1
|
Willmer T, Mabasa L, Sharma J, Muller CJF, Johnson R. Blood-Based DNA Methylation Biomarkers to Identify Risk and Progression of Cardiovascular Disease. Int J Mol Sci 2025; 26:2355. [PMID: 40076974 PMCID: PMC11900213 DOI: 10.3390/ijms26052355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
Non-communicable diseases (NCDs) are the leading cause of death worldwide, with cardiovascular disease (CVD) accounting for half of all NCD-related deaths. The biological onset of CVD may occur long before the development of clinical symptoms, hence the urgent need to understand the molecular alterations underpinning CVD, which would facilitate intervention strategies to prevent or delay the onset of the disease. There is evidence to suggest that CVD develops through a complex interplay between genetic, lifestyle, and environmental factors. Epigenetic modifications, including DNA methylation, serve as proxies linking genetics and the environment to phenotypes and diseases. In the past decade, a growing list of studies has implicated DNA methylation in the early events of CVD pathogenesis. In this regard, screening for these epigenetic marks in asymptomatic individuals may assist in the early detection of CVD and serve to predict the response to therapeutic interventions. This review discusses the current literature on the relationship between blood-based DNA methylation alterations and CVD in humans. We highlight a set of differentially methylated genes that show promise as candidates for diagnostic and prognostic CVD biomarkers, which should be prioritized and replicated in future studies across additional populations. Finally, we discuss key limitations in DNA methylation studies, including genetic diversity, interpatient variability, cellular heterogeneity, study confounders, different methodological approaches used to isolate and measure DNA methylation, sample sizes, and cross-sectional study design.
Collapse
Affiliation(s)
- Tarryn Willmer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (L.M.); (J.S.); (C.J.F.M.); (R.J.)
- Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Lawrence Mabasa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (L.M.); (J.S.); (C.J.F.M.); (R.J.)
- Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Jyoti Sharma
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (L.M.); (J.S.); (C.J.F.M.); (R.J.)
| | - Christo J. F. Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (L.M.); (J.S.); (C.J.F.M.); (R.J.)
- Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa 3886, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; (L.M.); (J.S.); (C.J.F.M.); (R.J.)
- Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| |
Collapse
|
2
|
Bi F, Gao C, Guo H. Epigenetic regulation of cardiovascular diseases induced by behavioral and environmental risk factors: Mechanistic, diagnostic, and therapeutic insights. FASEB Bioadv 2024; 6:477-502. [PMID: 39512842 PMCID: PMC11539034 DOI: 10.1096/fba.2024-00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 11/15/2024] Open
Abstract
Behavioral and environmental risk factors are critical in the development and progression of cardiovascular disease (CVD). Understanding the molecular mechanisms underlying these risk factors will offer valuable insights for targeted preventive and therapeutic strategies. Epigenetic modifications, including DNA methylation, histone modifications, chromatin remodeling, noncoding RNA (ncRNA) expression, and epitranscriptomic modifications, have emerged as key mediators connecting behavioral and environmental risk factors to CVD risk and progression. These epigenetic alterations can profoundly impact on cardiovascular health and susceptibility to CVD by influencing cellular processes, development, and disease risk over an individual's lifetime and potentially across generations. This review examines how behavioral and environmental risk factors affect CVD risk and health outcomes through epigenetic regulation. We review the epigenetic effects of major behavioral risk factors (such as smoking, alcohol consumption, physical inactivity, unhealthy diet, and obesity) and environmental risk factors (including air and noise pollution) in the context of CVD pathogenesis. Additionally, we explore epigenetic biomarkers, considering their role as causal or surrogate indicators, and discuss epigenetic therapeutics targeting the mechanisms through which these risk factors contribute to CVD. We also address future research directions and challenges in leveraging epigenetic insights to reduce the burden of CVD related to behavioral and environmental factors and improve public health outcomes. This review aims to provide a comprehensive understanding of behavioral and environmental epigenetics in CVD and offer valuable strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Feifei Bi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of UtahSalt Lake CityUtahUSA
- Division of Cardiothoracic Surgery, Department of SurgerySchool of Medicine, University of UtahSalt Lake CityUtahUSA
| | - Chen Gao
- Department of Pharmacology and Systems PhysiologyUniversity of CincinnatiCincinnatiOhioUSA
| | - Hongchao Guo
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of UtahSalt Lake CityUtahUSA
- Division of Cardiothoracic Surgery, Department of SurgerySchool of Medicine, University of UtahSalt Lake CityUtahUSA
| |
Collapse
|
3
|
Protti G, Rubbi L, Gören T, Sabirli R, Civlan S, Kurt Ö, Türkçüer İ, Köseler A, Pellegrini M. The methylome of buccal epithelial cells is influenced by age, sex, and physiological properties. Physiol Genomics 2023; 55:618-633. [PMID: 37781740 DOI: 10.1152/physiolgenomics.00063.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023] Open
