1
|
Stemness potency and structural characteristics of thyroid cancer cell lines. Pathol Res Pract 2023; 241:154262. [PMID: 36527836 DOI: 10.1016/j.prp.2022.154262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Thyroid cancer is the most frequent type of endocrine malignancy. Thyroid carcinomas are derived from the follicular epithelium and classified as papillary (PTC) (85%), follicular (FTC) (12%), and anaplastic (ATC) (<3%). Thyroid cancer could arise from thyroid cancer stem-like cells (CSCs). CSCs are cancer cells that feature stem-like properties. Kruppel-like factor (KLF4) and Stage-spesific embryonic antigen 1 (SSEA-1) are types of stem cell markers. Filamentous actin (F-actin) is an essential part of the cellular cytoskeleton. The purpose of this study was to evaluate the stem cell potency and the spatial distribution of the cytoskeletal element F-actin in PTC, FTC, and ATC cell lines. MATERIALS AND METHODS Normal thyroid cell line (NTC) Nthy-ori-3-1, PTC cell line BCPAP, FTC cell line FTC-133 and ATC cell line 8505c were stained with SSEA-1 and KLF4 for stem cell potency and F-actin for cytoskeleton. The morphological properties of cells were assessed by a scanning electron microscope (SEM) and elemental ratios were compared with EDS. RESULTS PTCs had greater percentages of SSEA-1 and KLF4 protein intensity (0.32% and 0.49%, respectively) than NTCs. ATCs had a greater proportion of KLF4 expression (0.8%) than NTCs. NTCs and FTCs had increased F-actin intensity across the cell, but PTCs had the lowest among these four cell lines. NTCs and PTCs, as well as NTCs and FTCs, have statistically identical aspect ratios and round values. These values, however, were statistically different in ATCs. CONCLUSION The study of stem cell markers and the cytoskeletal element F-actin in cancer and normal thyroid cell lines may assist in the identification of new therapeutic targets and contribute in the understanding of treatment resistance mechanisms.
Collapse
|
2
|
Holz D, Hall AR, Usukura E, Yamashiro S, Watanabe N, Vavylonis D. A mechanism with severing near barbed ends andannealing explains structure and dynamics of dendriticactin networks. eLife 2022; 11:69031. [PMID: 35670664 PMCID: PMC9252579 DOI: 10.7554/elife.69031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/04/2022] [Indexed: 11/13/2022] Open
Abstract
Single molecule imaging has shown that part of actin disassembles within a few seconds after incorporation into the dendritic filament network in lamellipodia, suggestive of frequent destabilization near barbed ends. To investigate the mechanisms behind network remodeling, we created a stochastic model with polymerization, depolymerization, branching, capping, uncapping, severing, oligomer diffusion, annealing, and debranching. We find that filament severing, enhanced near barbed ends, can explain the single molecule actin lifetime distribution, if oligomer fragments reanneal to free ends with rate constants comparable to in vitro measurements. The same mechanism leads to actin networks consistent with measured filament, end, and branch concentrations. These networks undergo structural remodeling, leading to longer filaments away from the leading edge, at the +/- 35𝑜 orientation pattern. Imaging of actin speckle lifetimes at sub-second resolution verifies frequent disassembly of newly-assembled actin. We thus propose a unified mechanism that fits a diverse set of basic lamellipodia phenomenology.
Collapse
Affiliation(s)
| | | | - Eiji Usukura
- Laboratory of Single-Molecule Cell Biology, Kyoto University
| | | | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University
| | | |
Collapse
|
3
|
Kloc M, Uosef A, Wosik J, Kubiak JZ, Ghobrial RM. Virus interactions with the actin cytoskeleton-what we know and do not know about SARS-CoV-2. Arch Virol 2022; 167:737-749. [PMID: 35102456 PMCID: PMC8803281 DOI: 10.1007/s00705-022-05366-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
The actin cytoskeleton and actin-dependent molecular and cellular events are responsible for the organization of eukaryotic cells and their functions. Viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), depend on host cell organelles and molecular components for cell entry and propagation. Thus, it is not surprising that they also interact at many levels with the actin cytoskeleton of the host. There have been many studies on how different viruses reconfigure and manipulate the actin cytoskeleton of the host during successive steps of their life cycle. However, we know relatively little about the interactions of SARS-CoV-2 with the actin cytoskeleton. Here, we describe how the actin cytoskeleton is involved in the strategies used by different viruses for entry, assembly, and egress from the host cell. We emphasize what is known and unknown about SARS-CoV-2 in this regard. This review should encourage further investigation of the interactions of SARS-CoV-2 with cellular components, which will eventually be helpful for developing novel antiviral therapies for mitigating the severity of COVID-19.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA.
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA.
- Department of Genetics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| | - Ahmed Uosef
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
| | - Jarek Wosik
- Electrical and Computer Engineering Department, University of Houston, Houston, TX, 77204, USA
- Texas Center for Superconductivity, University of Houston, Houston, TX, 77204, USA
| | - Jacek Z Kubiak
- Military Institute of Medicine, Laboratory of Molecular Oncology and Innovative Therapies, Department of Oncology, 04-141, Warsaw, Poland
- Institute of Genetics and Development of Rennes, Dynamics and Mechanics of Epithelia Group, Faculty of Medicine, Univ. Rennes, UMR 6290, CNRS, 35000, Rennes, France
| | - Rafik M Ghobrial
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
4
|
Rutkowski DM, Vavylonis D. Discrete mechanical model of lamellipodial actin network implements molecular clutch mechanism and generates arcs and microspikes. PLoS Comput Biol 2021; 17:e1009506. [PMID: 34662335 PMCID: PMC8553091 DOI: 10.1371/journal.pcbi.1009506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/28/2021] [Accepted: 09/30/2021] [Indexed: 01/03/2023] Open
Abstract
Mechanical forces, actin filament turnover, and adhesion to the extracellular environment regulate lamellipodial protrusions. Computational and mathematical models at the continuum level have been used to investigate the molecular clutch mechanism, calculating the stress profile through the lamellipodium and around focal adhesions. However, the forces and deformations of individual actin filaments have not been considered while interactions between actin networks and actin bundles is not easily accounted with such methods. We develop a filament-level model of a lamellipodial actin network undergoing retrograde flow using 3D Brownian dynamics. Retrograde flow is promoted in simulations by pushing forces from the leading edge (due to actin polymerization), pulling forces (due to molecular motors), and opposed by viscous drag in cytoplasm and focal adhesions. Simulated networks have densities similar to measurements in prior electron micrographs. Connectivity between individual actin segments is maintained by permanent and dynamic crosslinkers. Remodeling of the network occurs via the addition of single actin filaments near the leading edge and via filament bond severing. We investigated how several parameters affect the stress distribution, network deformation and retrograde flow speed. The model captures the decrease in retrograde flow upon increase of focal adhesion strength. The stress profile changes from compression to extension across the leading edge, with regions of filament bending around focal adhesions. The model reproduces the observed reduction in retrograde flow speed upon exposure to cytochalasin D, which halts actin polymerization. Changes in crosslinker concentration and dynamics, as well as in the orientation pattern of newly added filaments demonstrate the model's ability to generate bundles of filaments perpendicular (actin arcs) or parallel (microspikes) to the protruding direction.
Collapse
|
5
|
Cruz-Mirón R, Ramírez-Flores CJ, Lagunas-Cortés N, Mondragón-Castelán M, Ríos-Castro E, González-Pozos S, Aguirre-García MM, Mondragón-Flores R. Proteomic characterization of the pellicle of Toxoplasma gondii. J Proteomics 2021; 237:104146. [PMID: 33588107 DOI: 10.1016/j.jprot.2021.104146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/15/2021] [Accepted: 02/02/2021] [Indexed: 01/09/2023]
Abstract
Toxoplasma gondii is one of the most successful intracellular parasites in the world. The dynamic, adhesion, invasion, and even replication capabilities of Toxoplasma are based on dynamic machinery located in the pellicle, a three membrane complex that surrounds the parasite. Among the proteins that carry out these processes are inner membrane complex (IMC) proteins, gliding-associated proteins (GAP), diverse myosins, actin, tubulin, and SRS proteins. Despite the importance of the pellicle, the knowledge of its composition is limited. Broad protein identification from an enriched pellicle fraction was obtained by independent digestion with trypsin and chymotrypsin and quantified by mass spectrometry. By trypsin digestion, 548 proteins were identified, while by chymotrypsin digestion, additional 22 proteins were identified. Besides, a group of "sequences related to SAG1" proteins (SRS) were detected together with unidentified new proteins. From identified SRS proteins, SRS51 was chosen for analysis and modeling as its similarities with crystallized adhesion proteins, exhibiting the presence of a spatial groove that is apparently involved in adhesion and cell invasion. As SRS proteins have been reported to be involved in the activation of the host's immune response, further studies could consider them as targets in the design of vaccines or of drugs against Toxoplasma. SIGNIFICANCE: To date, the proteomic composition of the pellicle of Toxoplasma is unknown. Most proteins reported in Toxoplasma pellicle have been poorly studied, and many others remain unidentified. Herein, a group of new SRS proteins is described. Some SRS proteins previously described from pellicle fraction have adhesion properties to the host cell membrane, so their study would provide data related to invasion mechanism and to open possibilities for considering them as targets in the design of immunoprotective strategies or the design of new pharmacological treatments.
