1
|
Hosseinabadi SK, Nazari H, Arabi M, Shams Esfandabadi N, Ahmadi E, Afzali A, Ghanaei H. Improving Bovine Embryo Development and Quality Using Bovine Oviductal Epithelial Cell-Derived Conditioned Medium (bOEC-CM). Vet Med Sci 2025; 11:e70179. [PMID: 40159373 PMCID: PMC11955017 DOI: 10.1002/vms3.70179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/19/2024] [Accepted: 12/08/2024] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND The embryo co-culture systems with the monolayer cultured cells are complex, unreproducible, and have a high probability of biological contamination. Therefore, nowadays, using conditioned media is a suitable alternative to these methods. OBJECTIVES This study aimed to investigate the impact of utilizing bovine oviductal epithelial cell-derived conditioned medium (bOEC-CM) on subsequent embryo development and quality. METHODS Bovine embryos produced in vitro were cultured in a specific medium supplemented with either 5% charcoal-stripped FBS (Charcoled Strip Serum [CSS]) or 10% bOEC-CM from either Days 1 or 3 post-fertilization. Various parameters, such as cleavage rate, blastocyst formation, hatching rate and blastocyst quality, were assessed. RESULTS The results indicated that adding 10% CM from Day 1 significantly reduced the cleavage rate compared to using CSS on the same day (p < 0.05). Furthermore, the CSS and CM from both Days 1 and 3 increased blastocyst formation rates (p < 0.05). Notably, the addition of 10% CM on Day 3 significantly improved the hatching rate compared to the other groups (p < 0.05). Both CM and CSS were found to enhance the inner cell mass (ICM), trophectoderm (TE) and total cell numbers in blastocysts when used on both Days 1 and 3 (p < 0.05). Additionally, CM from Day 3 positively influenced the expression levels of development-specific genes in cultured embryos (p < 0.05). CONCLUSION Overall, the findings suggest that using bOEC-CM at a 10% concentration may provide a promising supplement even better than serum and traditional co-culture methods during the last 5 days of embryo culture.
Collapse
Affiliation(s)
| | - Hassan Nazari
- Research Institute of Animal Embryo TechnologyShahrekord UniversityShahrekordIran
| | - Mehran Arabi
- Department of Animal PhysiologyFaculty of Basic SciencesShahrekord UniversityShahrekordIran
| | - Naser Shams Esfandabadi
- Research Institute of Animal Embryo TechnologyShahrekord UniversityShahrekordIran
- Department of Clinical SciencesFaculty of Veterinary MedicineShahrekord UniversityShahrekordIran
| | - Ebrahim Ahmadi
- Research Institute of Animal Embryo TechnologyShahrekord UniversityShahrekordIran
| | - Azita Afzali
- Clinical EmbryologistShahrekord University of Medical SciencesShahrekordIran
| | | |
Collapse
|
2
|
Dujíčková L, Olexiková L, Makarevich AV, Bartková AR, Němcová L, Chrenek P, Strejček F. Astaxanthin Added during Post-Warm Recovery Mitigated Oxidative Stress in Bovine Vitrified Oocytes and Improved Quality of Resulting Blastocysts. Antioxidants (Basel) 2024; 13:556. [PMID: 38790660 PMCID: PMC11117980 DOI: 10.3390/antiox13050556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Various antioxidants are tested to improve the viability and development of cryopreserved oocytes, due to their known positive health effects. The aim of this study was to find whether astaxanthin (AX), a xanthophyll carotenoid, could mitigate deteriorations that occurred during the vitrification/warming process in bovine oocytes. Astaxanthin (2.5 µM) was added to the maturation medium during the post-warm recovery period of vitrified oocytes for 3 h. Afterward, the oocytes were fertilized in vitro using frozen bull semen and presumptive zygotes were cultured in the B2 Menezo medium in a co-culture with BRL-1 cells at 38.5 °C and 5% CO2 until the blastocyst stage. AX addition significantly reduced ROS formation, lipid peroxidation, and lysosomal activity, while increasing mitochondrial activity in vitrified oocytes. Although the effect of AX on embryo development was not observed, it stimulated cell proliferation in the blastocysts derived from vitrified oocytes and improved their quality by upregulation or downregulation of some genes related to apoptosis (BCL2, CAS9), oxidative stress (GPX4, CDX2), and development (GJB5) compared to the vitrified group without AX. Therefore, the antioxidant properties of astaxanthin even during short exposure to bovine vitrified/warmed oocytes resulted in improved blastocyst quality comparable to those from fresh oocytes.
