1
|
Bathe OF. Tumor metabolism as a factor affecting diversity in cancer cachexia. Am J Physiol Cell Physiol 2025; 328:C908-C920. [PMID: 39870605 DOI: 10.1152/ajpcell.00677.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/21/2024] [Accepted: 01/20/2025] [Indexed: 01/29/2025]
Abstract
Cancer cachexia is a multifaceted metabolic syndrome characterized by muscle wasting, fat redistribution, and metabolic dysregulation, commonly associated with advanced cancer but sometimes also evident in early-stage disease. More subtle body composition changes have also been reported in association with cancer, including sarcopenia, myosteatosis, and increased fat radiodensity. Emerging evidence reveals that body composition changes including sarcopenia, myosteatosis, and increased fat radiodensity, arise from distinct biological mechanisms and significantly impact survival outcomes. Importantly, these features often occur independently, with their combined presence exacerbating poor prognoses. Tumor plays a pivotal role in driving these host changes, either by acting as a metabolic parasite or by releasing mediators that disrupt normal tissue function. This review explores the diversity of tumor metabolism. It highlights the potential for tumor-specific metabolic phenotypes to influence systemic effects, including fat redistribution and sarcopenia. Addressing this tumor-host metabolic interplay requires personalized approaches that disrupt tumor metabolism while preserving host health. Promising strategies include targeted pharmacological interventions and anticachexia agents like growth differentiation factor 15 (GDF-15) inhibitors. Nutritional modifications such as ketogenic diets and omega-3 fatty acid supplementation also merit further investigation. In addition to preserving muscle, these therapies will need to be evaluated for their capability to improve survival and quality of life. This review underscores the need for further research into tumor-driven metabolic effects on the host and the development of integrative treatment strategies to address the interconnected challenges of cancer progression and cachexia.
Collapse
Affiliation(s)
- Oliver F Bathe
- Department of Surgery and Oncology, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Godos J, Currenti W, Ferri R, Lanza G, Caraci F, Frias-Toral E, Guglielmetti M, Ferraris C, Lipari V, Carvajal Altamiranda S, Galvano F, Castellano S, Grosso G. Chronotype and Cancer: Emerging Relation Between Chrononutrition and Oncology from Human Studies. Nutrients 2025; 17:529. [PMID: 39940387 PMCID: PMC11819666 DOI: 10.3390/nu17030529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Fasting-feeding timing is a crucial pattern implicated in the regulation of daily circadian rhythms. The interplay between sleep and meal timing underscores the importance of maintaining circadian alignment in order to avoid creating a metabolic environment conducive to carcinogenesis following the molecular and systemic disruption of metabolic performance and immune function. The chronicity of such a condition may support the initiation and progression of cancer through a variety of mechanisms, including increased oxidative stress, immune suppression, and the activation of proliferative signaling pathways. This review aims to summarize current evidence from human studies and provide an overview of the potential mechanisms underscoring the role of chrononutrition (including time-restricted eating) on cancer risk. Current evidence shows that the morning chronotype, suggesting an alignment between physiological circadian rhythms and eating timing, is associated with a lower risk of cancer. Also, early time-restricted eating and prolonged nighttime fasting were also associated with a lower risk of cancer. The current evidence suggests that the chronotype influences cancer risk through cell cycle regulation, the modulation of metabolic pathways and inflammation, and gut microbiota fluctuations. In conclusion, although there are no clear guidelines on this matter, emerging evidence supports the hypothesis that the role of time-related eating (i.e., time/calorie-restricted feeding and intermittent/periodic fasting) could potentially lead to a reduced risk of cancer.
Collapse
Affiliation(s)
- Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.)
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, 95123 Catania, Italy
| | - Walter Currenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.)
| | | | - Giuseppe Lanza
- Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95125 Catania, Italy
| | - Filippo Caraci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Espíritu Santo, Samborondón 0901952, Ecuador
| | - Monica Guglielmetti
- Human Nutrition and Eating Disorder Research Center, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
- Laboratory of Food Education and Sport Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Cinzia Ferraris
- Human Nutrition and Eating Disorder Research Center, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
- Laboratory of Food Education and Sport Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Vivian Lipari
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Universidad de La Romana, La Romana 22000, Dominican Republic
- Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - Stefanía Carvajal Altamiranda
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Universidade Internacional do Cuanza, Cuito EN250, Angola
- Fundación Universitaria Internacional de Colombia, Bogotá 111321, Colombia
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.)