Collapse
Affiliation(s)
- Rosalba Cruz-Mirón
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico
| | - Carlos J Ramírez-Flores
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Noé Lagunas-Cortés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico
| | - Mónica Mondragón-Castelán
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico
| | | | | | - M Magdalena Aguirre-García
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Ricardo Mondragón-Flores
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico.
| |
Collapse
|
6
|
Ma H, Yang K, Li H, Luo M, Wufuer R, Kang L. Photodynamic effect of chlorin e6 on cytoskeleton protein of human colon cancer SW480 cells. Photodiagnosis Photodyn Ther 2021; 33:102201. [PMID: 33529743 DOI: 10.1016/j.pdpdt.2021.102201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Photodynamic therapy (PDT) is based on photochemical and photobiological reactions mediated by photosensitizers to achieve a killing effect on diseased cells. It is used in the treatment of malignant tumors, precancerous lesions and infections. OBJECTIVE In order to provide theoretical data for further study of the mechanism of PDT for colorectal cancer, SW480 cells were treated with Ce6-PDT and effect of photodynamic therapy (Ce6-PDT) on cytoskeleton and E-cadherin protein were observed. METHODS The survival of SW480 cells was detected by MTT assay. The morphological changes of SW480 cells after Ce6-PDT were observed by scanning electron microscope (ESM). The migration ability was determined by wound healing assay. The distribution of F-actin in the cytoplasm was observed with confocal laser scanning microscope. Western blot analysis was used to detect the expression of cytoskeleton proteins in SW480 cells after Ce6-PDT. RESULTS Compared with the control group, there was significant difference in cell viability of cells treated with Ce6-PDT (F = 78753.78, P < 0.05). The pseudopodia almost disappeared and cellular atrophy was clearly visible in the cells of Ce6-PDT group. The migration ability of cells treated with Ce6-PDT for 48 h was significantly lower than the control group (F = 11.794, P<0.001). The result of Western blot analysis showed that the expression of F-actin, α-tubulin, β-tubulin and Vimentin in the cells treated with Ce6-PDT were significantly higher than that in the control group (F = 22.251,8.109, 5.840, 4.685 and 18.754, P < 0.05). The expression of E-cadherin in cells of Ce6-PDT group was significantly higher than that in control group (F = 30.882, P < 0.001). Perhaps Ce6-PDT inhibits the proliferation and migration of colon cancer SW480 cells by enhancing the expression of E-cadherin, causing the disappearance of cell pseudopodia and the destruction of cytoskeleton. CONCLUSIONS The destruction of cytoskeleton might be one of the reasons for the inhibition of cell proliferation and migration by Ce6-PDT.
Collapse
Affiliation(s)
- Haixiu Ma
- College of Public Health, Xinjiang Medical University, Urumqi 830000, China
| | - Kaizhen Yang
- Teaching & Research Department, The First People's Hospital of Urumqi, Urumqi 830000, China
| | - Hongxia Li
- College of Public Health, Xinjiang Medical University, Urumqi 830000, China
| | - Mengyu Luo
- College of Public Health, Xinjiang Medical University, Urumqi 830000, China
| | - Reziwan Wufuer
- College of Public Health, Xinjiang Medical University, Urumqi 830000, China
| | - Ling Kang
- College of Public Health, Xinjiang Medical University, Urumqi 830000, China.
| |
Collapse
|
7
|
Nishida T, Nagao Y, Hashitani S, Yamanaka N, Takigawa M, Kubota S. Suppression of adipocyte differentiation by low-intensity pulsed ultrasound via inhibition of insulin signaling and promotion of CCN family protein 2. J Cell Biochem 2020; 121:4724-4740. [PMID: 32065439 DOI: 10.1002/jcb.29680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
Adipocyte differentiation is regulated by several transcription factors such as the CCAAT/enhancer-binding proteins (C/EBPs) and peroxisome proliferator-activated receptor-γ (PPARγ). Here, we demonstrate that low-intensity pulsed ultrasound (LIPUS) suppressed differentiation into mature adipocytes via multiple signaling pathways. When C3H10T1/2, a mesenchymal stem cell line, was treated with LIPUS (3.0 MHz, 60 mW/cm2 ) for 20 minutes once a day for 4 days during adipogenesis, and both the number of lipid droplets and the gene expression of PPARγ and C/EBPα were significantly decreased. Furthermore, LIPUS treatment decreased the phosphorylation of the insulin receptor and also that of Akt and ERK1/2, which are located downstream of this receptor. Next, we showed that LIPUS suppressed the gene expression of angiotensinogen (AGT), which is an adipokine produced by mature adipocytes, as well as that of angiotensin-converting enzyme 1 (ACE1) and angiotensin receptor type 1 (AT1 R) during adipogenesis of pre-adipogenic 3T3-L1 cells. Next, the translocation of Yes-associated protein (YAP) into the nucleus of 3T3-L1 cells was promoted by LIPUS, leading to upregulation of CCN family protein 2 (CCN2), a cellular communication network factor. Moreover, forced expression of CCN2 in 3T3-L1 cells decreased PPARγ gene expression, but it did not increase alkaline phosphatase and osterix gene expression. Finally, gene silencing of CCN2 in C3H10T1/2 cells diminished the effect of LIPUS on the gene expression of PPARγ and C/EBPα. These findings suggest that LIPUS suppressed adipogenesis through inhibition of insulin signaling and decreased PPARγ expression via increased CCN2 production, resulting in a possible decrease of mature adipocytes.
Collapse
Affiliation(s)
- Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yurika Nagao
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Satoko Hashitani
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | | | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
8
|
Nishida T, Kubota S. Roles of CCN2 as a mechano-sensing regulator of chondrocyte differentiation. JAPANESE DENTAL SCIENCE REVIEW 2020; 56:119-126. [PMID: 33088364 PMCID: PMC7560579 DOI: 10.1016/j.jdsr.2020.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Cellular communication network factor 2 (CCN2) is a cysteine-rich secreted matricellular protein that regulates various cellular functions including cell differentiation. CCN2 is highly expressed under several types of mechanical stress, such as stretch, compression, and shear stress, in mesenchymal cells including chondrocytes, osteoblasts, and fibroblasts. In particular, CCN2 not only promotes cell proliferation and differentiation of various cells but also regulates the stability of mRNA of TRPV4, a mechanosensitive ion channel in chondrocytes. Of note, CCN2 behaves like a biomarker to sense suitable mechanical stress, because CCN2 expression is down-regulated when chondrocytes are subjected to excessive mechanical stress. These findings suggest that CCN2 is a mechano-sensing regulator. CCN2 expression is regulated by the activation of various mechano-sensing signaling pathways, e.g., mechanosensitive ion channels, integrin-focal adhesion-actin dynamics, Rho GTPase family members, Hippo-YAP signaling, and G protein-coupled receptors. This review summarizes the characterization of mechanoreceptors involved in CCN2 gene regulation and discusses the role of CCN2 as a mechano-sensing regulator of mesenchymal cell differentiation, with particular focus on chondrocytes.
Collapse
Affiliation(s)
- Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8525, Japan.,Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8525, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8525, Japan
| |
Collapse
|
9
|
Using FRAP to Quantify Changes in Transcription Factor Dynamics After Cell Stimulation: Cell Culture, FRAP, Data Analysis, and Visualization. Methods Mol Biol 2020. [PMID: 32979202 DOI: 10.1007/978-1-0716-0989-7_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Here we show how to measure the mobility of transcription factors using fluorescence recovery after photobleaching (FRAP). Transcription factors are DNA-binding proteins that, upon binding to specific DNA motifs, regulate transcription of their target genes. FRAP is a simple, fast, and cost-effective method, and is a widely used quantitative method to measure the dynamics of fluorescently labeled molecules in solution, membranes, and inside living cells. Dynamics, specified by the immobile fraction, recovery half-time, diffusion constant, and ratio of molecules contributing to different phases of FRAP recovery, can be quantified by FRAP. This can be useful to understand their function in gene regulation. This tutorial is intended to familiarize the reader with the FRAP procedure to quantify transcription factor dynamics using a standard confocal microscope and analysis using MATLAB (MathWorks®). This article will guide the reader through the preconditions of FRAP, and a detailed and step-by-step procedure of preparing cells, bleaching protocol, data analysis in MATLAB, and visualization of the FRAP data.