Collapse
Affiliation(s)
- Linda Dujíčková
- Research Institute for Animal Production Nitra, National Agricultural and Food Centre (NPPC), Hlohovecká 2, 951 41 Lužianky, Slovakia; (L.D.); (L.O.); (A.V.M.); (P.C.)
| | - Lucia Olexiková
- Research Institute for Animal Production Nitra, National Agricultural and Food Centre (NPPC), Hlohovecká 2, 951 41 Lužianky, Slovakia; (L.D.); (L.O.); (A.V.M.); (P.C.)
| | - Alexander V. Makarevich
- Research Institute for Animal Production Nitra, National Agricultural and Food Centre (NPPC), Hlohovecká 2, 951 41 Lužianky, Slovakia; (L.D.); (L.O.); (A.V.M.); (P.C.)
| | - Alexandra Rosenbaum Bartková
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01 Nitra, Slovakia;
- Laboratory of Developmental Biology, Institute for Animal Physiology, Genetics of the Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic;
| | - Lucie Němcová
- Laboratory of Developmental Biology, Institute for Animal Physiology, Genetics of the Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic;
| | - Peter Chrenek
- Research Institute for Animal Production Nitra, National Agricultural and Food Centre (NPPC), Hlohovecká 2, 951 41 Lužianky, Slovakia; (L.D.); (L.O.); (A.V.M.); (P.C.)
- Institute of Biotechnology, Faculty of Biotechnology and Food Science, Slovak Agricultural University in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - František Strejček
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01 Nitra, Slovakia;
| |
Collapse
|
3
|
Conceição-Santos AL, Ferreira ACA, Sá NAR, Palomino GJQ, Silva AFB, Oliveira AC, Velarde JMDS, Celestino JJH, Rodrigues APR, Figueiredo JR. Anethole supplementation during in vitro maturation increases in vitro goat embryo production in a concentration-dependent manner. Theriogenology 2024; 215:78-85. [PMID: 38016304 DOI: 10.1016/j.theriogenology.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
During in vitro maturation (IVM) cumulus-oocyte complexes (COCs) are exposed to conditions that can trigger oxidative stress, thus, reducing oocyte maturation and viability. Aiming to mitigate these detrimental conditions, the effects of IVM medium supplementation with anethole have been tested. Anethole, also known as trans-anethole (1-methoxy-4 [1-propenyl]-benzene), is a naturally occurring phenylpropanoid with various pharmacological properties, including antioxidant effects. However, no study has examined anethole effect on goat COCs during IVM. Thus, the aim of this study was to evaluate the effects of different anethole concentrations on oocyte maturation, oxidative stress, and in vitro development of caprine embryos after parthenogenetic activation. Goat COCs were selected and randomly distributed into the following treatments: TCM-199+ medium (control), or TCM-199+ medium supplemented with 30 μg/mL (AN30); 300 μg/mL (AN300) or 2000 μg/mL (AN2000) of anethole. After IVM, part of the COCs was chosen for oocyte viability and chromatin configuration, intracellular reactive oxygen species levels, and mitochondrial membrane potential assessment. Another part of COCs was parthenogenetically activated, and presumptive zygotes were cultured for 7 days. Results demonstrated that anethole at 30 μg/mL increased oocyte maturation and cleavage rates when compared to the other treatments (P < 0.05), as well as oocyte viability and in vitro embryo production when compared to the control treatment (P < 0.05). Additionally, treatment with anethole at 2000 μg/mL decreased oocyte nuclear maturation and cleavage rates when compared to other treatments (P < 0.05) and embryo production if compared to control and AN30 treatments (P < 0.05). Moreover, anethole at 2000 μg/mL increased mitochondrial membrane potential when compared to the other treatments (P < 0.05). In conclusion, anethole exerts a concentration-dependent effect during goat COCs IVM. For a more desirable outcome of oocyte viability and maturation, and in vitro embryo production, the use of anethole at 30 μg/mL is recommended.
