1
|
Marzagalli M, Battaglia S, Raimondi M, Fontana F, Cozzi M, Ranieri FR, Sacchi R, Curti V, Limonta P. Anti-Inflammatory and Antioxidant Properties of a New Mixture of Vitamin C, Collagen Peptides, Resveratrol, and Astaxanthin in Tenocytes: Molecular Basis for Future Applications in Tendinopathies. Mediators Inflamm 2024; 2024:5273198. [PMID: 39108992 PMCID: PMC11303056 DOI: 10.1155/2024/5273198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 04/09/2024] [Accepted: 07/12/2024] [Indexed: 09/17/2024] Open
Abstract
Tendinopathy is one of the most frequent musculoskeletal disorders characterized by sustained tissue inflammation and oxidative stress, accompanied by extracellular matrix remodeling. Patients suffering from this pathology frequently experience pain, swelling, stiffness, and muscle weakness. Current pharmacological interventions are based on nonsteroidal anti-inflammatory drugs; however, the effectiveness of these strategies remains ambiguous. Accumulating evidence supports that oral supplementation of natural compounds can provide preventive, and possibly curative, effects. Vitamin C (Vit C), collagen peptides (Coll), resveratrol (Res), and astaxanthin (Asx) were reported to be endowed with potential beneficial effects based on their anti-inflammatory and antioxidant activities. Here, we analyzed the efficacy of a novel combination of these compounds (Mix) in counteracting proinflammatory (IL-1β) and prooxidant (H2O2) stimuli in human tenocytes. We demonstrated that Mix significantly impairs IL-6-induced IL-1β secretion, NF-κB nuclear translocation, and MMP-2 production; notably, a synergistic effect of Mix over the single compounds could be observed. Moreover, Mix was able to significantly counteract H2O2-triggered ROS production. Together, these results point out that Mix, a novel combination of Vit C, Coll, Resv, and Asx, significantly impairs proinflammatory and prooxidant stimuli in tenocytes, mechanisms that contribute to the onset of tendinopathies.
Collapse
Affiliation(s)
- Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”University of Milano, Milano 20133, Italy
| | | | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”University of Milano, Milano 20133, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”University of Milano, Milano 20133, Italy
| | - Marco Cozzi
- R&D Department Kolinpharma S.p.A., Lainate 20045, Italy
| | | | - Roberto Sacchi
- Department of Earth and Environmental SciencesUniversity of Pavia, Pavia 27100, Italy
| | - Valeria Curti
- R&D Department Kolinpharma S.p.A., Lainate 20045, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”University of Milano, Milano 20133, Italy
| |
Collapse
|
2
|
Lui PPY, Liang Z, Tan RM, Yung PSH. Establishment of a Mouse Degenerative Model of Patellar Tendinopathy with Upregulation of Inflammation. Int J Mol Sci 2024; 25:3847. [PMID: 38612656 PMCID: PMC11011606 DOI: 10.3390/ijms25073847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
There is no mouse model of patellar tendinopathy. This study aimed to establish a mouse inflammatory and degenerative patellar tendon injury model, which will facilitate research on patellar tendinopathy using advanced molecular tools including transgenic models. Collagenase at different doses (low dose (LD), medium dose (MD), high dose (HD)) or saline was injected over the mouse patellar tendon. At weeks 1, 2, 4, and 8 post-injection, the tendons were harvested for histology and further examined by micro-computed tomography (microCT) imaging at week 8. The optimal dose group and the saline group were further evaluated by immunohistochemical staining, gait pattern, and biomechanical properties. The histopathological score increased dose-dependently post-collagenase injection. Ectopic mineralization was observed and increased with collagenase dose. The LD group was selected for further analysis. The expression of IL-10, TNF-α, and MMP-1 significantly increased post-injection. The changes of limb idleness index (ΔLII) compared to preinjury state were significantly higher, while the ultimate load, stiffness, ultimate stress, and maximum Young's modulus were significantly lower in the LD group compared to the saline group. A mouse inflammatory degenerative model of patellar tendon injury resembling tendinopathy was established as indicated by the dose-dependent increase in tendon histopathology, ectopic calcification, decrease in biomechanical properties, and pain-associated gait changes.
