1
|
Tragkola V, Anestopoulos I, Kyriakou S, Amery T, Franco R, Pappa A, Panayiotidis MI. Naturally-derived phenethyl isothiocyanate modulates apoptotic induction through regulation of the intrinsic cascade and resulting apoptosome formation in human malignant melanoma cells. Toxicol Mech Methods 2024; 34:985-999. [PMID: 38919011 DOI: 10.1080/15376516.2024.2369666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Malignant melanoma is the most aggressive type of skin cancer with increasing incidence rates worldwide. On the other hand, watercress is a rich source of phenethyl isothiocyanate (PEITC), among others, which has been widely investigated for its anticancer properties against various cancers. In the present study, we evaluated the role of a watercress extract in modulating apoptotic induction in an in vitro model of human malignant melanoma consisting of melanoma (A375, COLO-679, COLO-800), non-melanoma epidermoid carcinoma (A431) and immortalized, non-tumorigenic keratinocyte (HaCaT) cells. Moreover, the chemical composition of the watercress extract was characterized through UPLC MS/MS and other analytical methodologies. In addition, cytotoxicity was assessed by the alamar blue assay whereas apoptosis was determined, initially, by a multiplex activity assay kit (measuring levels of activated caspases -3, -8 and -9) as well as by qRT-PCR for the identification of major genes regulating apoptosis. In addition, protein expression levels were evaluated by western immunoblotting. Our data indicate that the extract contains various phytochemicals (e.g. phenolics, flavonoids, pigments, etc.) while isothiocyanates (ITCs; especially PEITC) were the most abundant. In addition, the extract was shown to exert a significant time- and dose-dependent cytotoxicity against all malignant melanoma cell lines while non-melanoma and non-tumorigenic cells exhibited significant resistance. Finally, expression profiling revealed a number of genes (and corresponding proteins) being implicated in regulating apoptotic induction through activation of the intrinsic apoptotic cascade. Overall, our data indicate the potential of PEITC as a promising anti-cancer agent in the clinical management of human malignant melanoma.
Collapse
Affiliation(s)
- Venetia Tragkola
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Ioannis Anestopoulos
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | | | - Rodrigo Franco
- School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Mihalis I Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| |
Collapse
|
2
|
Anestopoulos I, Paraskevaidis I, Kyriakou S, Giova LE, Trafalis DT, Botaitis S, Franco R, Pappa A, Panayiotidis MI. Isothiocyanates Potentiate Tazemetostat-Induced Apoptosis by Modulating the Expression of Apoptotic Genes, Members of Polycomb Repressive Complex 2, and Levels of Tri-Methylating Lysine 27 at Histone 3 in Human Malignant Melanoma Cells. Int J Mol Sci 2024; 25:2745. [PMID: 38473991 DOI: 10.3390/ijms25052745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
In this study, we utilized an in vitro model consisting of human malignant melanoma as well as non-tumorigenic immortalized keratinocyte cells with the aim of characterizing the therapeutic effectiveness of the clinical epigenetic drug Tazemetostat alone or in combination with various isothiocyanates. In doing so, we assessed markers of cell viability, apoptotic induction, and expression levels of key proteins capable of mediating the therapeutic response. Our data indicated, for the first time, that Tazemetostat caused a significant decrease in viability levels of malignant melanoma cells in a dose- and time-dependent manner via the induction of apoptosis, while non-malignant keratinocytes were more resistant. Moreover, combinatorial treatment protocols caused a further decrease in cell viability, together with higher apoptotic rates. In addition, a significant reduction in the Polycomb Repressive Complex 2 (PRC2) members [e.g., Enhancer of Zeste Homologue 2 (EZH2), Embryonic Ectoderm Development (EED), and suppressor of zeste 12 (SUZ12)] and tri-methylating lysine 27 at Histone 3 (H3K27me3) protein expression levels was observed, at least partially, under specific combinatorial exposure conditions. Reactivation of major apoptotic gene targets was determined at much higher levels in combinatorial treatment protocols than Tazemetostat alone, known to be involved in the induction of intrinsic and extrinsic apoptosis. Overall, we developed an optimized experimental therapeutic platform aiming to ensure the therapeutic effectiveness of Tazemetostat in malignant melanoma while at the same time minimizing toxicity against neighboring non-tumorigenic keratinocyte cells.
