1
|
Zhang J, Takacs CN, McCausland JW, Mueller EA, Buron J, Thappeta Y, Wachter J, Rosa PA, Jacobs-Wagner C. Borrelia burgdorferi loses essential genetic elements and cell proliferative potential during stationary phase in culture but not in the tick vector. J Bacteriol 2025; 207:e0045724. [PMID: 39950812 PMCID: PMC11925233 DOI: 10.1128/jb.00457-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/06/2025] [Indexed: 02/19/2025] Open
Abstract
The Lyme disease agent Borrelia burgdorferi is a polyploid bacterium with a segmented genome in which both the chromosome and over 20 distinct plasmids are present in multiple copies per cell. This pathogen can survive for at least 9 months in its tick vector in an apparent dormant state between blood meals, without losing cell proliferative capability when re-exposed to nutrients. Cultivated B. burgdorferi cells grown to stationary phase or resuspended in nutrient-limited media are often used to study the effects of nutrient deprivation. However, a thorough assessment of the spirochete's ability to recover from nutrient depletion has been lacking. Our study shows that starved B. burgdorferi cultures rapidly lose cell proliferative ability. Loss of genetic elements essential for cell proliferation contributes to the observed proliferative defect in stationary phase. The gradual decline in copies of genetic elements is not perfectly synchronized between chromosomes and plasmids, generating cells that harbor one or more copies of the essential chromosome but lack all copies of one or more non-essential plasmids. This phenomenon likely contributes to the well-documented issue of plasmid loss during in vitro cultivation of B. burgdorferi. In contrast, B. burgdorferi cells from ticks starved for 14 months showed no evidence of reduced cell proliferative ability or plasmid loss. Beyond their practical implications for studying B. burgdorferi, these findings suggest that the midgut of the tick vector offers a unique environment that supports the maintenance of B. burgdorferi's segmented genome and cell proliferative potential during periods of tick fasting.IMPORTANCEBorrelia burgdorferi causes Lyme disease, a prevalent tick-borne illness. B. burgdorferi must survive long periods (months to a year) of apparent dormancy in the midgut of the tick vector between blood meals. Resilience to starvation is a common trait among bacteria. However, this study reveals that, in laboratory cultures, B. burgdorferi poorly endures starvation and rapidly loses viability. This decline is linked to a gradual loss of genetic elements required for cell proliferation. These results suggest that the persistence of B. burgdorferi in nature is likely shaped more by unique environmental conditions in the midgut of the tick vector than by an innate ability of this bacterium to endure nutrient deprivation.
Collapse
Affiliation(s)
- Jessica Zhang
- Department of Biology, Stanford University, Stanford, California, USA
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
| | - Constantin N Takacs
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Joshua W McCausland
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Elizabeth A Mueller
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Jeline Buron
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Yashna Thappeta
- Department of Biology, Stanford University, Stanford, California, USA
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
| | - Jenny Wachter
- National Institutes of Health, Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - Patricia A Rosa
- National Institutes of Health, Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - Christine Jacobs-Wagner
- Department of Biology, Stanford University, Stanford, California, USA
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
2
|
Oppler ZJ, Prusinski MA, O’Keeffe KR, Pearson P, Rich SM, Falco RC, Vinci V, O’Connor C, Haight J, Backenson PB, Brisson D. Population dynamics of the Lyme disease bacterium, Borrelia burgdorferi, during rapid range expansion in New York State. Mol Ecol 2024; 33:e17480. [PMID: 39034651 PMCID: PMC11303095 DOI: 10.1111/mec.17480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/12/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Recent changes in climate and human land-use have resulted in alterations of the geographic range of many species, including human pathogens. Geographic range expansion and population growth of human pathogens increase human disease risk. Relatively little empirical work has investigated the impact of range changes on within-population variability, a contributor to both colonization success and adaptive potential, during the precise time in which populations are colonized. This is likely due to the difficulties of collecting appropriate natural samples during the dynamic phase of migration and colonization. We systematically collected blacklegged ticks (Ixodes scapularis) across New York State (NY), USA, between 2006 and 2019, a time period coinciding with a rapid range expansion of ticks and their associated pathogens including Borrelia burgdorferi, the etiological agent of Lyme disease. These samples provide a unique opportunity to investigate the population dynamics of human pathogens as they expand into novel territory. We observed that founder effects were short-lived, as gene flow from long-established populations brought almost all B. burgdorferi lineages to newly colonized populations within just a few years of colonization. By 7 years post-colonization, B. burgdorferi lineage frequency distributions were indistinguishable from long-established sites, indicating that local B. burgdorferi populations experience similar selective pressures despite geographic separation. The B. burgdorferi lineage dynamics elucidate the processes underlying the range expansion and demonstrate that migration into, and selection within, newly colonized sites operate on different time scales.