Collapse
Affiliation(s)
- Pauline Po Yee Lui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | |
Collapse
|
3
|
Anastasio AT, Bagheri K, Adams SB. Contemporary Review: The Use of Adipocyte-Derived Mesenchymal Stem Cells in Pathologies of the Foot and Ankle. FOOT & ANKLE ORTHOPAEDICS 2023; 8:24730114231207643. [PMID: 37929076 PMCID: PMC10623921 DOI: 10.1177/24730114231207643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Affiliation(s)
| | - Kian Bagheri
- Department of Orthopedic Surgery, Duke University Hospital, Durham, NC, USA
- Campbell University School of Osteopathic Medicine, Lillington, NC, USA
| | - Samuel B. Adams
- Department of Orthopedic Surgery, Duke University Hospital, Durham, NC, USA
| |
Collapse
|
4
|
Luo J, Wang Z, Tang C, Yin Z, Huang J, Ruan D, Fei Y, Wang C, Mo X, Li J, Zhang J, Fang C, Li J, Chen X, Shen W. Animal model for tendinopathy. J Orthop Translat 2023; 42:43-56. [PMID: 37637777 PMCID: PMC10450357 DOI: 10.1016/j.jot.2023.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 08/29/2023] Open
Abstract
Background Tendinopathy is a common motor system disease that leads to pain and reduced function. Despite its prevalence, our mechanistic understanding is incomplete, leading to limited efficacy of treatment options. Animal models contribute significantly to our understanding of tendinopathy and some therapeutic options. However, the inadequacies of animal models are also evident, largely due to differences in anatomical structure and the complexity of human tendinopathy. Different animal models reproduce different aspects of human tendinopathy and are therefore suitable for different scenarios. This review aims to summarize the existing animal models of tendinopathy and to determine the situations in which each model is appropriate for use, including exploring disease mechanisms and evaluating therapeutic effects. Methods We reviewed relevant literature in the PubMed database from January 2000 to December 2022 using the specific terms ((tendinopathy) OR (tendinitis)) AND (model) AND ((mice) OR (rat) OR (rabbit) OR (lapin) OR (dog) OR (canine) OR (sheep) OR (goat) OR (horse) OR (equine) OR (pig) OR (swine) OR (primate)). This review summarized different methods for establishing animal models of tendinopathy and classified them according to the pathogenesis they simulate. We then discussed the advantages and disadvantages of each model, and based on this, identified the situations in which each model was suitable for application. Results For studies that aim to study the pathophysiology of tendinopathy, naturally occurring models, treadmill models, subacromial impingement models and metabolic models are ideal. They are closest to the natural process of tendinopathy in humans. For studies that aim to evaluate the efficacy of possible treatments, the selection should be made according to the pathogenesis simulated by the modeling method. Existing tendinopathy models can be classified into six types according to the pathogenesis they simulate: extracellular matrix synthesis-decomposition imbalance, inflammation, oxidative stress, metabolic disorder, traumatism and mechanical load. Conclusions The critical factor affecting the translational value of research results is whether the selected model is matched with the research purpose. There is no single optimal model for inducing tendinopathy, and researchers must select the model that is most appropriate for the study they are conducting. The translational potential of this article The critical factor affecting the translational value of research results is whether the animal model used is compatible with the research purpose. This paper provides a rationale and practical guide for the establishment and selection of animal models of tendinopathy, which is helpful to improve the clinical transformation ability of existing models and develop new models.