Collapse
Affiliation(s)
- Ioannis Anestopoulos
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, Ayios Dometios, Nicosia 2371, Cyprus
| | - Ioannis Paraskevaidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, Ayios Dometios, Nicosia 2371, Cyprus
| | - Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, Ayios Dometios, Nicosia 2371, Cyprus
| | - Lambrini E Giova
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, Ayios Dometios, Nicosia 2371, Cyprus
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece
| | - Sotiris Botaitis
- Department of Surgery, School of Medicine, University Hospital, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Rodrigo Franco
- School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Mihalis I Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, Ayios Dometios, Nicosia 2371, Cyprus
| |
Collapse
|
3
|
Kyriakou S, Tragkola V, Alghol H, Anestopoulos I, Amery T, Stewart K, Winyard PG, Trafalis DT, Franco R, Pappa A, Panayiotidis MI. Evaluation of Bioactive Properties of Lipophilic Fractions of Edible and Non-Edible Parts of Nasturtium officinale (Watercress) in a Model of Human Malignant Melanoma Cells. Pharmaceuticals (Basel) 2022; 15:141. [PMID: 35215254 PMCID: PMC8879096 DOI: 10.3390/ph15020141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 12/04/2022] Open
Abstract
Watercress is an enriched source of phenethyl isothiocyanate (PEITC), among other phytochemicals, with an antioxidant capacity. The aim of this study was to (i) chemically characterize and (ii) biologically evaluate the profile of the main health-promoting compounds contained in edible (i.e., mixture of leaves and lateral buds) and non-edible (i.e., stems) parts of watercress in an in vitro model of malignant melanoma consisting of human malignant melanoma (A375), non-melanoma (A431) and keratinocyte (HaCaT) cells. The extraction of the main constituents of watercress was performed by subjecting the freeze-dried edible and non-edible samples through different extraction protocols, whereas their concentration was obtained utilizing analytical methodologies. In addition, cell viability was evaluated by the Alamar Blue assay, whereas levels of oxidative stress and apoptosis were determined by commercially available kits. The edible watercress sample contained a higher amount of various nutrients and phytochemicals in the hexane fraction compared to the non-edible one, as evidenced by the presence of PEITC, phenolics, flavonoids, pigments, ascorbic acid, etc. The cytotoxicity potential of the edible watercress sample in the hexane fraction was considerably higher than the non-edible one in A375 cells, whereas A431 and HaCaT cells appeared to be either more resistant or minimally affected, respectively. Finally, levels of oxidative stress and apoptotic induction were increased in both watercress samples, but the magnitude of the induction was much higher in the edible than the non-edible watercress samples. Herein, we provide further evidence documenting the potential development of watercress extracts (including watercress waste by-products) as promising anti-cancer agent(s) against malignant melanoma cells.
Collapse
Affiliation(s)
- Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.K.); (V.T.); (I.A.)
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus;
| | - Venetia Tragkola
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.K.); (V.T.); (I.A.)
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus;
| | - Heba Alghol
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus;
| | - Ioannis Anestopoulos
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.K.); (V.T.); (I.A.)
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus;
| | - Tom Amery
- The Watercress Company, Dorchester DT2 8QY, UK;
| | - Kyle Stewart
- Watercress Research Limited, Devon TQ12 4AA, UK; (K.S.); (P.G.W.)
| | - Paul G. Winyard
- Watercress Research Limited, Devon TQ12 4AA, UK; (K.S.); (P.G.W.)
| | - Dimitrios T. Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.K.); (V.T.); (I.A.)
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus;
| |
Collapse
|
4
|
Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential. Cancers (Basel) 2021; 13:cancers13194796. [PMID: 34638282 PMCID: PMC8508555 DOI: 10.3390/cancers13194796] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary As of the past decade, phytochemicals have become a major target of interest in cancer chemopreventive and chemotherapeutic research. Sulforaphane (SFN) is a metabolite of the phytochemical glucoraphanin, which is found in high abundance in cruciferous vegetables, such as broccoli, watercress, Brussels sprouts, and cabbage. In both distant and recent research, SFN has been shown to have a multitude of anticancer effects, increasing the need for a comprehensive review of the literature. In this review, we critically evaluate SFN as an anticancer agent and its mechanisms of action based on an impressive number of in vitro, in vivo, and clinical studies. Abstract There is substantial and promising evidence on the health benefits of consuming broccoli and other cruciferous vegetables. The most important compound in broccoli, glucoraphanin, is metabolized to SFN by the thioglucosidase enzyme myrosinase. SFN is the major mediator of the health benefits that have been recognized for broccoli consumption. SFN represents a phytochemical of high interest as it may be useful in preventing the occurrence and/or mitigating the progression of cancer. Although several prior publications provide an excellent overview of the effect of SFN in cancer, these reports represent narrative reviews that focused mainly on SFN’s source, biosynthesis, and mechanisms of action in modulating specific pathways involved in cancer without a comprehensive review of SFN’s role or value for prevention of various human malignancies. This review evaluates the most recent state of knowledge concerning SFN’s efficacy in preventing or reversing a variety of neoplasms. In this work, we have analyzed published reports based on in vitro, in vivo, and clinical studies to determine SFN’s potential as a chemopreventive agent. Furthermore, we have discussed the current limitations and challenges associated with SFN research and suggested future research directions before broccoli-derived products, especially SFN, can be used for human cancer prevention and intervention.