Collapse
|
10
|
Allen D, Zhou Y, Wilhelm A, Blum P. Intracellular G-actin targeting of peripheral sensory neurons by the multifunctional engineered protein C2C confers relief from inflammatory pain. Sci Rep 2020; 10:12789. [PMID: 32732905 PMCID: PMC7393082 DOI: 10.1038/s41598-020-69612-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/15/2020] [Indexed: 11/09/2022] Open
Abstract
The engineered multifunctional protein C2C was tested for control of sensory neuron activity by targeted G-actin modification. C2C consists of the heptameric oligomer, C2II-CI, and the monomeric ribosylase, C2I. C2C treatment of sensory neurons and SH-SY5Y cells in vitro remodeled actin and reduced calcium influx in a reversible manner. C2C prepared using fluorescently labeled C2I showed selective in vitro C2I delivery to primary sensory neurons but not motor neurons. Delivery was dependent on presence of both C2C subunits and blocked by receptor competition. Immunohistochemistry of mice treated subcutaneously with C2C showed colocalization of subunit C2I with CGRP-positive sensory neurons and fibers but not with ChAT-positive motor neurons and fibers. The significance of sensory neuron targeting was pursued subsequently by testing C2C activity in the formalin inflammatory mouse pain model. Subcutaneous C2C administration reduced pain-like behaviors by 90% relative to untreated controls 6 h post treatment and similarly to the opioid buprenorphene. C2C effects were dose dependent, equally potent in female and male animals and did not change gross motor function. One dose was effective in 2 h and lasted 1 week. Administration of C2I without C2II-CI did not reduce pain-like behavior indicating its intracellular delivery was required for behavioral effect.
Collapse
Affiliation(s)
- Derek Allen
- School of Biological Sciences, University of Nebraska, E234 Beadle Center, Lincoln, NE, 68588, USA
| | - You Zhou
- Center for Biotechnology, University of Nebraska, E234 Beadle Center, Lincoln, NE, 68588, USA
| | - Audrey Wilhelm
- School of Biological Sciences, University of Nebraska, E234 Beadle Center, Lincoln, NE, 68588, USA
| | - Paul Blum
- School of Biological Sciences, University of Nebraska, E234 Beadle Center, Lincoln, NE, 68588, USA.
| |
Collapse
|
11
|
Horan BG, Hall AR, Vavylonis D. Insights into Actin Polymerization and Nucleation Using a Coarse-Grained Model. Biophys J 2020; 119:553-566. [PMID: 32668234 DOI: 10.1016/j.bpj.2020.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
We studied actin filament polymerization and nucleation with molecular dynamics simulations and a previously established coarse-grained model having each residue represented by a single interaction site located at the Cα atom. We approximate each actin protein as a fully or partially rigid unit to identify the equilibrium structural ensemble of interprotein complexes. Monomers in the F-actin configuration bound to both barbed and pointed ends of a short F-actin filament at the anticipated locations for polymerization. Binding at both ends occurred with similar affinity. Contacts between residues of the incoming subunit and the short filament were consistent with expectation from models based on crystallography, x-ray diffraction, and cryo-electron microscopy. Binding at the barbed and pointed end also occurred at an angle with respect to the polymerizable bound structure, and the angle range depended on the flexibility of the D-loop. Additional barbed end bound states were seen when the incoming subunit was in the G-actin form. Consistent with an activation barrier for pointed end polymerization, G-actin did not bind at an F-actin pointed end. In all cases, binding at the barbed end also occurred in a configuration similar to the antiparallel (lower) dimer. Individual monomers bound each other in a short-pitch helix complex in addition to other configurations, with several of them apparently nonproductive for polymerization. Simulations with multiple monomers in the F-actin form show assembly into filaments as well as transient aggregates at the barbed end. We discuss the implications of these observations on the kinetic pathway of actin filament nucleation and polymerization and possibilities for future improvements of the coarse-grained model.
Collapse
Affiliation(s)
- Brandon G Horan
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | - Aaron R Hall
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | | |
Collapse
|
12
|
Yamashiro S, Watanabe N. Quantitative high-precision imaging of myosin-dependent filamentous actin dynamics. J Muscle Res Cell Motil 2019; 41:163-173. [PMID: 31313218 DOI: 10.1007/s10974-019-09541-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022]
Abstract
Over recent decades, considerable effort has been made to understand how mechanical stress applied to the actin network alters actin assembly and disassembly dynamics. However, there are conflicting reports concerning the issue both in vitro and in cells. In this review, we discuss concerns regarding previous quantitative live-cell experiments that have attempted to evaluate myosin regulation of filamentous actin (F-actin) turnover. In particular, we highlight an error-generating mechanism in quantitative live-cell imaging, namely convection-induced misdistribution of actin-binding probes. Direct observation of actin turnover at the single-molecule level using our improved electroporation-based Single-Molecule Speckle (eSiMS) microscopy technique overcomes these concerns. We introduce our recent single-molecule analysis that unambiguously demonstrates myosin-dependent regulation of F-actin stability in live cells. We also discuss the possible application of eSiMS microscopy in the analysis of actin remodeling in striated muscle cells.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan. .,Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
13
|
Holz D, Vavylonis D. Building a dendritic actin filament network branch by branch: models of filament orientation pattern and force generation in lamellipodia. Biophys Rev 2018; 10:1577-1585. [PMID: 30421277 DOI: 10.1007/s12551-018-0475-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 10/21/2018] [Indexed: 01/02/2023] Open
Abstract
We review mathematical and computational models of the structure, dynamics, and force generation properties of dendritic actin networks. These models have been motivated by the dendritic nucleation model, which provided a mechanistic picture of how the actin cytoskeleton system powers cell motility. We describe how they aimed to explain the self-organization of the branched network into a bimodal distribution of filament orientations peaked at 35° and - 35° with respect to the direction of membrane protrusion, as well as other patterns. Concave and convex force-velocity relationships were derived, depending on network organization, filament, and membrane elasticity and accounting for actin polymerization at the barbed end as a Brownian ratchet. This review also describes models that considered the kinetics and transport of actin and diffuse regulators and mechanical coupling to a substrate, together with explicit modeling of dendritic networks.
Collapse
Affiliation(s)
- Danielle Holz
- Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem, PA, 18105, USA
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem, PA, 18105, USA.
| |
Collapse
|
14
|
Watanabe N, Tohyama K, Yamashiro S. Mechanostress resistance involving formin homology proteins: G- and F-actin homeostasis-driven filament nucleation and helical polymerization-mediated actin polymer stabilization. Biochem Biophys Res Commun 2018; 506:323-329. [PMID: 30309655 DOI: 10.1016/j.bbrc.2018.09.189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/30/2018] [Indexed: 01/28/2023]
Abstract
The actin cytoskeleton has two faces. One side provides the relatively stable scaffold to maintain the shape of cell cortex fit to the organs. The other side rapidly changes morphology in response to extracellular stimuli including chemical signal and physical strain. Our series of studies employing single-molecule speckle analysis of actin have revealed diverse F-actin lifetimes spanning a range of seconds to minutes in live cells. The dynamic part of the actin turnover is tightly coupled with actin nucleation activities of formin homology proteins (formins), which serve as rapid and efficient F-actin restoration mechanisms in cells under physical stress. More recently, our two studies revealed stabilization of F-actin either by actomyosin contractile force or by helical rotation of processively-actin polymerizing diaphanous-related formin mDia1. These findings quantitatively explain our proposed anti-mechanostress cascade in that G-actin released from F-actin upon loss of tension triggers frequent nucleation and subsequent fast elongation of F-actin by formins. This formin-restored F-actin may become specifically stabilized over long distance by helical polymerization-mediated filament untwisting. In this review, we discuss how and to what extent formins-mediated F-actin restoration might confer mechanostress resistance to the cell. We also give thought to the possible involvement of helical polymerization-mediated filament untwisting in the formation of diverse actin architectures including chirality control.