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, 95123 Catania, Italy
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, 95124 Catania, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.)
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, 95123 Catania, Italy
| |
Collapse
|
3
|
Fang G, Chen Q, Li J, Lian X, Shi D. The Diurnal Transcriptome Reveals the Reprogramming of Lung Adenocarcinoma Cells Under a Time-Restricted Feeding-Mimicking Regimen. J Nutr 2024; 154:354-368. [PMID: 38065409 DOI: 10.1016/j.tjnut.2023.11.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/08/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND The processes of tumor growth and circadian rhythm are intimately intertwined; thus, rewiring circadian metabolism by time-restricted feeding (TRF) may contribute to delaying carcinogenesis. However, research on the effect of a TRF cellular regimen on cancer is lacking. OBJECTIVE Investigate the circadian signatures of TRF in lung cancer in vitro. METHODS We first developed a cellular paradigm mimicking in vivo TRF and collected cells for transcriptome analysis. We further confirmed the effect on tumor cells upon 6-h TRF-mimicking (6-h TRFM) by real-time PCR, Lumicycle experiments, CCK-8, and flow cytometry assays. RESULTS We found that A549 lung adenocarcinoma cells treated with 6-h TRFM conditions displayed robust diurnal rhythms of transcriptomes, as well as modulation of the core clock genes relative to other different cellular regimens used in this study, including the fasting-mimicking conditions (ie, short-term starvation) and the serum-free regime. Notably, pathway analysis of oscillating genes exclusively in 6-h TRFM showed that some circadian genes were enriched in tumor-related pathways, such as the oxytocin signaling pathway, HIF-1 signaling pathway, and pentose and glucuronate interconversions. Moreover, in line with the circadian pathway enrichment results, 6-h TRFM robustly inhibited cell proliferation and induced cell apoptosis and cell cycle arrest in lung adenocarcinoma A549 cells, lung adenocarcinoma H460 cells, esophageal carcinoma Eca-109 cells, and breast adenocarcinoma MCF-7 cells. CONCLUSIONS Our findings provide the first in vitro mimicking medium for TRF intervention and indicate that 6-h TRFM is sufficient to reprogram the circadian signatures of lung adenocarcinoma cells and inhibit the progression of multiple tumors.
Collapse
Affiliation(s)
- Gaofeng Fang
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, P.R. China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Qianyao Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, P.R. China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Jianling Li
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, P.R. China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Xuemei Lian
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, P.R. China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, P.R. China.
| | - Dan Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, P.R. China; Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, P.R. China; Research Center for Environment and Population Health, School of Public Health, Chongqing Medical University, Chongqing, P.R. China.
| |
Collapse
|
4
|
Mishra A, Giuliani G, Longo VD. Nutrition and dietary restrictions in cancer prevention. Biochim Biophys Acta Rev Cancer 2024; 1879:189063. [PMID: 38147966 DOI: 10.1016/j.bbcan.2023.189063] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/15/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
The composition and pattern of dietary intake have emerged as key factors influencing aging, regeneration, and consequently, healthspan and lifespan. Cancer is one of the major diseases more tightly linked with aging, and age-related mortality. Although the role of nutrition in cancer incidence is generally well established, we are far from a consensus on how diet influences tumour development in different tissues. In this review, we will discuss how diet and dietary restrictions affect cancer risk and the molecular mechanisms potentially responsible for their effects. We will cover calorie restriction, intermittent fasting, prolonged fasting, fasting-mimicking diet, time-restricted eating, ketogenic diet, high protein diet, Mediterranean diet, and the vegan and vegetarian diets.