Collapse
|
5
|
Mitsiogianni M, Kyriakou S, Anestopoulos I, Trafalis DT, Deligiorgi MV, Franco R, Pappa A, Panayiotidis MI. An Evaluation of the Anti-Carcinogenic Response of Major Isothiocyanates in Non-Metastatic and Metastatic Melanoma Cells. Antioxidants (Basel) 2021; 10:antiox10020284. [PMID: 33668498 PMCID: PMC7918923 DOI: 10.3390/antiox10020284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 12/28/2022] Open
Abstract
Malignant melanoma is one of the most deadly types of solid cancers, a property mainly attributed to its highly aggressive metastatic form. On the other hand, different classes of isothiocyanates, a class of phytochemicals, present in cruciferous vegetables have been characterized by considerable anti-cancer activity in both in vitro and in vivo experimental models. In the current study, we investigated the anti-cancer response of five isothiocyanates in an in vitro model of melanoma consisting of non-metastatic (A375, B16F-10) and metastatic (VMM1, Hs294T) malignant melanoma as well as non-melanoma epidermoid carcinoma (A431) and non-tumorigenic melanocyte-neighboring keratinocyte (HaCaT) cells. Our aim was to compare different endpoints of cytotoxicity (e.g., reactive oxygen species, intracellular glutathione content, cell cycle growth arrest, apoptosis and necrosis) descriptive of an anti-cancer response between non-metastatic and metastatic melanoma as well as non-melanoma epidermoid carcinoma and non-tumorigenic cells. Our results showed that exposure to isothiocyanates induced an increase in intracellular reactive oxygen species and glutathione contents between non-metastatic and metastatic melanoma cells. The distribution of cell cycle phases followed a similar pattern in a manner where non-metastatic and metastatic melanoma cells appeared to be growth arrested at the G2/M phase while elevated levels of metastatic melanoma cells were shown to be at sub G1 phase, an indicator of necrotic cell death. Finally, metastatic melanoma cells were more sensitive apoptosis and/or necrosis as higher levels were observed compared to non-melanoma epidermoid carcinoma and non-tumorigenic cells. In general, non-melanoma epidermoid carcinoma and non-tumorigenic cells were more resistant under any experimental exposure condition. Overall, our study provides further evidence for the potential development of isothiocyanates as promising anti-cancer agents against non-metastatic and metastatic melanoma cells, a property specific for these cells and not shared by non-melanoma epidermoid carcinoma or non-tumorigenic melanocyte cells.
Collapse
Affiliation(s)
- Melina Mitsiogianni
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK;
| | - Sotiris Kyriakou
- Department of Electron Microscopy & Molecular Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.K.); (I.A.)
- The Cyprus School of Molecular Medicine, P.O. Box 23462, Nicosia 1683, Cyprus
| | - Ioannis Anestopoulos
- Department of Electron Microscopy & Molecular Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.K.); (I.A.)
- The Cyprus School of Molecular Medicine, P.O. Box 23462, Nicosia 1683, Cyprus
| | - Dimitrios T. Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Maria V. Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Mihalis I. Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK;
- Department of Electron Microscopy & Molecular Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (S.K.); (I.A.)
- The Cyprus School of Molecular Medicine, P.O. Box 23462, Nicosia 1683, Cyprus
- Correspondence: ; Tel.: +357-223-92626
| |
Collapse
|
6
|
Calabrese EJ, Kozumbo WJ. The phytoprotective agent sulforaphane prevents inflammatory degenerative diseases and age-related pathologies via Nrf2-mediated hormesis. Pharmacol Res 2020; 163:105283. [PMID: 33160067 DOI: 10.1016/j.phrs.2020.105283] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
In numerous experimental models, sulforaphane (SFN) is shown herein to induce hormetic dose responses that are not only common but display endpoints of biomedical and clinical relevance. These hormetic responses are mediated via the activation of nuclear factor erythroid- derived 2 (Nrf2) antioxidant response elements (AREs) and, as such, are characteristically biphasic, well integrated, concentration/dose dependent, and specific with regard to the targeted cell type and the temporal profile of response. In experimental disease models, the SFN-induced hormetic activation of Nrf2 was shown to effectively reduce the occurrence and severity of a wide range of human-related pathologies, including Parkinson's disease, Alzheimer's disease, stroke, age-related ocular damage, chemically induced brain damage, and renal nephropathy, amongst others, while also enhancing stem cell proliferation. Although SFN was broadly chemoprotective within an hormetic dose-response context, it also enhanced cell proliferation/cell viability at low concentrations in multiple tumor cell lines. Although the implications of the findings in tumor cells are largely uncertain at this time and warrant further consideration, the potential utility of SFN in cancer treatment has not been precluded. This assessment of SFN complements recent reports of similar hormesis-based chemoprotections by other widely used dietary supplements, such as curcumin, ginkgo biloba, ginseng, green tea, and resveratrol. Interestingly, the mechanistic profile of SFN is similar to that of numerous other hormetic agents, indicating that activation of the Nrf2/ARE pathway is probably a central, integrative, and underlying mechanism of hormesis itself. The Nrf2/ARE pathway provides an explanation for how large numbers of agents that both display hormetic dose responses and activate Nrf2 can function to limit age-related damage, the progression of numerous disease processes, and chemical- and radiation- induced toxicities. These findings extend the generality of the hormetic dose response to include SFN and many other chemical activators of Nrf2 that are cited in the biomedical literature and therefore have potentially important public health and clinical implications.