Collapse
Affiliation(s)
- Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Japan; Department of Pharmacology, Kyoto University Graduate School of Medicine, Japan.
| | - Kiyoshi Tohyama
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Japan
| | - Sawako Yamashiro
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Japan
| |
Collapse
|
15
|
Yamashiro S, Tanaka S, McMillen LM, Taniguchi D, Vavylonis D, Watanabe N. Myosin-dependent actin stabilization as revealed by single-molecule imaging of actin turnover. Mol Biol Cell 2018; 29:1941-1947. [PMID: 29847209 PMCID: PMC6232968 DOI: 10.1091/mbc.e18-01-0061] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
How mechanical stress applied to the actin network modifies actin turnover has attracted considerable attention. Actomyosin exerts the major force on the actin network, which has been implicated in actin stability regulation. However, direct monitoring of immediate changes in F-actin stability on alteration of actomyosin contraction has not been achieved. Here we reexamine myosin regulation of actin stability by using single-molecule speckle analysis of actin. To avoid possible errors attributable to actin-binding probes, we employed DyLight-labeled actin that distributes identical to F-actin in lamellipodia. We performed time-resolved analysis of the effect of blebbistatin on actin turnover. Blebbistatin enhanced actin disassembly in lamellipodia of fish keratocytes and lamellar of Xenopus XTC cells at an early stage of the inhibition, indicating that actomyosin contraction stabilizes cellular F-actin. In addition, our data show a previously unrecognized relationship between the actin network-driving force and the actin turnover rates in lamellipodia. These findings point to the power of direct viewing of molecular behavior in elucidating force regulation of actin filament turnover.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan.,Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Soichiro Tanaka
- Laboratory of Single-Molecule Cell Biology, Tohoku University Graduate School of Life Sciences, Sendai, Miyagi 980-8578, Japan
| | | | - Daisuke Taniguchi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | | | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan.,Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
16
|
Helical rotation of the diaphanous-related formin mDia1 generates actin filaments resistant to cofilin. Proc Natl Acad Sci U S A 2018; 115:E5000-E5007. [PMID: 29760064 PMCID: PMC5984536 DOI: 10.1073/pnas.1803415115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The complex interplay between actin regulatory proteins facilitates the formation of diverse cellular actin structures. Formin homology proteins (formins) play an essential role in the formation of actin stress fibers and yeast actin cables, to which the major actin depolymerizing factor cofilin barely associates. In vitro, F-actin decorated with cofilin exhibits a marked increase in the filament twist. On the other hand, a mammalian formin mDia1 rotates along the long-pitch actin helix during processive actin elongation (helical rotation). Helical rotation may impose torsional force on F-actin in the opposite direction of the cofilin-induced twisting. Here, we show that helical rotation of mDia1 converts F-actin resistant to cofilin both in vivo and in vitro. F-actin assembled by mDia1 without rotational freedom became more resistant to the severing and binding activities of cofilin than freely rotatable F-actin. Electron micrographic analysis revealed untwisting of the long-pitch helix of F-actin elongating from mDia1 on tethering of both mDia1 and the pointed end side of the filament. In cells, single molecules of mDia1ΔC63, an activated mutant containing N-terminal regulatory domains, showed tethering to cell structures more frequently than autoinhibited wild-type mDia1 and mDia1 devoid of N-terminal domains. Overexpression of mDia1ΔC63 induced the formation of F-actin, which has prolonged lifetime and accelerates dissociation of cofilin. Helical rotation of formins may thus serve as an F-actin stabilizing mechanism by which a barbed end-bound molecule can enhance the stability of a filament over a long range.
Collapse
|
17
|
Ryan GL, Holz D, Yamashiro S, Taniguchi D, Watanabe N, Vavylonis D. Cell protrusion and retraction driven by fluctuations in actin polymerization: A two-dimensional model. Cytoskeleton (Hoboken) 2017; 74:490-503. [PMID: 28752950 PMCID: PMC5725282 DOI: 10.1002/cm.21389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 12/23/2022]
Abstract
Animal cells that spread onto a surface often rely on actin-rich lamellipodial extensions to execute protrusion. Many cell types recently adhered on a two-dimensional substrate exhibit protrusion and retraction of their lamellipodia, even though the cell is not translating. Travelling waves of protrusion have also been observed, similar to those observed in crawling cells. These regular patterns of protrusion and retraction allow quantitative analysis for comparison to mathematical models. The periodic fluctuations in leading edge position of XTC cells have been linked to excitable actin dynamics using a one-dimensional model of actin dynamics, as a function of arc-length along the cell. In this work we extend this earlier model of actin dynamics into two dimensions (along the arc-length and radial directions of the cell) and include a model membrane that protrudes and retracts in response to the changing number of free barbed ends of actin filaments near the membrane. We show that if the polymerization rate at the barbed ends changes in response to changes in their local concentration at the leading edge and/or the opposing force from the cell membrane, the model can reproduce the patterns of membrane protrusion and retraction seen in experiment. We investigate both Brownian ratchet and switch-like force-velocity relationships between the membrane load forces and actin polymerization rate. The switch-like polymerization dynamics recover the observed patterns of protrusion and retraction as well as the fluctuations in F-actin concentration profiles. The model generates predictions for the behavior of cells after local membrane tension perturbations.
Collapse
Affiliation(s)
- Gillian L. Ryan
- Department of Physics, Kettering University, 1700 University Avenue, Flint MI 48504, United States
- Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem PA 18105, United States
| | - Danielle Holz
- Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem PA 18105, United States
| | - Sawako Yamashiro
- Department of Pharmacology, Kyoto University Faculty of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Daisuke Taniguchi
- Department of Pharmacology, Kyoto University Faculty of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Naoki Watanabe
- Department of Pharmacology, Kyoto University Faculty of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem PA 18105, United States
| |
Collapse
|
18
|
Yamashiro S, Watanabe N. Overview of Single-Molecule Speckle (SiMS) Microscopy and Its Electroporation-Based Version with Efficient Labeling and Improved Spatiotemporal Resolution. SENSORS 2017; 17:s17071585. [PMID: 28684722 PMCID: PMC5539652 DOI: 10.3390/s17071585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/19/2022]
Abstract
Live-cell single-molecule imaging was introduced more than a decade ago, and has provided critical information on remodeling of the actin cytoskeleton, the motion of plasma membrane proteins, and dynamics of molecular motor proteins. Actin remodeling has been the best target for this approach because actin and its associated proteins stop diffusing when assembled, allowing visualization of single-molecules of fluorescently-labeled proteins in a state specific manner. The approach based on this simple principle is called Single-Molecule Speckle (SiMS) microscopy. For instance, spatiotemporal regulation of actin polymerization and lifetime distribution of actin filaments can be monitored directly by tracking actin SiMS. In combination with fluorescently labeled probes of various actin regulators, SiMS microscopy has contributed to clarifying the processes underlying recycling, motion and remodeling of the live-cell actin network. Recently, we introduced an electroporation-based method called eSiMS microscopy, with high efficiency, easiness and improved spatiotemporal precision. In this review, we describe the application of live-cell single-molecule imaging to cellular actin dynamics and discuss the advantages of eSiMS microscopy over previous SiMS microscopy.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan.
| | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan.
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.
| |
Collapse
|
19
|
An Infrared Actin Probe for Deep-Cell Electroporation-Based Single-Molecule Speckle (eSiMS) Microscopy. SENSORS 2017; 17:s17071545. [PMID: 28671584 PMCID: PMC5539718 DOI: 10.3390/s17071545] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/18/2017] [Accepted: 06/22/2017] [Indexed: 11/26/2022]
Abstract
Single-molecule speckle (SiMS) microscopy is a powerful method to directly elucidate biochemical reactions in live cells. However, since the signal from an individual fluorophore is extremely faint, the observation area by epi-fluorescence microscopy is restricted to the thin cell periphery to reduce autofluorescence, or only molecules near the plasma membrane are visualized by total internal reflection fluorescence (TIRF) microscopy. Here, we introduce a new actin probe labeled with near infrared (NIR) emissive CF680R dye for easy-to-use, electroporation-based SiMS microscopy (eSiMS) for deep-cell observation. CF680R-labeled actin (CF680R-actin) incorporated into actin structures and showed excellent brightness and photostability suitable for single-molecule imaging. Importantly, the intensity of autofluorescence with respect to SiMS brightness was reduced to approximately 13% compared to DyLight 550-labeled actin (DL550-actin). CF680R-actin enabled the monitoring of actin SiMS in actomyosin bundles associated with adherens junctions (AJs) located at 3.5–4 µm above the basal surfaces of epithelial monolayers. These favorable properties of CF680R-actin extend the application of eSiMS to actin turnover and flow analyses in deep cellular structures.
Collapse
|
20
|
Sedzinski J, Hannezo E, Tu F, Biro M, Wallingford JB. RhoA regulates actin network dynamics during apical surface emergence in multiciliated epithelial cells. J Cell Sci 2017; 130:420-428. [PMID: 28089989 PMCID: PMC5278671 DOI: 10.1242/jcs.194704] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/10/2016] [Indexed: 12/18/2022] Open
Abstract
Homeostatic replacement of epithelial cells from basal precursors is a multistep process involving progenitor cell specification, radial intercalation and, finally, apical surface emergence. Recent data demonstrate that actin-based pushing under the control of the formin protein Fmn1 drives apical emergence in nascent multiciliated epithelial cells (MCCs), but little else is known about this actin network or the control of Fmn1. Here, we explore the role of the small GTPase RhoA in MCC apical emergence. Disruption of RhoA function reduced the rate of apical surface expansion and decreased the final size of the apical domain. Analysis of cell shapes suggests that RhoA alters the balance of forces exerted on the MCC apical surface. Finally, quantitative time-lapse imaging and fluorescence recovery after photobleaching studies argue that RhoA works in concert with Fmn1 to control assembly of the specialized apical actin network in MCCs. These data provide new molecular insights into epithelial apical surface assembly and could also shed light on mechanisms of apical lumen formation.