Collapse
Affiliation(s)
- Junchao Luo
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Zetao Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Zi Yin
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jiayun Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Yang Fei
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Canlong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xianan Mo
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jiajin Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
| | - Jun Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Department of Orthopedics, Longquan People's Hospital, Zhejiang, 323799, China
| | - Cailian Fang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
| | - Jianyou Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Zhejiang University Huzhou Hospital, 313000, Huzhou, Zhejiang, China
| | - Xiao Chen
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Noriega-González DC, Drobnic F, Caballero-García A, Roche E, Perez-Valdecantos D, Córdova A. Effect of Vitamin C on Tendinopathy Recovery: A Scoping Review. Nutrients 2022; 14:2663. [PMID: 35807843 PMCID: PMC9267994 DOI: 10.3390/nu14132663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Tendinopathies represent 30-50% of all sports injuries. The tendon response is influenced by the load (volume, intensity, and frequency) that the tendon support, resulting in irritability and pain, among others. The main molecular component of tendons is collagen I (60-85%). The rest consist of glycosaminoglycans-proteoglycans, glycoproteins, and other collagen subtypes. This study's aim was to critically evaluate the efficacy of vitamin C supplementation in the treatment of tendinopathies. At the same time, the study aims to determine the optimal conditions (dose and time) for vitamin C supplementation. A structured search was carried out in the SCOPUS, Medline (PubMed), and Web of Science (WOS) databases. The inclusion criteria took into account studies describing optimal tendon recovery when using vitamin C alone or in combination with other compounds. The study design was considered, including randomized, double-blind controlled, and parallel designs in animal models or humans. The main outcome is that vitamin C supplementation is potentially useful as a therapeutic approach for tendinopathy recovery. Vitamin C supplementation, alone or in combination with other products, increases collagen synthesis with a consequent improvement in the patient's condition. On the other hand, vitamin C deficiency is mainly associated with a decrease in procollagen synthesis and reduced hydroxylation of proline and lysine residues, hindering the tendon repair process.
Collapse
Affiliation(s)
- David C. Noriega-González
- Department of Surgery, Ophthalmology, Otorhinolaryngology and Physiotherapy, Faculty of Medicine, Hospital Clínico Universitario de Valladolid, 47002 Valladolid, Spain;
| | | | - Alberto Caballero-García
- Department of Anatomy and Radiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, Campus Los Pajaritos, University of Valladolid, 42004 Soria, Spain;
| | - Enrique Roche
- Department of Applied Biology-Nutrition, Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain;
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Daniel Perez-Valdecantos
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, Campus Duques de Soria, University of Valladolid, 42004 Soria, Spain;
| | - Alfredo Córdova
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, Campus Duques de Soria, University of Valladolid, 42004 Soria, Spain;
| |
Collapse
|
6
|
Viganò M, Ragni E, Marmotti A, de Girolamo L. The effects of orthobiologics in the treatment of tendon pathologies: a systematic review of preclinical evidence. J Exp Orthop 2022; 9:31. [PMID: 35394237 PMCID: PMC8994001 DOI: 10.1186/s40634-022-00468-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
Purpose The aim of this systematic review is to explore the current available knowledge about tendon disorders and orthobiologics derived by preclinical experiments to evaluate their role and efficacy in the different stages and conditions related to the tendon healing processes. Methods The systematic review was performed according to the PRISMA guidelines. Different electronic databases (MEDLINE, Web of Science, EMBASE) were searched for studies investigating orthobiologics (PRP and cell-based products from adipose tissue or bone marrow) in animal models or veterinary clinical trials for tendon pathologies (complete/partial tendon ruptures, rotator cuff tears, tendinopathy, enthesis-related injuries). Data regarding the specific product used, the treatment site/pathology, the host and the model were collected. The results were classified into the following categories: histological, biomechanical, molecular and imaging. Results A large pool of preclinical studies on tendon disorders have been found on platelet-rich plasma (PRP), while data about stromal vascular fraction (SVF) and bone marrow concentrate (BMAC) are still limited and frequently focused on expanded cells, rather than orthobiologics prepared at the point of care. The effect of PRP is related to an acceleration of the healing process, without improvements in the final structure and properties of repaired tendon. Cell-based products have been reported to produce more durable results, but the level of evidence is currently insufficient to draw clear indications. Conclusions The preclinical results about orthobiologics applications to tendon pathologies would support the rationale of their clinical use and encourage the performance of clinical trials aimed to confirm these data in human subjects. Supplementary Information The online version contains supplementary material available at 10.1186/s40634-022-00468-w.