Collapse
Affiliation(s)
- A L Conceição-Santos
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - A C A Ferreira
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - N A R Sá
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - G J Q Palomino
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - A F B Silva
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - A C Oliveira
- Superior Institute of Biomedical Science, State University of Ceará, Fortaleza, CE, Brazil
| | - J M D S Velarde
- Department of Animal Science, Center of Agrarian Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - J J H Celestino
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Lusophony, Redenção, CE, Brazil
| | - A P R Rodrigues
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - J R Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
4
|
Csöbönyeiová M, Varga I, Lapides L, Pavlíková L, Feitscherová C, Klein M. From a Passive Conduit to Highly Dynamic Organ. What are the Roles of Uterine Tube Epithelium in Reproduction? Physiol Res 2022. [DOI: 10.33549/physiolres.934954] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It is well known that the mammalian uterine tube (UT) plays a crucial role in female fertility, where the most important events leading to successful fertilization and pre-implantation embryo development occur. The known functions of these small intra-abdominal organs are: an uptake and transport of oocytes; storage, transportation, and capacitation of spermatozoa, and finally fertilization and transport of the fertilized ovum and early embryo through the isthmus towards the uterotubal junction. The success of all these events depends on the interaction between the uterine tube epithelium (UTE) and gametes/embryo. Besides that, contemporary research revealed that the tubal epithelium provides essential nutritional support and the most suitable environment for early embryo development. Moreover, recent discoveries in molecular biology help understand the role of the epithelium at the cellular and molecular levels, highlighting the factors involved in regulating the UT signaling, that affects different steps in the fertilization process. According to the latest research, the extracellular vesicles, as a major component of tubal secretion, mediate the interaction between gametes/embryo and epithelium. This review aims to provide up-to-date knowledge on various aspects concerning tubal epithelium activity and its cross-talk with spermatozoa, oocytes and preimplantation embryo and how these interactions affect fertilization and early embryo development.
Collapse
Affiliation(s)
| | - I Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Slovak Republic.
| | | | | | | | | |
Collapse
|
5
|
Chen X, Zhao H, Lv J, Dong Y, Zhao M, Sui X, Cui R, Liu B, Wu K. Calcium ionophore improves embryonic development and pregnancy outcomes in patients with previous developmental problems in ICSI cycles. BMC Pregnancy Childbirth 2022; 22:894. [PMID: 36460987 PMCID: PMC9717248 DOI: 10.1186/s12884-022-05228-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Calcium (Ca2+) ionophores are now mainly considered as efficient treatments for fertilization failure. Recently, its application for rescuing poor embryo development was proposed but still non-routine. This study aimed to explore whether Ca2+ ionophore improves embryo development and pregnancy outcomes in patients with poor embryo development in previous intracytoplasmic sperm injection (ICSI) cycles. METHODS This study included 97 patients undergoing assisted oocyte activation (AOA) with Ca2+ ionophore (calcimycin, A23187) treatment. Preimplantation embryonic development and clinical outcomes were compared between ICSI-AOA cycles (AOA group) and previous ICSI cycles of the same patients in which poor embryo developmental potential was present (non-AOA group). Subgroups stratified by maternal age (< 35, 35-40, ≥ 40 years, respectively) were analyzed separately. RESULTS A total of 642 MII oocytes were collected in AOA group, and 689 in non-AOA group. Significantly higher day 3 good quality embryo rate (P = 0.034), good quality blastocyst formation rate (P < 0.001), and utilization rate (P < 0.001) were seen in AOA group. Similar results were seen in each subgroup. For pregnancy outcomes, there were significant differences in clinical pregnancy rate (P = 0.039) and live birth rate (P = 0.045) in total group. In subgroup aged < 35 years, biochemical (P = 0.038), clinical (P = 0.041), and ongoing pregnancy rate (P = 0.037) in AOA group were significantly higher than that in non-AOA group. No significant improvement for clinical outcomes for subgroups aged 35-40 and aged ≥40. CONCLUSION The study suggests that calcimycin could improve preimplantation development and pregnancy outcomes in patients aged < 35 years with embryo developmental problems in previous ICSI cycles.