Abstract
Epigenetic modifications, particularly DNA methylation, have emerged as regulators of gene expression and are implicated in various biological processes and disease states. Understanding the factors influencing the epigenome is essential for unraveling its complexity. In this study, we aimed to identify how the methylome of buccal epithelial cells, a noninvasive and easily accessible tissue, is associated with demographic and health-related variables commonly used in clinical settings, such as age, sex, blood immune composition, hemoglobin levels, and others. We developed a model to assess the association of multiple factors with the human methylome and identify the genomic loci significantly impacted by each trait. We demonstrated that DNA methylation variation is accurately modeled by several factors. We confirmed the well-known impact of age and sex and unveiled novel clinical factors associated with DNA methylation, such as blood neutrophils, hemoglobin, red blood cell distribution width, high-density lipoprotein cholesterol, and urea. Genomic regions significantly associated with these traits were enriched in relevant transcription factors, drugs, and diseases. Among our findings, we showed that neutrophil-impacted loci were involved in neutrophil functionality and maturation. Similarly, hemoglobin-influenced sites were associated with several diseases, including aplastic anemia, and the genomic loci affected by urea were related to congenital anomalies of the kidney and urinary tract. Our findings contribute to a better understanding of the human methylome plasticity and provide insights into novel factors shaping DNA methylation patterns, highlighting their potential clinical implications as biomarkers and the importance of considering these physiological traits in future medical epigenomic investigations.NEW & NOTEWORTHY We have developed a quantitative model to assess how the human methylome is associated with several factors and to identify the genomic loci significantly impacted by each trait. We reported novel health-related factors driving DNA methylation patterns and new site-specific regulations that further elucidate methylome dynamics. Our study contributes to a better understanding of the plasticity of the human methylome and unveils novel physiological traits with a potential role in future medical epigenomic investigations.
Collapse
Affiliation(s)
- Giulia Protti
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Liudmilla Rubbi
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States
| | - Tarik Gören
- Emergency Department, Pamukkale University Medical Faculty, Denizli, Turkey
| | - Ramazan Sabirli
- Emergency Department, Bakircay University Faculty of Medicine Cigli Training and Research Hospital, Izmir, Turkey
| | - Serkan Civlan
- Department of Neurosurgery, Pamukkale University Faculty of Medicine, Denizli, Turkey
| | - Özgür Kurt
- Department of Microbiology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - İbrahim Türkçüer
- Emergency Department, Pamukkale University Medical Faculty, Denizli, Turkey
| | - Aylin Köseler
- Department of Biophysics, Pamukkale University Faculty of Medicine, Denizli, Turkey
| | - Matteo Pellegrini
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States
| |
Collapse
|
4
|
Cao Y, Li J, Qiu S, Ni S, Duan Y. ACSM5 inhibits ligamentum flavum hypertrophy by regulating lipid accumulation mediated by FABP4/PPAR signaling pathway. Biol Direct 2023; 18:75. [PMID: 37957699 PMCID: PMC10644428 DOI: 10.1186/s13062-023-00436-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Ligamentum flavum (LF) hypertrophy is the main cause of lumbar spinal canal stenosis (LSCS). Previous studies have shown that LF hypertrophy tissue exhibits abnormal lipid accumulation, but the regulatory mechanism remains unclear. The objective of this study was to explore the function and potential mechanism of ACSM5 in LF lipid accumulation. METHODS To assess the ACSM5 expression levels, lipid accumulation and triglyceride (TG) level in LF hypertrophy and normal tissue, we utilized RT-qPCR, western blot, oil red O staining, and TG assay kit. The pearson correlation coefficient assay was used to analyze the correlation between ACSM5 levels and lipid accumulation or TG levels in LF hypertrophy tissue. The role of ACSM5 in free fatty acids (FFA)-induced lipid accumulation in LF cells was assessed in vitro, and the role of ACSM5 in LF hypertrophy in mice was verified in vivo. To investigate the underlying mechanisms of ACSM5 regulating lipid accumulation in LF, we conducted the mRNA sequencing, bioinformatics analysis, and rescue experiments. RESULTS In this study, we found that ACSM5, which was significantly down-regulated in LF tissues, correlated with lipid accumulation. In vitro cell experiments demonstrated that overexpression of ACSM5 significantly inhibited FFA-induced lipid accumulation and fibrosis in LF cells. In vivo animal experiments further confirmed that overexpression of ACSM5 inhibited LF thickening, lipid accumulation, and fibrosis. Mechanistically, ACSM5 inhibited lipid accumulation of LF cells by inhibiting FABP4-mediated PPARγ signaling pathway, thereby improving hypertrophy and fibrosis of LF. CONCLUSIONS our findings elucidated the important role of ACSM5 in the regulation of LF lipid accumulation and provide insight into potential therapeutic interventions for the treatment of LF hypertrophy. This study further suggested that therapeutic strategies targeting lipid deposition may be an effective potential approach to treat LF hypertrophy-induced LSCS.
