to the first C. elegans-based high-throughput sarcopenia screening platform.
Collapse
Affiliation(s)
- Ineke Dhondt
- Biology Department, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Clara Verschuuren
- Biology Department, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Aleksandra Zečić
- Biology Department, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Tim Loier
- Biology Department, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Bart P Braeckman
- Biology Department, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
15
|
Swim exercise in Caenorhabditis elegans extends neuromuscular and gut healthspan, enhances learning ability, and protects against neurodegeneration. Proc Natl Acad Sci U S A 2019; 116:23829-23839. [PMID: 31685639 PMCID: PMC6876156 DOI: 10.1073/pnas.1909210116] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Exercise is a powerful antiaging intervention that protects against cardiovascular disease, dementia, diabetes, sarcopenia, and cancer. How exercise promotes health benefits to multiple tissues in the body, however, remains poorly understood. We establish a young adult swim exercise regimen for the short-lived nematode Caenorhabditis elegans that induces health benefits at the neuromuscular, intestinal, and cognitive levels and protects against neurodegeneration in models of tauopathy, Alzheimer’s disease, and Huntington’s disease. Importantly, we found that swim exercise performed exclusively in early adulthood promotes long-lasting systemic benefits that are still detectable in midlife. The advantages of C. elegans as a short-lived genetic model will allow for dissection of the molecular circuitry involved in system-wide exercise benefits. Regular physical exercise is the most efficient and accessible intervention known to promote healthy aging in humans. The molecular and cellular mechanisms that mediate system-wide exercise benefits, however, remain poorly understood, especially as applies to tissues that do not participate directly in training activity. The establishment of exercise protocols for short-lived genetic models will be critical for deciphering fundamental mechanisms of transtissue exercise benefits to healthy aging. Here we document optimization of a long-term swim exercise protocol for Caenorhabditis elegans and we demonstrate its benefits to diverse aging tissues, even if exercise occurs only during a restricted phase of adulthood. We found that multiple daily swim sessions are essential for exercise adaptation, leading to body wall muscle improvements in structural gene expression, locomotory performance, and mitochondrial morphology. Swim exercise training enhances whole-animal health parameters, such as mitochondrial respiration and midlife survival, increases functional healthspan of the pharynx and intestine, and enhances nervous system health by increasing learning ability and protecting against neurodegeneration in models of tauopathy, Alzheimer’s disease, and Huntington’s disease. Remarkably, swim training only during early adulthood induces long-lasting systemic benefits that in several cases are still detectable well into midlife. Our data reveal the broad impact of swim exercise in promoting extended healthspan of multiple C. elegans tissues, underscore the potency of early exercise experience to influence long-term health, and establish the foundation for exploiting the powerful advantages of this genetic model for the dissection of the exercise-dependent molecular circuitry that confers system-wide health benefits to aging adults.
Collapse
|