Collapse
Affiliation(s)
- Jakub Sedzinski
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Edouard Hannezo
- Cavendish Laboratory, Department of Physics, J.J. Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Fan Tu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Maté Biro
- Centenary Institute of Cancer Medicine and Cell Biology, Locked Bag 6, Newtown, New South Wales 2042, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
21
|
McMillen LM, Vavylonis D. Model of turnover kinetics in the lamellipodium: implications of slow- and fast- diffusing capping protein and Arp2/3 complex. Phys Biol 2016; 13:066009. [PMID: 27922825 DOI: 10.1088/1478-3975/13/6/066009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cell protrusion through polymerization of actin filaments at the leading edge of motile cells may be influenced by spatial gradients of diffuse actin and regulators. Here we study the distribution of two of the most important regulators, capping protein and Arp2/3 complex, which regulate actin polymerization in the lamellipodium through capping and nucleation of free barbed ends. We modeled their kinetics using data from prior single molecule microscopy experiments on XTC cells. These experiments have provided evidence for a broad distribution of diffusion coefficients of both capping protein and Arp2/3 complex. The slowly diffusing proteins appear as extended 'clouds' while proteins bound to the actin filament network appear as speckles that undergo retrograde flow. Speckle appearance and disappearance events correspond to assembly and dissociation from the actin filament network and speckle lifetimes correspond to the dissociation rate. The slowly diffusing capping protein could represent severed capped actin filament fragments or membrane-bound capping protein. Prior evidence suggests that slowly diffusing Apr2/3 complex associates with the membrane. We use the measured rates and estimates of diffusion coefficients of capping protein and Arp2/3 complex in a Monte Carlo simulation that includes particles in association with a filament network and diffuse in the cytoplasm. We consider two separate pools of diffuse proteins, representing fast and slowly diffusing species. We find a steady state with concentration gradients involving a balance of diffusive flow of fast and slow species with retrograde flow. We show that simulations of FRAP are consistent with prior experiments performed on different cell types. We provide estimates for the ratio of bound to diffuse complexes and calculate conditions where Arp2/3 complex recycling by diffusion may become limiting. We discuss the implications of slowly diffusing populations and suggest experiments to distinguish among mechanisms that influence long range transport.
Collapse
Affiliation(s)
- Laura M McMillen
- Department of Physics, Lehigh University, Bethlehem PA 18015, USA
| | | |
Collapse
|
22
|
Seebach J, Cao J, Schnittler HJ. Quantitative dynamics of VE-cadherin at endothelial cell junctions at a glance: basic requirements and current concepts. Discoveries (Craiova) 2016; 4:e63. [PMID: 32309583 PMCID: PMC7159836 DOI: 10.15190/d.2016.10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Intercellular junctions of the vascular endothelium are dynamic structures that display a high degree of plasticity, which is required to contribute to their regulation of many physiological and pathological processes including monolayer integrity, barrier function, wound healing and angiogenesis. Vascular endothelial cadherin (VE-cadherin) is connected via catenins to the actin cytoskeleton, both of which are key structures in endothelial junction regulation, and thus are the focus of much investigation. Fluorescence-based live cell imaging is the method of choice to study dynamic remodeling in living cells. Although these methods have been successfully applied to many cell types, investigations of endothelial junction dynamics were for a long time limited as they are largely resistant to transfection using many classical protocols. Application of virus-based gene transduction techniques, together with advanced microscopy, now allows both sufficient expression of fluorescence tagged junction-localized proteins in the endothelium and time-lapse recording over long periods. Using highly spatiotemporally resolved fluorescence microscopy it turned out that endothelial junctions display extensive junction heterogeneity at the subcellular level; a fact that largely limits automated quantification by available software. Recent work describes open software tools to quantitatively analyze large amounts of fluorescence-based image data in either single or confluent epithelial and endothelial cells. Based on quantitative VE-cadherin and actin dynamics novel key players, mechanisms and concepts have been suggested that control endothelial junction dynamics. Here we aim to summarize the recent developments in the field.
Collapse
Affiliation(s)
- Jochen Seebach
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster Germany
| | - Jiahui Cao
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster Germany
| | - Hans Joachim Schnittler
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster Germany
| |
Collapse
|
23
|
Dissecting protein reaction dynamics in living cells by fluorescence recovery after photobleaching. Nat Protoc 2015; 10:660-80. [DOI: 10.1038/nprot.2015.042] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Fu Y, Lin T, Liang A, Hu F. Effects of recombinant baculovirus AcMNPV-BmK IT on the formation of early cables and nuclear polymerization of actin in Sf9 cells. Cytotechnology 2015; 68:381-7. [PMID: 25698159 DOI: 10.1007/s10616-014-9789-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/18/2014] [Indexed: 10/25/2022] Open
Abstract
Autographa californica nuclearpoly hedrosis virus (AcMNPV) is one of the most important baculoviridae. However, the application of AcMNPV as a biocontrol agent has been limited. Previously, we engineered Buthus martensii Karsch insect toxin (BmK IT) gene into the genome of AcMNPV. The bioassay data indicated that the recombinant baculovirus AcMNPV-BmK IT significantly enhanced the anti-insect efficacy of the virus. The actin cytoskeleton is the major component beneath the surface of eukaryotic cells. In this report, the effects of AcMNPV-BmK IT on the formation of early cables of actin and nuclear filamentous-actin (F-actin) were studied. The results indicated that these baculovirus induced rearrangement of the actin cytoskeleton of host cells during infection and actin might participate in the transportation of baculovirus from cytoplasm to the nuclei. AcMNPV-BmK IT delayed the formation of early cables of actin and nuclear F-actin and accelerated the clearance of actin in the nuclei.
Collapse
Affiliation(s)
- Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, People's Republic of China.
| | - Taotao Lin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Aihua Liang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Fengyun Hu
- Department of Neurology, Shanxi Provincial People's Hospital, Taiyuan, 030012, People's Republic of China.
| |
Collapse
|
25
|
Yamashiro S, Mizuno H, Watanabe N. An easy-to-use single-molecule speckle microscopy enabling nanometer-scale flow and wide-range lifetime measurement of cellular actin filaments. Methods Cell Biol 2015; 125:43-59. [DOI: 10.1016/bs.mcb.2014.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
26
|
Lewalle A, Fritzsche M, Wilson K, Thorogate R, Duke T, Charras G. A phenomenological density-scaling approach to lamellipodial actin dynamics(†). Interface Focus 2014; 4:20140006. [PMID: 25485077 PMCID: PMC4213442 DOI: 10.1098/rsfs.2014.0006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The integration of protein function studied in vitro in a dynamic system like the cell lamellipodium remains a significant challenge. One reason is the apparent contradictory effect that perturbations of some proteins can have on the overall lamellipodium dynamics, depending on exact conditions. Theoretical modelling offers one approach for understanding the balance between the mechanisms that drive and regulate actin network growth and decay. Most models use a ‘bottom-up’ approach, involving explicitly assembling biochemical components to simulate observable behaviour. Their correctness therefore relies on both the accurate characterization of all the components and the completeness of the relevant processes involved. To avoid potential pitfalls due to this uncertainty, we used an alternative ‘top-down’ approach, in which measurable features of lamellipodium behaviour, here observed in two different cell types (HL60 and B16-F1), directly inform the development of a simple phenomenological model of lamellipodium dynamics. We show that the kinetics of F-actin association and dissociation scales with the local F-actin density, with no explicit location dependence. This justifies the use of a simplified kinetic model of lamellipodium dynamics that yields predictions testable by pharmacological or genetic intervention. A length-scale parameter (the lamellipodium width) emerges from this analysis as an experimentally accessible probe of network regulatory processes.