Collapse
Affiliation(s)
- Edward J Calabrese
- Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, United States.
| | | |
Collapse
|
7
|
Wu G, Yan Y, Zhou Y, Duan Y, Zeng S, Wang X, Lin W, Ou C, Zhou J, Xu Z. Sulforaphane: Expected to Become a Novel Antitumor Compound. Oncol Res 2020; 28:439-446. [PMID: 32111265 PMCID: PMC7851526 DOI: 10.3727/096504020x15828892654385] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Natural products are becoming increasingly popular in a variety of traditional, complementary, and alternative systems due to their potency and slight side effects. Natural compounds have been shown to be effective against many human diseases, especially cancers. Sulforaphane (SFE) is a traditional Chinese herbal medicine. In recent years, an increasing number of studies have been conducted to evaluate the antitumor effect of SFE. The roles of SFE in cancers are mainly through the regulation of potential biomarkers to activate or inhibit related signaling pathways. SFE has exhibited promising inhibitory effects on breast cancer, lung cancer, liver cancer, and other malignant tumors. In this review, we summarized the reports on the activity and functional mechanisms of SFE in cancer treatment and explored the efficacy and toxicity of SFE.
Collapse
Affiliation(s)
- Geting Wu
- *Department of Pathology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yuanliang Yan
- †Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, P.R. China
- ‡National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yangying Zhou
- §Department of Oncology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yumei Duan
- *Department of Pathology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Shuangshuang Zeng
- †Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, P.R. China
- ‡National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Xiang Wang
- †Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, P.R. China
- ‡National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Wei Lin
- *Department of Pathology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Chunlin Ou
- *Department of Pathology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Jianhua Zhou
- *Department of Pathology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Zhijie Xu
- *Department of Pathology, Xiangya Hospital, Central South University, Changsha, P.R. China
- ‡National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
8
|
Mitsiogianni M, Trafalis DT, Franco R, Zoumpourlis V, Pappa A, Panayiotidis MI. Sulforaphane and iberin are potent epigenetic modulators of histone acetylation and methylation in malignant melanoma. Eur J Nutr 2020; 60:147-158. [PMID: 32215717 DOI: 10.1007/s00394-020-02227-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE(S) Growing evidence supports that isothiocyanates exert a wide range of bioactivities amongst of which is their capacity to interact with the epigenetic machinery in various cancers including melanoma. Our aim was to characterise the effect of sulforaphane and iberin on histone acetylation and methylation as a potential anti-melanoma strategy. METHODS We have utilised an in vitro model of malignant melanoma [consisting of human (A375, Hs294T, VMM1) and murine (B16F-10) melanoma cell lines as well as a non-melanoma (A431) and a non-tumorigenic immortalised keratinocyte (HaCaT) cell line] exposed to sulforaphane or iberin. Cell viability was evaluated by the Alamar blue assay whilst total histone deacetylases and acetyltransferases activities were determined by the Epigenase HDAC Activity/Inhibition and EpiQuik HAT Activity/Inhibition assay kits, respectively. The expression levels of specific histone deacetylases and acetyltransferases together with those of lysine acetylation and methylation marks were obtained by western immunoblotting. RESULTS Overall, both sulforaphane and iberin were able to (1) reduce cell viability, (2) decrease total histone deacetylase activity and (3) modulate the expression levels of various histone deacetylases as well as acetyl and methyl transferases thus modulating the acetylation and methylation status of specific lysine residues on histones 3 and 4 in malignant melanoma cells. CONCLUSIONS Our findings highlight novel insights as to how sulforaphane and iberin differentially regulate the epigenetic response in ways compatible with their anticancer action in malignant melanoma.
Collapse
Affiliation(s)
- Melina Mitsiogianni
- Faculty of Health and Life Sciences, Department of Applied Sciences, Group of Translational Biosciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Clinical Pharmacology Unit, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Vasilis Zoumpourlis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635, Athens, Greece
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Mihalis I Panayiotidis
- Faculty of Health and Life Sciences, Department of Applied Sciences, Group of Translational Biosciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK.