Collapse
Affiliation(s)
- Xiaolei Chen
- grid.27255.370000 0004 1761 1174Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012 Shandong China ,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012 Shandong China ,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012 Shandong China
| | - Haibin Zhao
- grid.27255.370000 0004 1761 1174Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012 Shandong China ,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012 Shandong China ,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012 Shandong China
| | - Jiale Lv
- grid.27255.370000 0004 1761 1174Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012 Shandong China ,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012 Shandong China ,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012 Shandong China
| | - Yi Dong
- grid.27255.370000 0004 1761 1174Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012 Shandong China ,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012 Shandong China ,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012 Shandong China
| | - Maoning Zhao
- grid.27255.370000 0004 1761 1174Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012 Shandong China ,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012 Shandong China ,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012 Shandong China
| | - Xinlei Sui
- grid.27255.370000 0004 1761 1174Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012 Shandong China ,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012 Shandong China ,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012 Shandong China
| | - Ran Cui
- grid.27255.370000 0004 1761 1174Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012 Shandong China ,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012 Shandong China ,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012 Shandong China
| | - Boyang Liu
- grid.27255.370000 0004 1761 1174Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012 Shandong China ,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012 Shandong China ,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012 Shandong China
| | - Keliang Wu
- grid.27255.370000 0004 1761 1174Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012 Shandong China ,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012 Shandong China ,Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012 Shandong China
| |
Collapse
|
6
|
CSÖBÖNYEIOVÁ M, VARGA I, LAPIDES L, PAVLÍKOVÁ L, FEITSCHEROVÁ C, KLEIN M. From a Passive Conduit to Highly Dynamic Organ. What are the Roles of Uterine Tube Epithelium in Reproduction? Physiol Res 2022; 71:S11-S20. [PMID: 36592437 PMCID: PMC9853994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
It is well known that the mammalian uterine tube (UT) plays a crucial role in female fertility, where the most important events leading to successful fertilization and pre-implantation embryo development occur. The known functions of these small intra-abdominal organs are: an uptake and transport of oocytes; storage, transportation, and capacitation of spermatozoa, and finally fertilization and transport of the fertilized ovum and early embryo through the isthmus towards the uterotubal junction. The success of all these events depends on the interaction between the uterine tube epithelium (UTE) and gametes/embryo. Besides that, contemporary research revealed that the tubal epithelium provides essential nutritional support and the most suitable environment for early embryo development. Moreover, recent discoveries in molecular biology help understand the role of the epithelium at the cellular and molecular levels, highlighting the factors involved in regulating the UT signaling, that affects different steps in the fertilization process. According to the latest research, the extracellular vesicles, as a major component of tubal secretion, mediate the interaction between gametes/embryo and epithelium. This review aims to provide up-to-date knowledge on various aspects concerning tubal epithelium activity and its cross-talk with spermatozoa, oocytes and preimplantation embryo and how these interactions affect fertilization and early embryo development.
Collapse
Affiliation(s)
- Mária CSÖBÖNYEIOVÁ
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Ivan VARGA
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Lenka LAPIDES
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic,ISCARE, Reproduction Clinic, Gynecology and Urology, Bratislava, Slovak Republic
| | - Lada PAVLÍKOVÁ
- Department of Rehabilitation Studies, Faculty of Health Care Studies, University of West Bohemia, Pilsen, Czech Republic
| | - Claudia FEITSCHEROVÁ
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Martin KLEIN
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
7
|
Sun JT, Liu JH, Jiang XQ, Luo X, Yuan JD, Zhang Q, Qi XY, Lee S, Liu ZH, Jin JX. Tannin Reduces the Incidence of Polyspermic Penetration in Porcine Oocytes. Antioxidants (Basel) 2022; 11:antiox11102027. [PMID: 36290750 PMCID: PMC9598560 DOI: 10.3390/antiox11102027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 12/03/2022] Open
Abstract
Tannin (TA) improves porcine oocyte cytoplasmic maturation and subsequent embryonic development after in vitro fertilization (IVF). However, the mechanism through which TA blocks polyspermy after IVF remains unclear. Hence, the biological function of organelles (cortical granule [CG], Golgi apparatus, endoplasmic reticulum [ER], and mitochondria) and the incidence of polyspermic penetration were examined. We found no significant difference in oocyte nuclear maturation among the 1 µg/mL, 10 µg/mL TA, and control groups. Moreover, 100 μg/mL TA significantly reduced 1st polar body formation rate compared to the other groups. Additionally, 1 and 10 μg/mL TA significantly increased the protein levels of GDF9, BMP15, and CDK1 compared to the control and 100 μg/mL TA groups. Interestingly, 1 and 10 μg/mL TA improved the normal distribution of CGs, Golgi, ER, and mitochondria by upregulating organelle-related gene expression and downregulating ER stress (CHOP) gene expression. Simultaneously, 1 and 10 μg/mL TA significantly increased the proportion of normal fertilized oocytes (2 pronuclei; 2 PN) and blastocyst formation rate compared to the control, as well as that of 100 μg/mL TA after IVF by upregulating polyspermy-related genes. In conclusion, TA during IVM enhances 2PN and blastocyst formation rates by regulating organelles’ functions and activities.