Collapse
Affiliation(s)
- Amrendra Mishra
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Giacomo Giuliani
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Valter D Longo
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; IFOM, FIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milano, Italy.
| |
Collapse
|
5
|
Shi D, Fang G, Chen Q, Li J, Ruan X, Lian X. Six-hour time-restricted feeding inhibits lung cancer progression and reshapes circadian metabolism. BMC Med 2023; 21:417. [PMID: 37924048 PMCID: PMC10625271 DOI: 10.1186/s12916-023-03131-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Accumulating evidence has suggested an oncogenic effect of diurnal disruption on cancer progression. To test whether targeting circadian rhythm by dietary strategy suppressed lung cancer progression, we adopted 6-h time-restricted feeding (TRF) paradigm to elucidate whether and how TRF impacts lung cancer progression. METHODS This study used multiple lung cancer cell lines, two xenograft mouse models, and a chemical-treated mouse lung cancer model. Stable TIM-knockdown and TIM-overexpressing A549 cells were constructed. Cancer behaviors in vitro were determined by colony formation, EdU proliferation, wound healing, transwell migration, flow cytometer, and CCK8 assays. Immunofluorescence, pathology examinations, and targeted metabolomics were also used in tumor cells and tissues. mCherry-GFP-LC3 plasmid was used to detect autophagic flux. RESULTS We found for the first time that compared to normal ad libitum feeding, 6-h TRF inhibited lung cancer progression and reprogrammed the rhythms of metabolites or genes involved in glycolysis and the circadian rhythm in tumors. After TRF intervention, only timeless (TIM) gene among five lung cancer-associated clock genes was found to consistently align rhythm of tumor cells to that of tumor tissues. Further, we demonstrated that the anti-tumor effect upon TRF was partially mediated by the rhythmic downregulation of the TIM and the subsequent activation of autophagy. Combining TRF with TIM inhibition further enhanced the anti-tumor effect, comparable to treatment efficacy of chemotherapy in xenograft model. CONCLUSIONS Six-hour TRF inhibits lung cancer progression and reshapes circadian metabolism, which is partially mediated by the rhythmic downregulation of the TIM and the subsequent upregulation of autophagy.
Collapse
Affiliation(s)
- Dan Shi
- Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, P.R. China.
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, 400016, P.R. China.
- Research Center for Environment and Population Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, P. R. China.
- Nutrition Innovation Platform-Sichuan and Chongqing, School of Public Health, Chongqing Medical University, Chongqing, China.
| | - Gaofeng Fang
- Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, P.R. China
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Qianyao Chen
- Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, P.R. China
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Jianling Li
- Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, P.R. China
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Xiongzhong Ruan
- Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, P.R. China.
| | - Xuemei Lian
- Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, P.R. China.
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, 400016, P.R. China.
| |
Collapse
|
6
|
Cheng WY, Desmet L, Depoortere I. Time-restricted eating for chronodisruption-related chronic diseases. Acta Physiol (Oxf) 2023; 239:e14027. [PMID: 37553828 DOI: 10.1111/apha.14027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/05/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
The circadian timing system enables organisms to adapt their physiology and behavior to the cyclic environmental changes including light-dark cycle or food availability. Misalignment between the endogenous circadian rhythms and external cues is known as chronodisruption and is closely associated with the development of metabolic and gastrointestinal disorders, cardiovascular diseases, and cancer. Time-restricted eating (TRE, in human) is an emerging dietary approach for weight management. Recent studies have shown that TRE or time-restricted feeding (TRF, when referring to animals) has several beneficial health effects, which, however, are not limited to weight management. This review summarizes the effects of TRE/TRF on regulating energy metabolism, gut microbiota and homeostasis, development of cardiovascular diseases and cancer. Furthermore, we will address the role of circadian clocks in TRE/TRF and propose ways to optimize TRE as a dietary strategy to obtain maximal health benefits.