Collapse
Affiliation(s)
- Marco Viganò
- Orthopaedics biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy
| | - Enrico Ragni
- Orthopaedics biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy.
| | - Antonio Marmotti
- San Luigi Gonzaga Hospital, Orthopedics and Traumatology Department, University of Turin - Medical School, Turin, Italy
| | - Laura de Girolamo
- Orthopaedics biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milan, Italy
| |
Collapse
|
7
|
Cho Y, Kim HS, Kang D, Kim H, Lee N, Yun J, Kim YJ, Lee KM, Kim JH, Kim HR, Hwang YI, Jo CH, Kim JH. CTRP3 exacerbates tendinopathy by dysregulating tendon stem cell differentiation and altering extracellular matrix composition. SCIENCE ADVANCES 2021; 7:eabg6069. [PMID: 34797714 PMCID: PMC8604415 DOI: 10.1126/sciadv.abg6069] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 10/01/2021] [Indexed: 05/31/2023]
Abstract
Tendinopathy, the most common disorder affecting tendons, is characterized by chronic disorganization of the tendon matrix, which leads to tendon tear and rupture. The goal was to identify a rational molecular target whose blockade can serve as a potential therapeutic intervention for tendinopathy. We identified C1q/TNF-related protein-3 (CTRP3) as a markedly up-regulated cytokine in human and rodent tendinopathy. Overexpression of CTRP3 enhanced the progression of tendinopathy by accumulating cartilaginous proteoglycans and degenerating collagenous fibers in the mouse tendon, whereas CTRP3 knockdown suppressed the tendinopathy pathogenesis. Functional blockade of CTRP3 using a neutralizing antibody ameliorated overuse-induced tendinopathy of the Achilles and rotator cuff tendons. Mechanistically, CTRP3 elicited a transcriptomic pattern that stimulates abnormal differentiation of tendon stem/progenitor cells and ectopic chondrification as an effect linked to activation of Akt signaling. Collectively, we reveal an essential role for CTRP3 in tendinopathy and propose a potential therapeutic strategy for the treatment of tendinopathy.
Collapse
Affiliation(s)
- Yongsik Cho
- Center for RNA Research, Institute for Basic Science, 08826 Seoul, South Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 08826 Seoul, South Korea
| | - Hyeon-Seop Kim
- Center for RNA Research, Institute for Basic Science, 08826 Seoul, South Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 08826 Seoul, South Korea
| | - Donghyun Kang
- Center for RNA Research, Institute for Basic Science, 08826 Seoul, South Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 08826 Seoul, South Korea
| | - Hyeonkyeong Kim
- Center for RNA Research, Institute for Basic Science, 08826 Seoul, South Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 08826 Seoul, South Korea
| | - Narae Lee
- Center for RNA Research, Institute for Basic Science, 08826 Seoul, South Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 08826 Seoul, South Korea
| | - Jihye Yun
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 08826 Seoul, South Korea
- School of Medicine, CHA University, 13496 Seongnam, South Korea
| | - Yi-Jun Kim
- Institute of Convergence Medicine, Ewha Womans University Mokdong Hospital, 07985 Seoul, South Korea
| | - Kyoung Min Lee
- Foot and Ankle Division, Department of Orthopedic Surgery, Seoul National University Bundang Hospital, 13620 Seongnam, South Korea
| | - Jin-Hee Kim
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 03080 Seoul, South Korea
| | - Hang-Rae Kim
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 03080 Seoul, South Korea
| | - Young-il Hwang
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 03080 Seoul, South Korea
| | - Chris Hyunchul Jo
- Department of Orthopedic Surgery, Seoul Metropolitan Government–Seoul National University (SMG-SNU) Boramae Medical Center, Seoul National University College of Medicine, 07061 Seoul, South Korea
| | - Jin-Hong Kim
- Center for RNA Research, Institute for Basic Science, 08826 Seoul, South Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 08826 Seoul, South Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, 08826 Seoul, South Korea
| |
Collapse
|
8
|
Oakes B, Bolia IK, Weber AE, Petrigliano FA. Vitamin C in orthopedic practices: Current concepts, novel ideas, and future perspectives. J Orthop Res 2021; 39:698-706. [PMID: 33300201 DOI: 10.1002/jor.24947] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 02/04/2023]
Abstract
Vitamin C (ascorbic acid), is an important antioxidant that has been applied broadly in the field of orthopaedics. Current research on vitamin C examines the molecule's role in bone and tendon physiology, as well as joint replacement and Postoperative pain. Most laboratory and human studies associate the use of vitamin C with improved bone health and tendon healing. Recent literature moderately supports the use of vitamin C to improve functional outcomes, decreased postoperative pain, and prevent complex regional pain syndrome following orthopaedic procedures. The perioperative use of vitamin C in patients undergoing joint replacement surgery and anterior cruciate ligament reconstruction is still under investigation. Overall, there is need for high-quality human trials to confirm whether vitamin C can potentiate the outcomes of orthopaedic procedures and to determine optimal dosage and means of administration to maximize its proposed benefits. The purpose of this review was to summarize the application of vitamin C in orthopaedic practices and to identify potential areas for future study.