Collapse
Affiliation(s)
- Jing-Tao Sun
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jia-Hui Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xi-Qing Jiang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xin Luo
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jin-Dong Yuan
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Qi Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xin-Yue Qi
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Zhong-Hua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (Z.-H.L.); (J.-X.J.)
| | - Jun-Xue Jin
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (Z.-H.L.); (J.-X.J.)
| |
Collapse
|
8
|
Liu Y, Jones C, Coward K. An investigation of mechanisms underlying mouse blastocyst hatching: a ribonucleic acid sequencing study. F&S SCIENCE 2022; 3:35-48. [PMID: 35559994 DOI: 10.1016/j.xfss.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To investigate the regulatory mechanisms and signaling molecules underlying hatching in mouse embryos. DESIGN Experimental laboratory study using a mouse embryo model. SETTING University-based basic scientific research laboratory. ANIMALS A total of 40 B6C3F1 × B6D2F1 mouse embryos were used in this study. INTERVENTION(S) Frozen/thawed mouse embryos, at the 8-cell stage, were cultured in vitro for 2 days. The resulting hatching and prehatching blastocysts were then used for complementary deoxyribonucleic acid (cDNA) library preparation and ribonucleic acid (RNA) sequencing analysis (n = 8 for each group). Differentially expressed genes were then used for downstream functional analysis. In addition, a list of genes related to developmental progression in humans was used to identify genes that were potentially related to the hatching of human embryos. MAIN OUTCOME MEASURE(S) Differentially expressed genes, enriched Gene Ontology terms and canonical pathways, clustered gene networks, activated upstream regulators, and common genes between a gene list of hatching-related genes in mice and a gene list associated with developmental progression in humans. RESULT(S) A total 275 differentially expressed genes were identified between hatching and prehatching blastocysts: 230 up-regulated and 45 down-regulated genes. Functional enrichment analysis suggested that blastocyst hatching in vitro is an adenosine triphosphate (ATP)-dependent process that involves protein biosynthesis and organization of the cytoskeleton. Furthermore, by regulating cell motility, the RhoA signaling pathway (including Arpc2, Cfl1, Gsn, Pfn1, Tpi1, Grb2, Tmsb10, Enah, and Rnd3 genes) may be a crucial signaling pathway during hatching. We also identified a cluster of genes (Krt8, Krt7, Cldn4, and Aqp3) that exerted functional roles in cell-cell junctions and water homeostasis during hatching. Moreover, some growth factors (angiotensinogen and fibroblast growth factor 2) and endocrine factors (estrogen receptor and prolactin) were predicted to be involved in the regulation of embryo hatching. In addition, we identified 81 potential genes that are potentially involved in the hatching process in human embryos. CONCLUSION(S) Our analysis identified potential genes and molecular regulatory pathways involved in the blastocyst hatching process in mice; we also identified genes that may potentially regulate hatching in human embryos. Our findings enhance our knowledge of embryo development and provide useful information for further exploring the mechanisms underlying embryo hatching.
Collapse
Affiliation(s)
- Yaqiong Liu
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Celine Jones
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Kevin Coward
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, Headington, Oxford, United Kingdom.
| |
Collapse
|
9
|
Hernández N, López-Morató M, Perianes MJ, Sánchez-Mateos S, Casas-Rua V, Domínguez-Arroyo JA, Sánchez-Margallo FM, Álvarez IS. 4-Hydroxyestradiol improves mouse embryo quality, epidermal growth factor-binding capability in vitro and implantation rates. Mol Hum Reprod 2021; 27:gaaa075. [PMID: 33237288 DOI: 10.1093/molehr/gaaa075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/30/2020] [Indexed: 11/12/2022] Open
Abstract
Embryo implantation in the uterus is a critical step to achieve success following ART. Despite favorable uterine conditions, a great number of good quality embryos fail to implant, often for reasons that are unknown. Hence, improving the implantation potential of embryos is a subject of great interest. 4-Hydroxyestradiol (4-OH-E2), a metabolic product of estradiol produced by endometrial cells, plays a key role in endometrial-embryonic interactions that are necessary for implantation. Nonetheless, the effects of 4-OH-E2 on embryos obtained in vitro have not been yet described. This study was designed to determine whether culture media enriched in 4-OH-E2 could improve the quality and implantation rate of embryos obtained in vitro, using both in vitro and in vivo models. We also analyzed its effects on the epidermal growth factor (EGF)-binding capability of the embryos. Our results showed that the presence of 4-OH-E2 in the culture media of embryos during the morula to blastocyst transition increases embryo quality and attachment to endometrial cells in vitro. 4-OH-E2 can also improve viable pregnancy rates of mouse embryos produced in vitro, reaching success rates that are similar to those from embryos obtained directly from the uterus. 4-OH-E2 improved the embryos' ability to bind EGF, which could be responsible for the increased embryo implantation potential observed. Therefore, our results strongly suggest that 4-OH-E2 is a strong candidate molecule to supplement human IVF culture media in order to improve embryo implantation. However, further research is required before these findings can be translated with efficacy and safety to fertility clinics.