- Department of Electron Microscopy and Molecular Pathology, The Cyprus Institute of Neurology and Genetics, 2371, Nicosia, Cyprus.
| |
Collapse
|
9
|
Martelli A, Citi V, Testai L, Brogi S, Calderone V. Organic Isothiocyanates as Hydrogen Sulfide Donors. Antioxid Redox Signal 2020; 32:110-144. [PMID: 31588780 DOI: 10.1089/ars.2019.7888] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Hydrogen sulfide (H2S), the "new entry" in the series of endogenous gasotransmitters, plays a fundamental role in regulating the biological functions of various organs and systems. Consequently, the lack of adequate levels of H2S may represent the etiopathogenetic factor of multiple pathological alterations. In these diseases, the use of H2S donors represents a precious and innovative opportunity. Recent Advances: Natural isothiocyanates (ITCs), sulfur compounds typical of some botanical species, have long been investigated because of their intriguing pharmacological profile. Recently, the ITC moiety has been proposed as a new H2S-donor chemotype (with a l-cysteine-mediated reaction). Based on this recent discovery, we can clearly observe that almost all the effects of natural ITCs can be explained by the H2S release. Consistently, the ITC function was also used as an original H2S-releasing moiety for the design of synthetic H2S donors and original "pharmacological hybrids." Very recently, the chemical mechanism of H2S release, resulting from the reaction between l-cysteine and some ITCs, has been elucidated. Critical Issues: Available literature gives convincing demonstration that H2S is the real player in ITC pharmacology. Further, countless studies have been carried out on natural ITCs, but this versatile moiety has been used only rarely for the design of synthetic H2S donors with optimal drug-like properties. Future Directions: The development of more ITC-based synthetic H2S donors with optimal drug-like properties and selectivity toward specific tissues/pathologies seem to represent a stimulating and indispensable prospect of future experimental activities.
Collapse
Affiliation(s)
- Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)," University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of "Ageing Biology and Pathology," University of Pisa, Pisa, Italy
| | | | - Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)," University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of "Ageing Biology and Pathology," University of Pisa, Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)," University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of "Ageing Biology and Pathology," University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Mitsiogianni M, Koutsidis G, Mavroudis N, Trafalis DT, Botaitis S, Franco R, Zoumpourlis V, Amery T, Galanis A, Pappa A, Panayiotidis MI. The Role of Isothiocyanates as Cancer Chemo-Preventive, Chemo-Therapeutic and Anti-Melanoma Agents. Antioxidants (Basel) 2019; 8:E106. [PMID: 31003534 PMCID: PMC6523696 DOI: 10.3390/antiox8040106] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022] Open
Abstract
Many studies have shown evidence in support of the beneficial effects of phytochemicals in preventing chronic diseases, including cancer. Among such phytochemicals, sulphur-containing compounds (e.g., isothiocyanates (ITCs)) have raised scientific interest by exerting unique chemo-preventive properties against cancer pathogenesis. ITCs are the major biologically active compounds capable of mediating the anticancer effect of cruciferous vegetables. Recently, many studies have shown that a higher intake of cruciferous vegetables is associated with reduced risk of developing various forms of cancers primarily due to a plurality of effects, including (i) metabolic activation and detoxification, (ii) inflammation, (iii) angiogenesis, (iv) metastasis and (v) regulation of the epigenetic machinery. In the context of human malignant melanoma, a number of studies suggest that ITCs can cause cell cycle growth arrest and also induce apoptosis in human malignant melanoma cells. On such basis, ITCs could serve as promising chemo-therapeutic agents that could be used in the clinical setting to potentiate the efficacy of existing therapies.
Collapse
Affiliation(s)
- Melina Mitsiogianni
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Georgios Koutsidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Nikos Mavroudis
- Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6AP, UK.
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Unit of Clinical Pharmacology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Sotiris Botaitis
- Second Department of Surgery, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Vasilis Zoumpourlis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | - Tom Amery
- The Watrercress Company / The Wasabi Company, Waddock, Dorchester, Dorset DT2 8QY, UK.
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Mihalis I Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
11
|
Allyl isothiocyanate regulates lysine acetylation and methylation marks in an experimental model of malignant melanoma. Eur J Nutr 2019; 59:557-569. [PMID: 30762097 PMCID: PMC7058602 DOI: 10.1007/s00394-019-01925-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/05/2019] [Indexed: 12/19/2022]
Abstract
Objective(s) Isothiocyanates (ITCs) are biologically active plant secondary metabolites capable of mediating various biological effects including modulation of the epigenome. Our aim was to characterize the effect of allyl isothiocyanate (AITC) on lysine acetylation and methylation marks as a potential epigenetic-induced anti-melanoma strategy. Methods Our malignant melanoma model consisted of (1) human (A375) and murine (B16-F10) malignant melanoma as well as of human; (2) brain (VMM1) and lymph node (Hs 294T) metastatic melanoma; (3) non-melanoma epidermoid carcinoma (A431) and (4) immortalized keratinocyte (HaCaT) cells subjected to AITC. Cell viability, histone deacetylases (HDACs) and acetyltransferases (HATs) activities were evaluated by the Alamar blue, Epigenase HDAC Activity/Inhibition and EpiQuik HAT Activity/Inhibition assay kits, respectively, while their expression levels together with those of lysine acetylation and methylation marks by western immunoblotting. Finally, apoptotic gene expression was assessed by an RT-PCR-based gene expression profiling methodology. Results AITC reduces cell viability, decreases HDACs and HATs activities and causes changes in protein expression levels of various HDACs, HATs, and histone methyl transferases (HMTs) all of which have a profound effect on specific lysine acetylation and methylation marks. Moreover, AITC regulates the expression of a number of genes participating in various apoptotic cascades thus indicating its involvement in apoptotic induction. Conclusions AITC exerts a potent epigenetic effect suggesting its potential involvement as a promising epigenetic-induced bioactive for the treatment of malignant melanoma.