Collapse
Affiliation(s)
- Alexandre Lewalle
- London Centre for Nanotechnology , University College London , 17-19 Gordon Street, London WC1H 0AH , UK
| | - Marco Fritzsche
- London Centre for Nanotechnology , University College London , 17-19 Gordon Street, London WC1H 0AH , UK
| | - Kerry Wilson
- London Centre for Nanotechnology , University College London , 17-19 Gordon Street, London WC1H 0AH , UK
| | - Richard Thorogate
- London Centre for Nanotechnology , University College London , 17-19 Gordon Street, London WC1H 0AH , UK
| | - Tom Duke
- London Centre for Nanotechnology , University College London , 17-19 Gordon Street, London WC1H 0AH , UK
| | - Guillaume Charras
- London Centre for Nanotechnology , University College London , 17-19 Gordon Street, London WC1H 0AH , UK ; Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK ; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
27
|
Mizuno H, Watanabe N. Rotational movement of formins evaluated by using single-molecule fluorescence polarization. Methods Enzymol 2014; 540:73-94. [PMID: 24630102 DOI: 10.1016/b978-0-12-397924-7.00005-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Formin homology proteins (formins) are responsible for the formation of actin structures such as actin stress fibers, actin cables, and cytokinetic contractile rings. Formins are the major actin filament (F-actin) nucleators in the cell. Because formins remain bound to the barbed end after nucleating an actin filament, it was expected that formins might rotate along the double-helical structure of F-actin during processive actin elongation (helical rotation). Here, we describe a method to detect the rotational movement of F-actin elongating from immobilized formins using single-molecule fluorescence polarization (FLP). Tetramethylrhodamine (TMR) attached to Cys-374 of actin emits polarized fluorescence at ≈45° with respect to the filament axis. When the TMR-labeled F-actin laying at 45° in the visual field rotates, the vertical- and horizontal-polarized fluorescence (FLV and FLH, respectively) of TMR alternately become bright. This technique allowed us to demonstrate the helical rotation of mDia1, a mammalian formin. Adenosine triphosphate (ATP) hydrolysis in actin subunits is not required for helical rotation; however, ATP appears to contribute to accelerating actin elongation by mDia1. When helical rotation is limited by trapping both mDia1 and the pointed-end side, the processive filament elongation is blocked. Thus, mDia1 faithfully rotates along the long-pitch helix of F-actin. In this chapter, we introduce the theoretical concept of single-molecule FLP, the optical setup, the preparation of adenosine diphosphate-bound actin, and the procedure to observe the rotational movement of F-actin elongating from immobilized formins.
Collapse
Affiliation(s)
- Hiroaki Mizuno
- Laboratory of Single-Molecule Cell Biology, Tohoku University Graduate School of Life Sciences, Sendai, Miyagi, Japan
| | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Tohoku University Graduate School of Life Sciences, Sendai, Miyagi, Japan.
| |
Collapse
|
28
|
Kiuchi T, Nagai T, Ohashi K, Watanabe N, Mizuno K. Live-cell imaging of G-actin dynamics using sequential FDAP. BIOARCHITECTURE 2014; 1:240-244. [PMID: 22754616 PMCID: PMC3384577 DOI: 10.4161/bioa.18471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Various microscopic techniques have been developed to understand the mechanisms that spatiotemporally control actin filament dynamics in live cells. Kinetic data on the processes of actin assembly and disassembly on F-actin have been accumulated. However, the kinetics of cytoplasmic G-actin, a key determinant for actin polymerization, has remained unclear because of a lack of appropriate methods to measure the G-actin concentration quantitatively. We have developed two new microscopic techniques based on the fluorescence decay after photoactivation (FDAP) time-lapse imaging of photoswitchable Dronpa-labeled actin. These techniques, sequential FDAP (s-FDAP) and multipoint FDAP, were used to measure the time-dependent changes in and spatial distribution of the G-actin concentration in live cells. Use of s-FDAP provided data on changes in the G-actin concentration with high temporal resolution; these data were useful for the model analysis of actin assembly processes in live cells. The s-FDAP analysis also provided evidence that the cytoplasmic G-actin concentration substantially decreases after cell stimulation and that the extent of stimulus-induced actin assembly and cell size extension are linearly correlated with the G-actin concentration before cell stimulation. The advantages of using s-FDAP and multipoint FDAP to measure spatiotemporal G-actin dynamics and the roles of G-actin concentration and ADF/cofilin in stimulus-induced actin assembly and lamellipodium extension in live cells are discussed.
Collapse
Affiliation(s)
- Tai Kiuchi
- Department of Biomolecular Sciences; Graduate School of Life Sciences; Tohoku University; Sendai, Japan
| | | | | | | | | |
Collapse
|
29
|
Rispoli A, Cipollini E, Catania S, Di Giaimo R, Pulice G, van Houte S, Sparla F, Dal Piaz F, Roncarati D, Trost P, Melli M. Insights in progressive myoclonus epilepsy: HSP70 promotes cystatin B polymerization. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2591-9. [DOI: 10.1016/j.bbapap.2013.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 12/15/2022]
|
30
|
Liu Z, Yang X, Chen C, Liu B, Ren B, Wang L, Zhao K, Yu S, Ming H. Expression of the Arp2/3 complex in human gliomas and its role in the migration and invasion of glioma cells. Oncol Rep 2013; 30:2127-36. [PMID: 23969835 DOI: 10.3892/or.2013.2669] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/25/2013] [Indexed: 11/06/2022] Open
Abstract
A hallmark of directional cell migration is localized actin polymerization at the leading protrusions of the cell. The Arp2/3 complex nucleates the formation of the dendritic actin network (lamellipodia) at the leading edge of motile cells. This study was designed to investigate the role of the Arp2/3 complex in the infiltrative behavior of glioma cells. Immunofluorescence and western blotting showed a positive correlation between the expression of Arp2/3 and the malignancy of glioma specimens (r=0.686, P=0.02) and confocal microscopy demonstrated localization of the Arp2/3 complex in lamellipodia of glioma cells. Furthermore, we examined the effects of Arp2/3 complex inhibition in U251, LN229 and SNB19 glioma cells using CK666, an Arp2/3 complex inhibitor. Glioma cells lost lamellipodia and cell polarity after treatment with CK666. Inhibition of the Arp2/3 complex significantly affected the ability of glioma cells to migrate and invade. In the wound-healing assay, CK666 markedly inhibited cell migration, U251 cell migration was inhibited to 38.73±3.45% of control, LN229 cells to 57.40±2.16% of control and SNB19 cells to 34.17±3.82% of control. Also, CK666 significantly impaired Transwell chamber invasion capability of U251, LN229 and SNB19 cells compared with DMSO control by 72.70±4.86, 39.12±8.42 and 41.41±4.66%, respectively. The Arp2/3 complex is, therefore, likely to be a crucial participant in glioma cell invasion and migration, and may represent a target for therapeutic intervention.
Collapse
Affiliation(s)
- Zhifeng Liu
- Neuro-Oncology Laboratory, Tianjin Neurological Institute, Tianjin 300052, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hou X, Katahira T, Ohashi K, Mizuno K, Sugiyama S, Nakamura H. Coactosin accelerates cell dynamism by promoting actin polymerization. Dev Biol 2013; 379:53-63. [DOI: 10.1016/j.ydbio.2013.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 03/05/2013] [Accepted: 04/09/2013] [Indexed: 01/25/2023]
|
32
|
Watanabe N, Yamashiro S, Vavylonis D, Kiuchi T. Molecular viewing of actin polymerizing actions and beyond: Combination analysis of single-molecule speckle microscopy with modeling, FRAP and s-FDAP (sequential fluorescence decay after photoactivation). Dev Growth Differ 2013; 55:508-14. [DOI: 10.1111/dgd.12060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 03/11/2013] [Accepted: 03/15/2013] [Indexed: 12/28/2022]
Affiliation(s)
- Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology; Tohoku University Graduate School of Life Sciences; Aoba-ku; Sendai; Miyagi; 980-8578; Japan
| | - Sawako Yamashiro
- Laboratory of Single-Molecule Cell Biology; Tohoku University Graduate School of Life Sciences; Aoba-ku; Sendai; Miyagi; 980-8578; Japan
| | - Dimitrios Vavylonis
- Department of Physics; Lehigh University; 16 Memorial Drive East; Bethlehem; Pennsylvania; 18017; USA
| | - Tai Kiuchi
- Laboratory of Single-Molecule Cell Biology; Tohoku University Graduate School of Life Sciences; Aoba-ku; Sendai; Miyagi; 980-8578; Japan
| |
Collapse
|
33
|
Can filament treadmilling alone account for the F-actin turnover in lamellipodia? Cytoskeleton (Hoboken) 2013; 70:179-90. [DOI: 10.1002/cm.21098] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 12/24/2012] [Accepted: 01/07/2013] [Indexed: 11/07/2022]
|
34
|
Higashida C, Kiuchi T, Akiba Y, Mizuno H, Maruoka M, Narumiya S, Mizuno K, Watanabe N. F- and G-actin homeostasis regulates mechanosensitive actin nucleation by formins. Nat Cell Biol 2013; 15:395-405. [DOI: 10.1038/ncb2693] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 01/14/2013] [Indexed: 12/12/2022]
|
35
|
Fritzsche M, Lewalle A, Duke T, Kruse K, Charras G. Analysis of turnover dynamics of the submembranous actin cortex. Mol Biol Cell 2013; 24:757-67. [PMID: 23345594 PMCID: PMC3596247 DOI: 10.1091/mbc.e12-06-0485] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Two filament subpopulations with very different turnover rates make up the actin cortex in living cells: one with fast turnover dynamics and polymerization resulting from addition of monomers to free barbed ends, and one with slow turnover dynamics with polymerization resulting from formin-mediated filament growth. The cell cortex is a thin network of actin, myosin motors, and associated proteins that underlies the plasma membrane in most eukaryotic cells. It enables cells to resist extracellular stresses, perform mechanical work, and change shape. Cortical structural and mechanical properties depend strongly on the relative turnover rates of its constituents, but quantitative data on these rates remain elusive. Using photobleaching experiments, we analyzed the dynamics of three classes of proteins within the cortex of living cells: a scaffold protein (actin), a cross-linker (α-actinin), and a motor (myosin). We found that two filament subpopulations with very different turnover rates composed the actin cortex: one with fast turnover dynamics and polymerization resulting from addition of monomers to free barbed ends, and one with slow turnover dynamics with polymerization resulting from formin-mediated filament growth. Our data suggest that filaments in the second subpopulation are on average longer than those in the first and that cofilin-mediated severing of formin-capped filaments contributes to replenishing the filament subpopulation with free barbed ends. Furthermore, α-actinin and myosin minifilaments turned over significantly faster than F-actin. Surprisingly, only one-fourth of α-actinin dimers were bound to two actin filaments. Taken together, our results provide a quantitative characterization of essential mechanisms underlying actin cortex homeostasis.