Collapse
Affiliation(s)
- Wai-Yin Cheng
- Translational Research Center for Gastrointestinal Disorders, Gut Peptide Research Lab, University of Leuven, Leuven, Belgium
| | - Louis Desmet
- Translational Research Center for Gastrointestinal Disorders, Gut Peptide Research Lab, University of Leuven, Leuven, Belgium
| | - Inge Depoortere
- Translational Research Center for Gastrointestinal Disorders, Gut Peptide Research Lab, University of Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Kalam F, James DL, Li YR, Coleman MF, Kiesel VA, Cespedes Feliciano EM, Hursting SD, Sears DD, Kleckner AS. Intermittent fasting interventions to leverage metabolic and circadian mechanisms for cancer treatment and supportive care outcomes. J Natl Cancer Inst Monogr 2023; 2023:84-103. [PMID: 37139971 PMCID: PMC10157769 DOI: 10.1093/jncimonographs/lgad008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 05/05/2023] Open
Abstract
Intermittent fasting entails restricting food intake during specific times of day, days of the week, religious practice, or surrounding clinically important events. Herein, the metabolic and circadian rhythm mechanisms underlying the proposed benefits of intermittent fasting for the cancer population are described. We summarize epidemiological, preclinical, and clinical studies in cancer published between January 2020 and August 2022 and propose avenues for future research. An outstanding concern regarding the use of intermittent fasting among cancer patients is that fasting often results in caloric restriction, which can put patients already prone to malnutrition, cachexia, or sarcopenia at risk. Although clinical trials do not yet provide sufficient data to support the general use of intermittent fasting in clinical practice, this summary may be useful for patients, caregivers, and clinicians who are exploring intermittent fasting as part of their cancer journey for clinical outcomes and symptom management.
Collapse
Affiliation(s)
- Faiza Kalam
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University. Chicago, IL, USA
| | - Dara L James
- College of Nursing, University of South Alabama, Mobile, AL, USA
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, USA
| | - Yun Rose Li
- Departments of Radiation Oncology and Cancer Genetics and Epigenetics, City of Hope, Duarte, CA, USA
- Division of Quantitative Medicine & Systems Biology, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Michael F Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Violet A Kiesel
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | | | - Stephen D Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Dorothy D Sears
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Amber S Kleckner
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, MD, USA
- Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| |
Collapse
|
8
|
Kian N, Behrouzieh S, Razi S, Rezaei N. Diet Influences Immunotherapy Outcomes in Cancer Patients: A Literature Review. Nutr Cancer 2023; 75:415-429. [PMID: 36254373 DOI: 10.1080/01635581.2022.2133151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The outbreak of immunotherapy has revolutionized cancer treatment. Despite the results confirming the effectiveness of immunotherapy, some studies have reported poor responsiveness to this therapeutic approach. The effectiveness of immunotherapy is dependent on numerous factors related to patients' lifestyles and health status. Diet, as an essential component of lifestyle, plays a major role in determining immunotherapy outcomes. It can significantly influence the body, gut microbiome composition, and metabolism, both in general and in tumor microenvironment. Consuming certain diets has resulted in either improved or worsened outcomes in patients receiving immunotherapy. For example, several recent studies have associated ketogenic, plant-based, and microbiome-favoring diets with promising outcomes. Moreover, obesity and dietary deprivation have impacted immunotherapy responsiveness, yet the studies are inconsistent in this context. This narrative review aims to integrate the results from many articles that have studied the contribution of diet to immunotherapy. We will start by introducing the multiple effects of dietary status on cancer progression and treatment. Then we will proceed to discuss various regimens known to affect immunotherapy outcomes, including ketogenic, high-fiber, and obesity-inducing diets and regimens that either contain or lack specific nutrients. Finally, we will elaborate on how composition of the gut microbiome may influence immunotherapy.
Collapse
Affiliation(s)
- Naghmeh Kian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sadra Behrouzieh
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| |
Collapse
|
9
|
Vidmar AP, Cáceres NA, Schneider-Worthington CR, Shirazipour C, Buman MP, de la Haye K, Salvy SJ. Integration of Time-Based Recommendations with Current Pediatric Health Behavior Guidelines: Implications for Obesity Prevention and Treatment in Youth. Curr Obes Rep 2022; 11:236-253. [PMID: 36348216 PMCID: PMC9742346 DOI: 10.1007/s13679-022-00491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE OF REVIEW Youth-onset obesity is associated with negative health outcomes across the lifespan including cardiovascular diseases, type 2 diabetes, obstructive sleep apnea, dyslipidemias, asthma, and several cancers. Pediatric health guidelines have traditionally focused on the quality and quantity of dietary intake, physical activity, and sleep. RECENT FINDINGS Emerging evidence suggests that the timing (time of day when behavior occurs) and composition (proportion of time spent allocated to behavior) of food intake, movement (i.e., physical activity, sedentary time), and sleep may independently predict health trajectories and disease risks. Several theoretically driven interventions and conceptual frameworks feature behavior timing and composition (e.g., 24 h movement continuum, circadian science and chronobiology, intermittent fasting regimens, structured day hypothesis). These literatures are, however, disparate, with little crosstalk across disciplines. In this review, we examine dietary, sleep, and movement guidelines and recommendations for youths ages 0-18 in the context of theoretical models and empirical findings in support of time-based approaches. The review aims to inform a unifying framework of health behaviors and guide future research on the integration of time-based recommendations into current quantity and quality-based health guidelines for children and adolescents.