Collapse
|
12
|
Hirata T, Cho YM, Suzuki I, Toyoda T, Akagi JI, Nakamura Y, Numazawa S, Ogawa K. 4-Methylthio-3-butenyl isothiocyanate (MTBITC) induced apoptotic cell death and G2/M cell cycle arrest via ROS production in human esophageal epithelial cancer cells. J Toxicol Sci 2019; 44:73-81. [DOI: 10.2131/jts.44.73] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Tadashi Hirata
- Division of Pathology, National Institute of Health Sciences
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University
| | - Young-Man Cho
- Division of Pathology, National Institute of Health Sciences
| | - Isamu Suzuki
- Division of Pathology, National Institute of Health Sciences
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences
| | - Jun-ichi Akagi
- Division of Pathology, National Institute of Health Sciences
| | - Yasushi Nakamura
- Kyoto Institute of Japanese Diet Culture, Kyoto Prefectural University
| | - Satoshi Numazawa
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences
| |
Collapse
|
13
|
Briones-Herrera A, Eugenio-Pérez D, Reyes-Ocampo JG, Rivera-Mancía S, Pedraza-Chaverri J. New highlights on the health-improving effects of sulforaphane. Food Funct 2018; 9:2589-2606. [PMID: 29701207 DOI: 10.1039/c8fo00018b] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this paper, we review recent evidence about the beneficial effects of sulforaphane (SFN), which is the most studied member of isothiocyanates, on both in vivo and in vitro models of different diseases, mainly diabetes and cancer. The role of SFN on oxidative stress, inflammation, and metabolism is discussed, with emphasis on those nuclear factor E2-related factor 2 (Nrf2) pathway-mediated mechanisms. In the case of the anti-inflammatory effects of SFN, the point of convergence seems to be the downregulation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), with the consequent amelioration of other pathogenic processes such as hypertrophy and fibrosis. We emphasized that SFN shows opposite effects in normal and cancer cells at many levels; for instance, while in normal cells it has protective actions, in cancer cells it blocks the induction of factors related to the malignity of tumors, diminishes their development, and induces cell death. SFN is able to promote apoptosis in cancer cells by many mechanisms, the production of reactive oxygen species being one of the most relevant ones. Given its properties, SFN could be considered as a phytochemical at the forefront of natural medicine.
Collapse
Affiliation(s)
- Alfredo Briones-Herrera
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | | | | | | |
Collapse
|
14
|
Mitsiogianni M, Amery T, Franco R, Zoumpourlis V, Pappa A, Panayiotidis MI. From chemo-prevention to epigenetic regulation: The role of isothiocyanates in skin cancer prevention. Pharmacol Ther 2018; 190:187-201. [DOI: 10.1016/j.pharmthera.2018.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Lee CF, Chiang NN, Lu YH, Huang YS, Yang JS, Tsai SC, Lu CC, Chen FA. Benzyl isothiocyanate (BITC) triggers mitochondria-mediated apoptotic machinery in human cisplatin-resistant oral cancer CAR cells. Biomedicine (Taipei) 2018; 8:15. [PMID: 30141402 PMCID: PMC6108226 DOI: 10.1051/bmdcn/2018080315] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/12/2018] [Indexed: 01/23/2023] Open
Abstract
Benzyl isothiocyanate (BITC), a component of dietary food, possesses a powerful anticancer activity. Previous studies have shown that BITC produces a large number of intracellular reactive oxygen species (ROS) and increases intracellular Ca2+ release from endoplasmic reticulum (ER), leading to the activation of the apoptotic mechanism in tumor cells. However, there is not much known regarding the inhibitory effect of BITC on cisplatin-resistant oral cancer cells. The purpose of this study was to examine the anticancer effect and molecular mechanism of BITC on human cisplatin-resistant oral cancer CAR cells. Our results demonstrated that BITC significantly reduced cell viability of CAR cells in a concentration- and time-dependent manner. BITC was found to cause apoptotic cell shrinkage and DNA fragmentation by morphologic observation and TUNEL/DAPI staining. Pretreatment of cells with a specific inhibitor of pan-caspase significantly reduced cell death caused by BITC. Colorimetric assay analyses also showed that the activities of caspase-3 and caspase-9 were elevated in BITC-treated CAR cells. An increase in ROS production and loss of mitochondria membrane potential (ΔΨm) occurred due to BITC exposure and was observed via flow cytometric analysis. Western blotting analyses demonstrated that the protein levels of Bax, Bad, cytochrome c, and cleaved caspase-3 were up-regulated, while those of Bcl-2, Bcl-xL and pro-caspase-9 were down-regulated in CAR cells after BITC challenge. In sum, the mitochondria-dependent pathway might contribute to BITC-induced apoptosis in human cisplatin-resistant oral cancer CAR cells.