Collapse
Affiliation(s)
- Bennett Oakes
- Department of Orthopaedic Surgery, University of Southern California Los Angeles, Los Angeles, California, USA
| | - Ioanna K Bolia
- Department of Orthopaedic Surgery, University of Southern California Los Angeles, Los Angeles, California, USA
| | - Alexander E Weber
- Department of Orthopaedic Surgery, University of Southern California Los Angeles, Los Angeles, California, USA
| | - Frank A Petrigliano
- Department of Orthopaedic Surgery, University of Southern California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
9
|
Bochon K, Zielniok K, Gawlak M, Zawada K, Zarychta-Wiśniewska W, Siennicka K, Struzik S, Pączek L, Burdzińska A. The Effect of L-Ascorbic Acid and Serum Reduction on Tenogenic Differentiation of Human Mesenchymal Stromal Cells. Int J Stem Cells 2021; 14:33-46. [PMID: 33122467 PMCID: PMC7904532 DOI: 10.15283/ijsc20023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 08/02/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
Background and Objectives Despite significant improvement in the treatment of tendon injuries, the full tissue recovery is often not possible because of its limited ability to auto-repair. The transplantation of mesenchymal stromal cells (MSCs) is considered as a novel approach in the treatment of tendinopathies. The question about the optimal culture conditions remains open. In this study we aimed to investigate if serum reduction, L-ascorbic acid supplementation or a combination of both factors can induce tenogenic differentiation of human adipose-derived MSCs (ASCs). Methods and Results Human ASCs from 3 healthy donors were used in the study. The tested conditions were: 0.5 mM of ascorbic acid 2-phosphate (AA-2P), reduced serum content (2% FBS) or combination of these two factors. The combination of AA-2P and 2% FBS was the only experimental condition that caused a significant increase of the expression of all analyzed genes related to tenogenesis (SCLERAXIS, MOHAWK, COLLAGEN_1, COLLAGEN_3, DECORIN) in comparison to the untreated control (evaluated by RT-PCR, 5th day of experiment). Moreover, this treatment significantly increased the synthesis of SCLERAXIS, MOHAWK, COLLAGEN_1, COLLAGEN_3 proteins at the same time point (evaluated by Western blot method). Double immunocytochemical staining revealed that AA-2P significantly increased the extracellular deposition of both types of collagens. Semi-quantitative Electron Spin Resonance analysis of ascorbyl free radical revealed that AA-2P do not induce harmful transition metals-driven redox reactions in cell culture media. Conclusions Obtained results justify the use of reduced content of serum with the addition of 0.5 mM of AA-2P in tenogenic inducing media.