Collapse
Affiliation(s)
- Marco Fritzsche
- London Centre for Nanotechnology, University College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
36
|
Distributed actin turnover in the lamellipodium and FRAP kinetics. Biophys J 2013; 104:247-57. [PMID: 23332077 DOI: 10.1016/j.bpj.2012.11.3819] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 10/01/2012] [Accepted: 11/21/2012] [Indexed: 10/27/2022] Open
Abstract
Studies of actin dynamics at the leading edge of motile cells with single-molecule speckle (SiMS) microscopy have shown a broad distribution of EGFP-actin speckle lifetimes and indicated actin polymerization and depolymerization over an extended region. Other experiments using FRAP with the same EGFP-actin as a probe have suggested, by contrast, that polymerization occurs exclusively at the leading edge. We performed FRAP experiments on XTC cells to compare SiMS to FRAP on the same cell type. We used speckle statistics obtained by SiMS to model the steady-state distribution and kinetics of actin in the lamellipodium. We demonstrate that a model with a single diffuse actin species is in good agreement with FRAP experiments. A model including two species of diffuse actin provides an even better agreement. The second species consists of slowly diffusing oligomers that associate to the F-actin network throughout the lamellipodium or break up into monomers after a characteristic time. Our work motivates studies to test the presence and composition of slowly diffusing actin species that may contribute to local remodeling of the actin network and increase the amount of soluble actin.
Collapse
|
37
|
Mizuno H, Watanabe N. mDia1 and formins: screw cap of the actin filament. Biophysics (Nagoya-shi) 2012; 8:95-102. [PMID: 27493525 PMCID: PMC4629640 DOI: 10.2142/biophysics.8.95] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/09/2012] [Indexed: 01/08/2023] Open
Abstract
Formin homology proteins (formins) are actin nucleation factors which remain bound to the growing barbed end and processively elongate actin filament (F-actin). Recently, we have demonstrated that a mammalian formin mDia1 rotates along the long-pitch helix of F-actin during processive elongation (helical rotation) by single-molecule fluorescence polarization. We have also shown processive depolymerization of mDia1-bound F-actin during which helical rotation was visualized. In the cell where F-actins are highly cross-linked, formins should rotate during filament elongation. Therefore, when formins are tightly anchored to cellular structures, formins may not elongate F-actin. Adversely, helical rotation of formins might affect the twist of F-actin. Formins could thus control actin elongation and regulate stability of cellular actin filaments through helical rotation. On the other hand, ADP-actin elongation at the mDia1-bound barbed end turned out to become decelerated by profilin, in marked contrast to its remarkably positive effect on mDia1-mediated ATP-actin elongation. This deceleration is caused by enhancement of the off-rate of ADP-actin. While mDia1 and profilin enhance the ADP-actin off-rate, they do not apparently increase the ADP-actin on-rate at the barbed end. These results imply that G-actin-bound ATP and its hydrolysis may be part of the acceleration mechanism of formin-mediated actin elongation.
Collapse
Affiliation(s)
- Hiroaki Mizuno
- Laboratory of Single-Molecule Cell Biology, Tohoku University Graduate School of Life Sciences, 6-3 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Tohoku University Graduate School of Life Sciences, 6-3 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
38
|
Zhao T, Graham OS, Raposo A, St Johnston D. Growing microtubules push the oocyte nucleus to polarize the Drosophila dorsal-ventral axis. Science 2012; 336:999-1003. [PMID: 22499806 PMCID: PMC3459055 DOI: 10.1126/science.1219147] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Drosophila dorsal-ventral (DV) axis is polarized when the oocyte nucleus migrates from the posterior to the anterior margin of the oocyte. Prior work suggested that dynein pulls the nucleus to the anterior side along a polarized microtubule cytoskeleton, but this mechanism has not been tested. By imaging live oocytes, we find that the nucleus migrates with a posterior indentation that correlates with its direction of movement. Furthermore, both nuclear movement and the indentation depend on microtubule polymerization from centrosomes behind the nucleus. Thus, the nucleus is not pulled to the anterior but is pushed by the force exerted by growing microtubules. Nuclear migration and DV axis formation therefore depend on centrosome positioning early in oogenesis and are independent of anterior-posterior axis formation.
Collapse
Affiliation(s)
- Tongtong Zhao
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QN, United Kingdom
| | - Owen S. Graham
- The Department of Engineering, University of Cambridge, Trumpington St, Cambridge, CB2 1PZ, United Kingdom
| | - Alexandre Raposo
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QN, United Kingdom
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QN, United Kingdom
| |
Collapse
|
39
|
Saneyoshi T, Hayashi Y. The Ca2+ and Rho GTPase signaling pathways underlying activity-dependent actin remodeling at dendritic spines. Cytoskeleton (Hoboken) 2012; 69:545-54. [PMID: 22566410 DOI: 10.1002/cm.21037] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 04/17/2012] [Accepted: 04/25/2012] [Indexed: 02/06/2023]
Abstract
Most excitatory synapses reside on small protrusions located on the dendritic shaft of neurons called dendritic spines. Neuronal activity regulates the number and structure of spines in both developing and mature brains. Such morphological changes are mediated by the modification of the actin cytoskeleton, the major structural component of spines. Because the number and size of spines is tightly correlated with the strength of synaptic transmission, the activity-dependent structural remodeling of a spine plays an important role in the modulation of synaptic transmission. The regulation of spine morphogenesis utilizes multiple intracellular signaling pathways that alter the dynamics of actin remodeling. Here, we will review recent studies examining the signaling pathways underlying activity-dependent actin remodeling at excitatory postsynaptic neurons.
Collapse
|
40
|
Stromal cell-derived factor 1 regulates the actin organization of chondrocytes and chondrocyte hypertrophy. PLoS One 2012; 7:e37163. [PMID: 22623989 PMCID: PMC3356379 DOI: 10.1371/journal.pone.0037163] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 04/16/2012] [Indexed: 01/07/2023] Open
Abstract
Stromal cell-derived factor 1 (SDF-1/CXCL12/PBSF) plays important roles in the biological and physiological functions of haematopoietic and mesenchymal stem cells. This chemokine regulates the formation of multiple organ systems during embryogenesis. However, its roles in skeletal development remain unclear. Here we investigated the roles of SDF-1 in chondrocyte differentiation. We demonstrated that SDF-1 protein was expressed at pre-hypertrophic and hypertrophic chondrocytes in the newly formed endochondral callus of rib fracture as well as in the growth plate of normal mouse tibia by immunohistochemical analysis. Using SDF-1(-/-) mouse embryo, we histologically showed that the total length of the whole humeri of SDF-1(-/-) mice was significantly shorter than that of wild-type mice, which was contributed mainly by shorter hypertrophic and calcified zones in SDF-1(-/-) mice. Actin cytoskeleton of hypertrophic chondrocytes in SDF-1(-/-) mouse humeri showed less F-actin and rounder shape than that of wild-type mice. Primary chondrocytes from SDF-1(-/-) mice showed the enhanced formation of philopodia and loss of F-actin. The administration of SDF-1 to primary chondrocytes of wild-type mice and SDF-1(-/-) mice promoted the formation of actin stress fibers. Organ culture of embryonic metatarsals from SDF-1(-/-) mice showed the growth delay, which was recovered by an exogenous administration of SDF-1. mRNA expression of type X collagen in metatarsals and in primary chondrocytes of SDF-1(-/-) mouse embryo was down-regulated while the administration of SDF-1 to metatarsals recovered. These data suggests that SDF-1 regulates the actin organization and stimulates bone growth by mediating chondrocyte hypertrophy.