Collapse
Affiliation(s)
- Zachary J. Oppler
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Kayleigh R. O’Keeffe
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Patrick Pearson
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Stephen M. Rich
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Richard C. Falco
- New York State Department of Health, Bureau of Communicable Disease Control, Fordham University Louis Calder Center, Armonk, New York, USA
| | - Vanessa Vinci
- New York State Department of Health, Bureau of Communicable Disease Control, Fordham University Louis Calder Center, Armonk, New York, USA
| | - Collin O’Connor
- New York State Department of Health, Bureau of Communicable Disease Control, Buffalo State University, Buffalo, New York, USA
| | - Jamie Haight
- New York State Department of Health, Bureau of Communicable Disease Control, Chautauqua County Department of Public Works, Falconer, New York, USA
| | | | - Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Foor SD, Brangulis K, Shakya AK, Rana VS, Bista S, Kitsou C, Ronzetti M, Alreja AB, Linden SB, Altieri AS, Baljinnyam B, Akopjana I, Nelson DC, Simeonov A, Herzberg O, Caimano MJ, Pal U. A unique borrelial protein facilitates microbial immune evasion. mBio 2023; 14:e0213523. [PMID: 37830812 PMCID: PMC10653885 DOI: 10.1128/mbio.02135-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Lyme disease is a major tick-borne infection caused by a bacterial pathogen called Borrelia burgdorferi, which is transmitted by ticks and affects hundreds of thousands of people every year. These bacterial pathogens are distinct from other genera of microbes because of their distinct features and ability to transmit a multi-system infection to a range of vertebrates, including humans. Progress in understanding the infection biology of Lyme disease, and thus advancements towards its prevention, are hindered by an incomplete understanding of the microbiology of B. burgdorferi, partly due to the occurrence of many unique borrelial proteins that are structurally unrelated to proteins of known functions yet are indispensable for pathogen survival. We herein report the use of diverse technologies to examine the structure and function of a unique B. burgdorferi protein, annotated as BB0238-an essential virulence determinant. We show that the protein is structurally organized into two distinct domains, is involved in multiplex protein-protein interactions, and facilitates tick-to-mouse pathogen transmission by aiding microbial evasion of early host cellular immunity. We believe that our findings will further enrich our understanding of the microbiology of B. burgdorferi, potentially impacting the future development of novel prevention strategies against a widespread tick-transmitted infection.
Collapse
Affiliation(s)
- Shelby D. Foor
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Kalvis Brangulis
- Latvian Biomedical Research and Study Centre, Riga, Latvia
- Department of Human Physiology and Biochemistry, Riga Stradins University, Riga, Latvia
| | - Anil K. Shakya
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Vipin S. Rana
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Sandhya Bista
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Michael Ronzetti
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Adit B. Alreja
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Sara B. Linden
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Amanda S. Altieri
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Inara Akopjana
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Daniel C. Nelson
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Osnat Herzberg
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Melissa J. Caimano
- Departments of Medicine, Pediatrics, and Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
- Virginia-Maryland College of Veterinary Medicine, College Park, Maryland, USA
| |
Collapse
|
4
|
López Y, Muñoz-Leal S, Martínez C, Guzmán C, Calderón A, Martínez J, Galeano K, Muñoz M, Ramírez JD, Faccini-Martínez ÁA, Mattar S. Molecular evidence of Borrelia spp. in bats from Córdoba Department, northwest Colombia. Parasit Vectors 2023; 16:5. [PMID: 36604762 DOI: 10.1186/s13071-022-05614-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The genus Borrelia is composed of two well-defined monophyletic groups, the Borrelia burgdorferi sensu lato complex (Bb) and the relapsing fever (RF) group borreliae. Recently, a third group, associated with reptiles and echidnas, has been described. In general, RF group borreliae use rodents as reservoir hosts; although neotropical bats may also be involved as important hosts, with scarce knowledge regarding this association. The objective of this study was to detect the presence of Borrelia spp. DNA in bats from the department of Córdoba in northwest Colombia. METHODS During September 2020 and June 2021, 205 bats were captured in six municipalities of Córdoba department, Colombia. Specimens were identified using taxonomic keys and DNA was extracted from spleen samples. A Borrelia-specific real-time PCR was performed for the 16S rRNA gene. Fragments of the 16S rRNA and flaB genes were amplified in the positive samples by conventional PCR. The detected amplicons were sequenced by the Sanger method. Phylogenetic reconstruction was performed in IQ-TREE with maximum likelihood based on the substitution model TPM3+F+I+G4 with bootstrap values deduced from 1000 replicates. RESULTS Overall, 10.2% (21/205) of the samples were found positive by qPCR; of these, 81% (17/21) and 66.6% (14/21) amplified 16S rRNA and flaB genes, respectively. qPCR-positive samples were then subjected to conventional nested and semi-nested PCR to amplify 16S rRNA and flaB gene fragments. Nine positive samples for both genes were sequenced, and seven and six sequences were of good quality for the 16S rRNA and flaB genes, respectively. The DNA of Borrelia spp. was detected in the insectivorous and fruit bats Artibeus lituratus, Carollia perspicillata, Glossophaga soricina, Phyllostomus discolor, and Uroderma sp. The 16S rRNA gene sequences showed 97.66-98.47% identity with "Borrelia sp. clone Omi3," "Borrelia sp. RT1S," and Borrelia sp. 2374; the closest identities for the flaB gene were 94.02-98.04% with "Borrelia sp. Macaregua." For the 16S rRNA gene, the phylogenetic analysis showed a grouping with "Candidatus Borrelia ivorensis" and "Ca. Borrelia africana," and for the flaB gene showed a grouping with Borrelia sp. Macaregua and Borrelia sp. Potiretama. The pathogenic role of the Borrelia detected in this study is unknown. CONCLUSIONS We describe the first molecular evidence of Borrelia spp. in the department of Córdoba, Colombia, highlighting that several bat species harbor Borrelia spirochetes.