Collapse
Affiliation(s)
- Karolina Bochon
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Zielniok
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Gawlak
- Department of Pharmacodynamics and Pathophysiology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Zawada
- Department of Physical Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Warsaw, Poland
| | | | - Katarzyna Siennicka
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Sławomir Struzik
- Department of Orthopedics and Traumatology, Medical University of Warsaw, Warsaw, Poland
| | - Leszek Pączek
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland.,Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Burdzińska
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
10
|
Oliva F, Maffulli N, Gissi C, Veronesi F, Calciano L, Fini M, Brogini S, Gallorini M, Antonetti Lamorgese Passeri C, Bernardini R, Cicconi R, Mattei M, Berardi AC. Combined ascorbic acid and T 3 produce better healing compared to bone marrow mesenchymal stem cells in an Achilles tendon injury rat model: a proof of concept study. J Orthop Surg Res 2019; 14:54. [PMID: 30777116 PMCID: PMC6380036 DOI: 10.1186/s13018-019-1098-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 02/07/2019] [Indexed: 12/11/2022] Open
Abstract
Background This pilot study aimed to ascertain whether the local application of ascorbic acid (AA), of T3, and of rat (r) bone marrow mesenchymal stem cells (BMSCs), alone or in all possible combinations, promoted healing after an Achilles tendon injury in a rat model. Methods An Achilles tendon defect was produced in 24 6–8-week-old male inbred Lewis rats. The animals were then randomly divided into eight groups of three rats each. The tendon defect was filled with 50 μL of phosphate-buffered saline (PBS) containing (1) 50 μg/mL AA (AA group), (2) 10−7 M T3 (T3 group), (3) 4 × 106 rBMSCs (rBMSC group), (4) 50 μg/mL AA + 10−7 M T3 (AA + T3 group), (5) 4 × 106 rBMSCs + 50 μg/mL AA (rBMSC + AA group), (6) 4 × 106 rBMSCs + 10−7 M T3 (rBMSC + T3 group), (7) 4 × 106 rBMSCS + 50 μg/mL AA + 10−7 M T3 (rBMSC + AA + T3 group), and (8) PBS only (control group: CTRL). All treatments were administered by local injection immediately after the tendons had been damaged; additionally, AA was injected also on the second and fourth day from the first injection (for groups 1, 4, 5, and 7), and T3 was injected again every day for 4 days (for groups 2, 4, 6, and 7). At 30 days from initial treatment, tendon samples were harvested, and the quality of tendon repair was evaluated using histological and histomorphological analysis. The structure and morphology of the injured Achilles tendons were evaluated using the modified Svensson, Soslowsky, and Cook score, and the collagen type I and III ratio was calculated. Results The group treated with AA combined with T3 displayed the lowest Svensson, Soslowsky, and Cook total score value of all tissue sections at histopathological examination, with fiber structure close to regular orientation, normal-like tendon vasculature, and no cartilage formation. AA + T3 also showed the highest collagen I and the lowest collagen III values compared to all other treatments including the CTRL. Conclusion There are potential benefits using a combination of AA and T3 to accelerate tendon healing.
Collapse
Affiliation(s)
- Francesco Oliva
- Department of Orthopaedics and Traumatology, Surgery and Dentistry, Azienda Ospedaliera San Giovanni di Dio e Ruggi d'Aragona, University of Salerno School of Medicine, Salerno, Italy
| | - Nicola Maffulli
- Department of Orthopaedics and Traumatology, Surgery and Dentistry, Azienda Ospedaliera San Giovanni di Dio e Ruggi d'Aragona, University of Salerno School of Medicine, Salerno, Italy. .,Centre for Sports and Exercise Medicine, Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Mile End Hospital, London, UK. .,Institute of Science and Technology in Medicine, Keele University Medical School, Stoke on Trent, UK.