Collapse
|
41
|
Ryan GL, Petroccia HM, Watanabe N, Vavylonis D. Excitable actin dynamics in lamellipodial protrusion and retraction. Biophys J 2012; 102:1493-502. [PMID: 22500749 DOI: 10.1016/j.bpj.2012.03.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 02/19/2012] [Accepted: 03/02/2012] [Indexed: 12/28/2022] Open
Abstract
Many animal cells initiate crawling by protruding lamellipodia, consisting of a dense network of actin filaments, at their leading edge. We imaged XTC cells that exhibit flat lamellipodia on poly-L-lysine-coated coverslips. Using active contours, we tracked the leading edge and measured the total amount of F-actin by summing the pixel intensities within a 5-μm band. We observed protrusion and retraction with period 130-200 s and local wavelike features. Positive (negative) velocities correlated with minimum (maximum) integrated actin concentration. Approximately constant retrograde flow indicated that protrusions and retractions were driven by fluctuations of the actin polymerization rate. We present a model of these actin dynamics as an excitable system in which a diffusive, autocatalytic activator causes actin polymerization; F-actin accumulation in turn inhibits further activator accumulation. Simulations of the model reproduced the pattern of actin polymerization seen in experiments. To explore the model's assumption of an autocatalytic activation mechanism, we imaged cells expressing markers for both F-actin and the p21 subunit of the Arp2/3 complex. We found that integrated Arp2/3-complex concentrations spike several seconds before spikes of F-actin concentration. This suggests that the Arp2/3 complex participates in an activation mechanism that includes additional diffuse components. Response of cells to stimulation by fetal calf serum could be reproduced by the model, further supporting the proposed dynamical picture.
Collapse
Affiliation(s)
- Gillian L Ryan
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania, USA
| | | | | | | |
Collapse
|
42
|
George UZ, Stéphanou A, Madzvamuse A. Mathematical modelling and numerical simulations of actin dynamics in the eukaryotic cell. J Math Biol 2012; 66:547-93. [DOI: 10.1007/s00285-012-0521-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 12/02/2011] [Indexed: 11/28/2022]
|
43
|
Abl-1-bridged tyrosine phosphorylation of VASP by Abelson kinase impairs association of VASP to focal adhesions and regulates leukaemic cell adhesion. Biochem J 2012; 441:889-99. [PMID: 22014333 DOI: 10.1042/bj20110951] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mena [mammalian Ena (Enabled)]/VASP (vasodilator-stimulated phosphoprotein) proteins are the homologues of Drosophila Ena. In Drosophila, Ena is a substrate of the tyrosine kinase DAbl (Drosophila Abl). However, the link between Abl and the Mena/VASP family is not fully understood in mammals. We previously reported that Abi-1 (Abl interactor 1) promotes phosphorylation of Mena and BCAP (B-cell adaptor for phosphoinositide 3-kinase) by bridging the interaction between c-Abl and the substrate. In the present study we have identified VASP, another member of the Mena/VASP family, as an Abi-1-bridged substrate of Abl. VASP is phosphorylated by Abl when Abi-1 is co-expressed. We also found that VASP interacted with Abi-1 both in vitro and in vivo. VASP was tyrosine-phosphorylated in Bcr-Abl-positive leukaemic cells in an Abi-1-dependent manner. Co-expression of c-Abl and Abi-1 or the phosphomimetic Y39D mutation in VASP resulted in less accumulation of VASP at focal adhesions. VASP Y39D had a reduced affinity to the proline-rich region of zyxin. Interestingly, overexpression of both phosphomimetic and unphosphorylated forms of VASP, but not wild-type VASP, impaired adhesion of K562 cells to fibronectin. These results suggest that the phosphorylation and dephosphorylation cycle of VASP by the Abi-1-bridged mechanism regulates association of VASP with focal adhesions, which may regulate adhesion of Bcr-Abl-transformed leukaemic cells.
Collapse
|
44
|
Ryan GL, Watanabe N, Vavylonis D. A review of models of fluctuating protrusion and retraction patterns at the leading edge of motile cells. Cytoskeleton (Hoboken) 2012; 69:195-206. [PMID: 22354870 DOI: 10.1002/cm.21017] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/30/2011] [Accepted: 02/03/2012] [Indexed: 01/03/2023]
Abstract
A characteristic feature of motile cells as they undergo a change in motile behavior is the development of fluctuating exploratory motions of the leading edge, driven by actin polymerization. We review quantitative models of these protrusion and retraction phenomena. Theoretical studies have been motivated by advances in experimental and computational methods that allow controlled perturbations, single molecule imaging, and analysis of spatiotemporal correlations in microscopic images. To explain oscillations and waves of the leading edge, most theoretical models propose nonlinear interactions and feedback mechanisms among different components of the actin cytoskeleton system. These mechanisms include curvature-sensing membrane proteins, myosin contraction, and autocatalytic biochemical reaction kinetics. We discuss how the combination of experimental studies with modeling promises to quantify the relative importance of these biochemical and biophysical processes at the leading edge and to evaluate their generality across cell types and extracellular environments.
Collapse
Affiliation(s)
- Gillian L Ryan
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | | | | |
Collapse
|
45
|
Smith MB, Karatekin E, Gohlke A, Mizuno H, Watanabe N, Vavylonis D. Interactive, computer-assisted tracking of speckle trajectories in fluorescence microscopy: application to actin polymerization and membrane fusion. Biophys J 2012; 101:1794-804. [PMID: 21961607 DOI: 10.1016/j.bpj.2011.09.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 07/25/2011] [Accepted: 09/06/2011] [Indexed: 12/11/2022] Open
Abstract
Analysis of particle trajectories in images obtained by fluorescence microscopy reveals biophysical properties such as diffusion coefficient or rates of association and dissociation. Particle tracking and lifetime measurement is often limited by noise, large mobilities, image inhomogeneities, and path crossings. We present Speckle TrackerJ, a tool that addresses some of these challenges using computer-assisted techniques for finding positions and tracking particles in different situations. A dynamic user interface assists in the creation, editing, and refining of particle tracks. The following are results from application of this program: 1), Tracking single molecule diffusion in simulated images. The shape of the diffusing marker on the image changes from speckle to cloud, depending on the relationship of the diffusion coefficient to the camera exposure time. We use these images to illustrate the range of diffusion coefficients that can be measured. 2), We used the program to measure the diffusion coefficient of capping proteins in the lamellipodium. We found values ∼0.5 μm(2)/s, suggesting capping protein association with protein complexes or the membrane. 3), We demonstrate efficient measuring of appearance and disappearance of EGFP-actin speckles within the lamellipodium of motile cells that indicate actin monomer incorporation into the actin filament network. 4), We marked appearance and disappearance events of fluorescently labeled vesicles to supported lipid bilayers and tracked single lipids from the fused vesicle on the bilayer. This is the first time, to our knowledge, that vesicle fusion has been detected with single molecule sensitivity and the program allowed us to perform a quantitative analysis. 5), By discriminating between undocking and fusion events, dwell times for vesicle fusion after vesicle docking to membranes can be measured.
Collapse
Affiliation(s)
- Matthew B Smith
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
46
|
Watanabe N. Fluorescence Single-Molecule Imaging of Actin Turnover and Regulatory Mechanisms. Methods Enzymol 2012; 505:219-32. [DOI: 10.1016/b978-0-12-388448-0.00020-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Mizuno H, Higashida C, Yuan Y, Ishizaki T, Narumiya S, Watanabe N. Rotational movement of the formin mDia1 along the double helical strand of an actin filament. Science 2010; 331:80-3. [PMID: 21148346 DOI: 10.1126/science.1197692] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Formin homology proteins (formins) elongate actin filaments (F-actin) by continuously associating with filament tips, potentially harnessing actin-generated pushing forces. During this processive elongation, formins are predicted to rotate along the axis of the double helical F-actin structure (referred to here as helical rotation), although this has not yet been definitively shown. We demonstrated helical rotation of the formin mDia1 by single-molecule fluorescence polarization (FL(P)). FL(P) of labeled F-actin, both elongating and depolymerizing from immobilized mDia1, oscillated with a periodicity corresponding to that of the F-actin long-pitch helix, and this was not altered by actin-bound nucleotides or the actin-binding protein profilin. Thus, helical rotation is an intrinsic property of formins. To harness pushing forces from growing F-actin, formins must be anchored flexibly to cell structures.
Collapse
Affiliation(s)
- Hiroaki Mizuno
- Laboratory of Single-Molecule Cell Biology, Tohoku University Graduate School of Life Sciences, 6-3 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | | | | | | | | | |
Collapse
|