Collapse
Affiliation(s)
- Alaina P Vidmar
- Department of Pediatrics, Center for Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles and Keck School of Medicine of USC, 4650 Sunset Boulevard, Mailstop #61, Los Angeles, CA, 90027, USA.
| | - Nenette A Cáceres
- Cancer Research Center On Health Equity, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| | | | - Celina Shirazipour
- Cancer Research Center On Health Equity, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| | - Matthew P Buman
- College of Health Solutions, Arizona State University, Tempe, USA
| | - Kayla de la Haye
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Sarah-Jeanne Salvy
- Cancer Research Center On Health Equity, Cedars-Sinai Medical Center, West Hollywood, CA, USA
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Abstract
Obesity and the associated metabolic syndrome is considered a pandemic whose prevalence is steadily increasing in many countries worldwide. It is a complex, dynamic, and multifactorial disorder that presages the development of several metabolic, cardiovascular, and neurodegenerative diseases, and increases the risk of cancer. In patients with newly diagnosed cancer, obesity worsens prognosis, increasing the risk of recurrence and decreasing survival. The multiple negative effects of obesity on cancer outcomes are substantial, and of great clinical importance. Strategies for weight control have potential utility for both prevention efforts and enhancing cancer outcomes. Presently, time-restricted eating (TRE) is a popular dietary intervention that involves limiting the consumption of calories to a specific window of time without any proscribed caloric restriction or alteration in dietary composition. As such, TRE is a sustainable long-term behavioral modification, when compared to other dietary interventions, and has shown many health benefits in animals and humans. The preliminary data regarding the effects of time-restricted feeding on cancer development and growth in animal models are promising but studies in humans are lacking. Interestingly, several short-term randomized clinical trials of TRE have shown favorable effects to reduce cancer risk factors; however, long-term trials of TRE have yet to investigate reductions in cancer incidence or outcomes in the general population. Few studies have been conducted in cancer populations, but a number are underway to examine the effect of TRE on cancer biology and recurrence. Given the simplicity, feasibility, and favorable metabolic improvements elicited by TRE in obese men and women, TRE may be useful in obese cancer patients and cancer survivors; however, the clinical implementation of TRE in the cancer setting will require greater in-depth investigation.
Collapse
Affiliation(s)
- Manasi Das
- VA San Diego Healthcare System, San Diego, CA, USA.,Department of Medicine, Division of Endocrinology and Metabolism, University of California, La Jolla, San Diego, CA, USA
| | - Nicholas J G Webster
- VA San Diego Healthcare System, San Diego, CA, USA. .,Department of Medicine, Division of Endocrinology and Metabolism, University of California, La Jolla, San Diego, CA, USA. .,Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA.