Collapse
Affiliation(s)
- Chiu-Fang Lee
- Department of Pharmacy, Kaohsiung Veterans General Hospital Pingtung Branch, Pingtung 912, Taiwan
| | - Ni-Na Chiang
- Department of Pharmacy, Kaohsiung Veterans General Hospital Pingtung Branch, Pingtung 912, Taiwan
| | - Yao-Hua Lu
- Department of Pharmacy and Master Program, Tajen University, Pingtung 907, Taiwan
| | - Yu-Syuan Huang
- Department of Pharmacy and Master Program, Tajen University, Pingtung 907, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Shih-Chang Tsai
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan
| | - Chi-Cheng Lu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan - Department of Sport Performance, National Taiwan University of Sport, Taichung 404, Taiwan
| | - Fu-An Chen
- Department of Pharmacy and Master Program, Tajen University, Pingtung 907, Taiwan
| |
Collapse
|
16
|
Anticarcinogenic activities of sulforaphane are influenced by Nerve Growth Factor in human melanoma A375 cells. Food Chem Toxicol 2018; 113:154-161. [PMID: 29407470 DOI: 10.1016/j.fct.2018.01.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/10/2018] [Accepted: 01/29/2018] [Indexed: 12/25/2022]
Abstract
Melanoma is a severe form of cancer, resistant to conventional therapies. According to in vitro studies, sulforaphane, a dietary component, has been considered a promising antineoplastic candidate. The present study analyzes the in vitro biological effects of sulforaphane in A375 melanoma cell line with or without the addition of Nerve Growth Factor. For the first time, our results show that a supplementation of Nerve Growth Factor partially reverses the sulforaphane-induced: i) inhibition of cell migration, ii) pro apoptotic changes in cell cycle and iii) modulation of active caspase-3. Furthermore, we report the sulforaphane-induced modulation in the expression of Nerve Growth Factor receptors TrKA and p75NTR, shifting their ratio from pro survival to pro apoptotic. In conclusion, the present study evidences that in vivo the antineoplastic effects of sulforaphane may be reduced by the contemporaneous presence of other biological elements such as Nerve Growth Factor and it contributes to a better definition of the real in vivo potentiality of sulforaphane as antineoplastic candidate.
Collapse
|
17
|
Arcidiacono P, Ragonese F, Stabile A, Pistilli A, Kuligina E, Rende M, Bottoni U, Calvieri S, Crisanti A, Spaccapelo R. Antitumor activity and expression profiles of genes induced by sulforaphane in human melanoma cells. Eur J Nutr 2017; 57:2547-2569. [PMID: 28864908 PMCID: PMC6182666 DOI: 10.1007/s00394-017-1527-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/11/2017] [Indexed: 01/02/2023]
Abstract
Purpose Human melanoma is a highly aggressive incurable cancer due to intrinsic cellular resistance to apoptosis, reprogramming, proliferation and survival during tumour progression. Sulforaphane (SFN), an isothiocyanate found in cruciferous vegetables, plays a role in carcinogenesis in many cancer types. However, the cytotoxic molecular mechanisms and gene expression profiles promoted by SFN in human melanoma remain unknown. Methods Three different cell lines were used: two human melanoma A375 and 501MEL and human epidermal melanocytes (HEMa). Cell viability and proliferation, cell cycle analysis, cell migration and invasion and protein expression and phosphorylation status of Akt and p53 upon SFN treatment were determined. RNA-seq of A375 was performed at different time points after SFN treatment. Results We demonstrated that SFN strongly decreased cell viability and proliferation, induced G2/M cell cycle arrest, promoted apoptosis through the activation of caspases 3, 8, 9 and hampered migration and invasion abilities in the melanoma cell lines. Remarkably, HEMa cells were not affected by SFN treatment. Transcriptomic analysis revealed regulation of genes involved in response to stress, apoptosis/cell death and metabolic processes. SFN upregulated the expression of pro-apoptotic genes, such as p53, BAX, PUMA, FAS and MDM2; promoted cell cycle inhibition and growth arrest by upregulating EGR1, GADD45B, ATF3 and CDKN1A; and simultaneously acted as a potent inhibitor of genotoxicity by launching the stress-inducible protein network (HMOX1, HSPA1A, HSPA6, SOD1). Conclusion Overall, the data show that SFN cytotoxicity in melanoma derives from complex and concurrent mechanisms during carcinogenesis, which makes it a promising cancer prevention agent. Electronic supplementary material The online version of this article (doi:10.1007/s00394-017-1527-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paola Arcidiacono
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United KingdomDepartment of Experimental Medicine, University of Perugia, Piazza Lucio Severi, 06132, Perugia, Italy.,Dermatology Clinic, Department of Internal Medicine and Medical Specialties, University of Rome, Rome, Italy
| | - Francesco Ragonese
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United KingdomDepartment of Experimental Medicine, University of Perugia, Piazza Lucio Severi, 06132, Perugia, Italy
| | - Anna Stabile
- Department of Surgery and Biomedical Sciences, University of Perugia, 06132, Perugia, Italy
| | - Alessandra Pistilli
- Department of Surgery and Biomedical Sciences, University of Perugia, 06132, Perugia, Italy
| | - Ekaterina Kuligina
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United KingdomDepartment of Experimental Medicine, University of Perugia, Piazza Lucio Severi, 06132, Perugia, Italy.,N.N. Petrov Institute of Oncology, Saint Petersburg, 197758, Russia
| | - Mario Rende
- Department of Surgery and Biomedical Sciences, University of Perugia, 06132, Perugia, Italy
| | - Ugo Bottoni
- Dermatology Clinic, Department of Internal Medicine and Medical Specialties, University of Rome, Rome, Italy.,University Magna Graecia, Catanzaro, Italy
| | - Stefano Calvieri
- Dermatology Clinic, Department of Internal Medicine and Medical Specialties, University of Rome, Rome, Italy
| | - Andrea Crisanti
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Roberta Spaccapelo
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United KingdomDepartment of Experimental Medicine, University of Perugia, Piazza Lucio Severi, 06132, Perugia, Italy.