Collapse
Affiliation(s)
- Yesica López
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Córdoba, Colombia
| | - Sebastián Muñoz-Leal
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Caty Martínez
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Córdoba, Colombia
| | - Camilo Guzmán
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Córdoba, Colombia
| | - Alfonso Calderón
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Córdoba, Colombia
| | - Jairo Martínez
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Córdoba, Colombia
| | - Ketty Galeano
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Córdoba, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.,Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Álvaro A Faccini-Martínez
- Research Institute, Fundación Universitaria de Ciencias de la Salud-FUCS, Bogotá, Colombia.,Servicios y Asesorías en Infectología-SAI, Bogotá, Colombia
| | - Salim Mattar
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Córdoba, Colombia.
| |
Collapse
|
5
|
FtlA and FtlB Are Candidates for Inclusion in a Next-Generation Multiantigen Subunit Vaccine for Lyme Disease. Infect Immun 2022; 90:e0036422. [PMID: 36102656 PMCID: PMC9584329 DOI: 10.1128/iai.00364-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lyme disease (LD) is a tick-transmitted bacterial infection caused by Borreliella burgdorferi and other closely related species collectively referred to as the LD spirochetes. The LD spirochetes encode an uncharacterized family of proteins originally designated protein family twelve (PF12). In B. burgdorferi strain B31, PF12 consists of four plasmid-carried genes, encoding BBK01, BBG01, BBH37, and BBJ08. Henceforth, we designate the PF12 proteins family twelve lipoprotein (Ftl) A (FtlA) (BBK01), FtlB (BBG01), FtlC (BBH37), and FtlD (BBJ08). The goal of this study was to assess the potential utility of the Ftl proteins in subunit vaccine development. Immunoblot analyses of LD spirochete cell lysates demonstrated that one or more of the Ftl proteins are produced by most LD isolates during cultivation. The Ftl proteins were verified to be membrane associated, and nondenaturing PAGE revealed that FtlA, FtlB, and FtlD formed dimers, while FtlC formed hexamers. Analysis of serum samples from B. burgdorferi antibody (Ab)-positive client-owned dogs (n = 50) and horses (n = 90) revealed that a majority were anti-Ftl Ab positive. Abs to the Ftl proteins were detected in serum samples from laboratory-infected dogs out to 497 days postinfection. Anti-FtlA and FtlB antisera displayed potent complement-dependent Ab-mediated killing activity, and epitope localization revealed that the bactericidal epitopes reside within the N-terminal domain of the Ftl proteins. This study suggests that FtlA and FtlB are potential candidates for inclusion in a multivalent vaccine for LD.
Collapse
|
6
|
Gomez-Chamorro A, Hodžić A, King KC, Cabezas-Cruz A. Ecological and evolutionary perspectives on tick-borne pathogen co-infections. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021; 1:100049. [PMID: 35284886 PMCID: PMC8906131 DOI: 10.1016/j.crpvbd.2021.100049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 06/14/2023]
Abstract
Tick-borne pathogen co-infections are common in nature. Co-infecting pathogens interact with each other and the tick microbiome, which influences individual pathogen fitness, and ultimately shapes virulence, infectivity, and transmission. In this review, we discuss how tick-borne pathogens are an ideal framework to study the evolutionary dynamics of co-infections. We highlight the importance of inter-species and intra-species interactions in vector-borne pathogen ecology and evolution. We also propose experimental evolution in tick cell lines as a method to directly test the impact of co-infections on pathogen evolution. Experimental evolution can simulate in real-time the long periods of time involved in within-vector pathogen interactions in nature, a major practical obstacle to cracking the influence of co-infections on pathogen evolution and ecology.
Collapse
Affiliation(s)
- Andrea Gomez-Chamorro
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK
- Anses, INRAE, Ecole Nationale Vétérinaire D’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Adnan Hodžić
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Kayla C. King
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire D’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| |
Collapse
|