Collapse
Affiliation(s)
- Nuria Hernández
- Assisted Reproduction Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Marta López-Morató
- Assisted Reproduction Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Mario J Perianes
- Department of Cell Biology, University of Extremadura, Badajoz, Spain
| | - Soledad Sánchez-Mateos
- Assisted Reproduction Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Vanessa Casas-Rua
- Department of Cell Biology, University of Extremadura, Badajoz, Spain
| | | | | | - Ignacio S Álvarez
- Department of Cell Biology, University of Extremadura, Badajoz, Spain
- Instituto Extremeño de Reproducción Asistida-Quirónsalud, Badajoz, Spain
| |
Collapse
|
10
|
Izmailova LS, Vorotelyak EA, Vasiliev AV. In Vitro Modeling of the Early Development of Mouse and Human Embryos. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420050045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Hamutoğlu R, Bulut HE, Kaloğlu C, Önder O, Dağdeviren T, Aydemir MN, Korkmaz EM. The regulation of trophoblast invasion and decidual reaction by matrix metalloproteinase-2, metalloproteinase-7, and metalloproteinase-9 expressions in the rat endometrium. Reprod Med Biol 2020; 19:385-397. [PMID: 33071641 PMCID: PMC7542015 DOI: 10.1002/rmb2.12342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 01/02/2023] Open
Abstract
PURPOSE We aimed to evaluate how matrix metalloproteinases (MMPs) regulate the trophoblast invasion and placentation. METHODS Female rats were divided into the estrous cycle and early pregnancy day groups. Obtained uterine tissues and implantation sites were processed for immunofluorescence and real-time PCR examinations. RESULTS The mRNA expression of MMP-7 was higher than MMP-2 and MMP-9. Immunofluorescence findings confirmed that MMP-2, MMP-7, and MMP-9 were localized in the endometrial stroma, while MMP-7 was high in glandular and lining epithelial cells throughout the entire estrous cycle. However, their immunolocalizations and mRNA expressions were dramatically changed with the early pregnancy days. The MMP-7 reached very strong immunostaining in the giant trophoblast cells (GTCs), and the cytoplasm of mature and differentiating decidual cells, whereas MMP-2 and MMP-9 were mostly seen in the primary decidual zone (PDZ), GTCs, and the endothelium of blood vessels. CONCLUSIONS All three MMPs seemed likely to be a key mediator of trophoblast invasion into the decidual region as well as angiogenesis during the placentation process. Due to the strong and wide expression of MMP-7 in the mature decidua, it could be suggested that MMP-7 is important for decidual ECM remodeling and it might be used as a new marker of decidual reaction.
Collapse
Affiliation(s)
- Rasim Hamutoğlu
- Department of Histology and EmbryologyFaculty of MedicineCumhuriyet UniversitySivasTurkey
| | - Hüseyin Eray Bulut
- Department of Histology and EmbryologyFaculty of MedicineCumhuriyet UniversitySivasTurkey
| | - Celal Kaloğlu
- Department of Histology and EmbryologyFaculty of MedicineCumhuriyet UniversitySivasTurkey
- Cumhuriyet University Assisted Reproduction Technology (ART) CenterSivasTurkey
| | - Ozan Önder
- Department of Histology and EmbryologyFaculty of MedicineCumhuriyet UniversitySivasTurkey
| | - Tuğba Dağdeviren
- Department of Histology and EmbryologyFaculty of MedicineCumhuriyet UniversitySivasTurkey
| | - Merve Nur Aydemir
- Department of Molecular Biology and GeneticsFaculty of ScienceCumhuriyet UniversitySivasTurkey
| | - Ertan Mahir Korkmaz
- Department of Molecular Biology and GeneticsFaculty of ScienceCumhuriyet UniversitySivasTurkey
| |
Collapse
|