| |
Collapse
|
18
|
Giacoppo S, Iori R, Rollin P, Bramanti P, Mazzon E. Moringa isothiocyanate complexed with α-cyclodextrin: a new perspective in neuroblastoma treatment. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:362. [PMID: 28705212 PMCID: PMC5513314 DOI: 10.1186/s12906-017-1876-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/09/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Several lines of evidence suggest the consume of natural products for cancer prevention or treatment. In particular, isothiocyanates (ITCs) exerting anti-cancer properties, have received great interest as potential chemotherapeutic agents. This study was designed to assess the anti-proliferative activities of a new preparation of Moringa oleifera-derived 4-(α-L-rhamnopyranosyloxy)benzyl ITC (moringin) complexed with alpha-cyclodextrin (moringin + α-CD; MAC) on SH-SY5Y human neuroblastoma cells. This new formulation arises in the attempt to overcome the poor solubility and stability of moringin alone in aqueous media. METHODS SH-SY5Y cells were cultured and exposed to increasing concentrations of MAC (1.0, 2.5 and 5.0 μg). Cell proliferation was examined by MTT and cell count assays. The cytotoxic activity of the MAC complex was assessed by lactate dehydrogenase (LDH) assay and trypan blue exclusion test. In addition, western blotting analyses for the main apoptosis-related proteins were performed. RESULTS Treatment of SH-SY5Y cells with the MAC complex reduced cell growth in concentration dependent manner. Specifically, MAC exhibited a potent action in inhibiting the PI3K/Akt/mTOR pathway, whose aberrant activation was found in many types of cancer. MAC was also found to induce the nuclear factor-κB (NF-κB) p65 activation by phosphorylation and its translocation into the nucleus. Moreover, treatment with MAC was able to down-regulate MAPK pathway (results focused on JNK and p38 expression). Finally, MAC was found to trigger apoptotic death pathway (based on expression levels of cleaved-caspase 3, Bax/Bcl-2 balance, p53 and p21). CONCLUSION These findings suggest that use of MAC complex may open novel perspectives to improve the poor prognosis of patients with neuroblastoma.
Collapse
Affiliation(s)
- Sabrina Giacoppo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Renato Iori
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca Agricoltura e Ambiente (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Patrick Rollin
- Université d'Orléans et CNRS, ICOA, UMR 7311, BP 6759, F-45067, Orléans, France
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy.
| |
Collapse
|
19
|
Ma J, Guo W, Li C. Ubiquitination in melanoma pathogenesis and treatment. Cancer Med 2017; 6:1362-1377. [PMID: 28544818 PMCID: PMC5463089 DOI: 10.1002/cam4.1069] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/13/2022] Open
Abstract
Melanoma is one of the most aggressive skin cancers with fiercely increasing incidence and mortality. Since the progressive understanding of the mutational landscape and immunologic pathogenic factors in melanoma, the targeted therapy and immunotherapy have been recently established and gained unprecedented improvements for melanoma treatment. However, the prognosis of melanoma patients remains unoptimistic mainly due to the resistance and nonresponse to current available drugs. Ubiquitination is a posttranslational modification which plays crucial roles in diverse cellular biological activities and participates in the pathogenesis of various cancers, including melanoma. Through the regulation of multiple tumor promoters and suppressors, ubiquitination is emerging as the key contributor and therefore a potential therapeutic target for melanoma. Herein, we summarize the current understanding of ubiquitination in melanoma, from mechanistic insights to clinical progress, and discuss the prospect of ubiquitination modification in melanoma treatment.
Collapse
Affiliation(s)
- Jinyuan Ma
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weinan Guo
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|