| |
Collapse
|
11
|
Clifton KK, Ma CX, Fontana L, Peterson LL. Intermittent fasting in the prevention and treatment of cancer. CA Cancer J Clin 2021; 71:527-546. [PMID: 34383300 DOI: 10.3322/caac.21694] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic caloric restriction (CR) has powerful anticarcinogenic actions in both preclinical and clinical studies but may be difficult to sustain. As an alternative to CR, there has been growing interest in intermittent fasting (IF) in both the scientific and lay community as a result of promising study results, mainly in experimental animal models. According to a survey by the International Food Information Council Foundation, IF has become the most popular diet in the last year, and patients with cancer are seeking advice from oncologists about its beneficial effects for cancer prevention and treatment. However, as discussed in this review, results from IF studies in rodents are controversial and suggest potential detrimental effects in certain oncologic conditions. The effects of IF on human cancer incidence and prognosis remain unknown because of a lack of high-quality randomized clinical trials. Preliminary studies suggest that prolonged fasting in some patients who have cancer is safe and potentially capable of decreasing chemotherapy-related toxicity and tumor growth. However, because additional trials are needed to elucidate the risks and benefits of fasting for patients with cancer, the authors would not currently recommend patients undergoing active cancer treatment partake in IF outside the context of a clinical trial. IF may be considered in adults seeking cancer-prevention benefits through means of weight management, but whether IF itself affects cancer-related metabolic and molecular pathways remains unanswered.
Collapse
Affiliation(s)
- Katherine K Clifton
- School of Medicine, Division of Medical Oncology, Washington University in St Louis, St Louis, Missouri
| | - Cynthia X Ma
- School of Medicine, Division of Medical Oncology, Washington University in St Louis, St Louis, Missouri
| | - Luigi Fontana
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Department of Clinical and Experimental Sciences, Brescia University, Brescia, Italy
| | - Lindsay L Peterson
- School of Medicine, Division of Medical Oncology, Washington University in St Louis, St Louis, Missouri
| |
Collapse
|
12
|
Diet-Induced Obesity Impairs Outcomes and Induces Multi-Factorial Deficiencies in Effector T Cell Responses Following Anti-CTLA-4 Combinatorial Immunotherapy in Renal Tumor-Bearing Mice. Cancers (Basel) 2021; 13:cancers13102295. [PMID: 34064933 PMCID: PMC8151089 DOI: 10.3390/cancers13102295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Immunotherapy use has become standard for many patients with advanced kidney cancer; unfortunately, <50% of patients experience durable responses. Mounting evidence suggests that modifiable factors, such as diet and obesity, impact immunotherapy outcomes. Obesity, a major U.S. health epidemic, blunts anti-tumor immunity and promotes tumor growth in multiple preclinical models. However, the full biological impact of obesity on the T cell responses needed to achieve positive immunotherapy outcomes remains unclear. Here, we studied the effects of obesity on T cell responses following combinatorial immunotherapy in a mouse model of kidney cancer. We found that obesity is associated with blunted effector T cell responses, resulting in diminished immunotherapy outcomes. This therapy produces sustained T cell responses and robust tumor control in obese-resistant mice fed the same high-fat diet. Finding ways to amplify T cell responses within renal tumors from hosts with obesity will be critical for achieving optimal immunotherapy outcomes. Abstract Associations between modifiable factors and the efficacy of cancer immunotherapies remain uncertain. We found previously that diet-induced obesity (DIO) reduces the efficacy of an immunotherapy consisting of adenovirus-encoded TRAIL plus CpG oligonucleotide (AdT/CpG) in mice with renal tumors. To eliminate confounding effects of diet and determine whether outcomes could be improved in DIO mice, we evaluated AdT/CpG combined with anti-CTLA-4 in diet-matched, obese-resistant (OB-RES) versus DIO tumor-bearing mice. Therapy-treated OB-RES mice displayed effective renal tumor control and sustained CD4+ and CD8+ T cell responses. In contrast, therapy-treated DIO mice exhibited progressive tumor outgrowth and blunted T cell responses, characterized by reduced intratumoral frequencies of IFNγ+ CD4+ and CD8+ T cells. Weak effector T cell responses in therapy-treated DIO mice were accompanied by low intratumoral concentrations of the T cell chemoattractant CCL5, heightened concentrations of pro-tumorigenic GM-CSF, and impaired proliferative capacity of CD44+CD8+ T cells in tumor-draining lymph nodes. Our findings demonstrate that in lean mice with renal tumors, combining in situ T cell priming upstream of anti-CTLA-4 enhances outcomes versus anti-CTLA-4 alone. However, host obesity is associated with heightened immunotherapy resistance, characterized by multi-factorial deficiencies in effector CD4+ and CD8+ T cell responses that extend beyond the tumor microenvironment.
Collapse
|