| | - Clarissa Gissi
- U.O.C. of Immunohaematology and Transfusion Medicine, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
| | - Francesca Veronesi
- Laboratory of Preclinical and Surgical Studies, Research Innovation and Technology Department (RIT), IRCCS Rizzoli Orthopedic Institute, Via di Barbiano 1/10, 40136, Bologna, Italy
| | - Lucia Calciano
- Dipartimento di Sanità Pubblica e Medicina di Comunità, Sezione di Epidemiologia e Statistica Medica, Università di Verona, 37134, Verona, Italy
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Research Innovation and Technology Department (RIT), IRCCS Rizzoli Orthopedic Institute, Via di Barbiano 1/10, 40136, Bologna, Italy
| | - Silvia Brogini
- Laboratory of Preclinical and Surgical Studies, Research Innovation and Technology Department (RIT), IRCCS Rizzoli Orthopedic Institute, Via di Barbiano 1/10, 40136, Bologna, Italy
| | - Marialucia Gallorini
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | | | - Roberta Bernardini
- Interdepartmental Service Centre - Station for Animal Technology, University of Rome "Tor Vergata", Rome, Italy
| | - Rosella Cicconi
- Interdepartmental Service Centre - Station for Animal Technology, University of Rome "Tor Vergata", Rome, Italy
| | - Maurizio Mattei
- Interdepartmental Service Centre - Station for Animal Technology, University of Rome "Tor Vergata", Rome, Italy.,Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Anna Concetta Berardi
- U.O.C. of Immunohaematology and Transfusion Medicine, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
| |
Collapse
|
11
|
Perucca Orfei C, Viganò M, Pearson JR, Colombini A, De Luca P, Ragni E, Santos-Ruiz L, de Girolamo L. In Vitro Induction of Tendon-Specific Markers in Tendon Cells, Adipose- and Bone Marrow-Derived Stem Cells is Dependent on TGFβ3, BMP-12 and Ascorbic Acid Stimulation. Int J Mol Sci 2019; 20:ijms20010149. [PMID: 30609804 PMCID: PMC6337430 DOI: 10.3390/ijms20010149] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal Stem Cells (MSCs) and tissue-specific progenitors have been proposed as useful tools for regenerative medicine approaches in bone, cartilage and tendon-related pathologies. The differentiation of cells towards the desired, target tissue-specific lineage has demonstrated advantages in the application of cell therapies and tissue engineering. Unlike osteogenic and chondrogenic differentiation, there is no consensus on the best tenogenic induction protocol. Many growth factors have been proposed for this purpose, including BMP-12, b-FGF, TGF-β3, CTGF, IGF-1 and ascorbic acid (AA). In this study, different combinations of these growth factors have been tested in the context of a two-step differentiation protocol, in order to define their contribution to the induction and maintenance of tendon marker expression in adipose tissue and bone marrow derived MSCs and tendon cells (TCs), respectively. Our results demonstrate that TGF-β3 is the main inducer of scleraxis, an early expressed tendon marker, while at the same time inhibiting tendon markers normally expressed later, such as decorin. In contrast, we find that decorin is induced by BMP-12, b-FGF and AA. Our results provide new insights into the effect of different factors on the tenogenic induction of MSCs and TCs, highlighting the importance of differential timing in TGF-β3 stimulation.
Collapse
Affiliation(s)
| | - Marco Viganò
- IRCCS Istituto Ortopedico Galeazzi, Orthopaedic Biotechnology Lab, 20161 Milan, Italy.
| | - John R Pearson
- Andalusian Centre for Nanomedicine and Biotechnology, BIONAND, 29590 Málaga, Spain.
| | - Alessandra Colombini
- IRCCS Istituto Ortopedico Galeazzi, Orthopaedic Biotechnology Lab, 20161 Milan, Italy.
| | - Paola De Luca
- IRCCS Istituto Ortopedico Galeazzi, Orthopaedic Biotechnology Lab, 20161 Milan, Italy.
| | - Enrico Ragni
- IRCCS Istituto Ortopedico Galeazzi, Orthopaedic Biotechnology Lab, 20161 Milan, Italy.
| | - Leonor Santos-Ruiz
- Andalusian Centre for Nanomedicine and Biotechnology, BIONAND, 29590 Málaga, Spain.
- Network Centre for Biomedical Research ⁻ Biotechnology, Biomaterials and Nanomedicine, CIBER-BBN, 50018 Zaragoza, Spain.
- Department of Cell Biology, Genetics and Physiology, Instituto de Investigación University of Málaga, 29016 Malaga, Spain.
| | - Laura de Girolamo
- IRCCS Istituto Ortopedico Galeazzi, Orthopaedic Biotechnology Lab, 20161 Milan, Italy.
| |
Collapse
|