Collapse
Affiliation(s)
- Yanlin Cao
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianjun Li
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sujun Qiu
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Songjia Ni
- Department of Orthopaedic Trauma, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Duan
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Krolevets M, Cate VT, Prochaska JH, Schulz A, Rapp S, Tenzer S, Andrade-Navarro MA, Horvath S, Niehrs C, Wild PS. DNA methylation and cardiovascular disease in humans: a systematic review and database of known CpG methylation sites. Clin Epigenetics 2023; 15:56. [PMID: 36991458 PMCID: PMC10061871 DOI: 10.1186/s13148-023-01468-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/19/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of death worldwide and considered one of the most environmentally driven diseases. The role of DNA methylation in response to the individual exposure for the development and progression of CVD is still poorly understood and a synthesis of the evidence is lacking. RESULTS A systematic review of articles examining measurements of DNA cytosine methylation in CVD was conducted in accordance with PRISMA (preferred reporting items for systematic reviews and meta-analyses) guidelines. The search yielded 5,563 articles from PubMed and CENTRAL databases. From 99 studies with a total of 87,827 individuals eligible for analysis, a database was created combining all CpG-, gene- and study-related information. It contains 74,580 unique CpG sites, of which 1452 CpG sites were mentioned in ≥ 2, and 441 CpG sites in ≥ 3 publications. Two sites were referenced in ≥ 6 publications: cg01656216 (near ZNF438) related to vascular disease and epigenetic age, and cg03636183 (near F2RL3) related to coronary heart disease, myocardial infarction, smoking and air pollution. Of 19,127 mapped genes, 5,807 were reported in ≥ 2 studies. Most frequently reported were TEAD1 (TEA Domain Transcription Factor 1) and PTPRN2 (Protein Tyrosine Phosphatase Receptor Type N2) in association with outcomes ranging from vascular to cardiac disease. Gene set enrichment analysis of 4,532 overlapping genes revealed enrichment for Gene Ontology molecular function "DNA-binding transcription activator activity" (q = 1.65 × 10-11) and biological processes "skeletal system development" (q = 1.89 × 10-23). Gene enrichment demonstrated that general CVD-related terms are shared, while "heart" and "vasculature" specific genes have more disease-specific terms as PR interval for "heart" or platelet distribution width for "vasculature." STRING analysis revealed significant protein-protein interactions between the products of the differentially methylated genes (p = 0.003) suggesting that dysregulation of the protein interaction network could contribute to CVD. Overlaps with curated gene sets from the Molecular Signatures Database showed enrichment of genes in hemostasis (p = 2.9 × 10-6) and atherosclerosis (p = 4.9 × 10-4). CONCLUSION This review highlights the current state of knowledge on significant relationship between DNA methylation and CVD in humans. An open-access database has been compiled of reported CpG methylation sites, genes and pathways that may play an important role in this relationship.
Collapse
Affiliation(s)
- Mykhailo Krolevets
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Systems Medicine, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Vincent Ten Cate
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jürgen H Prochaska
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas Schulz
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Steffen Rapp
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany
| | - Stefan Tenzer
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Miguel A Andrade-Navarro
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | - Christof Niehrs
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Philipp S Wild
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
- Systems Medicine, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
6
|
Petrin AL, Zeng E, Thomas MA, Moretti-Ferreira D, Marazita ML, Xie XJ, Murray JC, Moreno-Uribe LM. DNA methylation differences in monozygotic twins with Van der Woude syndrome. FRONTIERS IN DENTAL MEDICINE 2023; 4:1120948. [PMID: 36936396 PMCID: PMC10019782 DOI: 10.3389/fdmed.2023.1120948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Introduction Van der Woude Syndrome (VWS) is an autosomal dominant disorder responsible for 2% of all syndromic orofacial clefts (OFCs) with IRF6 being the primary causal gene (70%). Cases may present with lip pits and either cleft lip, cleft lip with cleft palate, or cleft palate, with marked phenotypic discordance even among individuals carrying the same mutation. This suggests that genetic or epigenetic modifiers may play additional roles in the syndrome's etiology and variability in expression. We report the first DNA methylation profiling of 2 pairs of monozygotic twins with VWS. Our goal is to explore epigenetic contributions to VWS etiology and variable phenotypic expressivity by comparing DNAm profiles in both twin pairs. While the mutations that cause VWS in these twins are known, the additional mechanism behind their phenotypic risk and variability in expression remains unclear. Methods We generated whole genome DNAm data for both twin pairs. Differentially methylated positions (DMPs) were selected based on: (1) a coefficient of variation in DNAm levels in unaffected individuals < 20%, and (2) intra-twin pair absolute difference in DNAm levels >5% (delta beta > | 0.05|). We then divided the DMPs in two subgroups for each twin pair for further analysis: (1) higher methylation levels in twin A (Twin A > Twin B); and (2) higher methylation levels in twin B (Twin B >Twin A). Results and Discussion Gene ontology analysis revealed a list of enriched genes that showed significant differential DNAm, including clef-associated genes. Among the cleft-associated genes, TP63 was the most significant hit (p=7.82E-12). Both twin pairs presented differential DNAm levels in CpG sites in/near TP63 (Twin 1A > Twin 1B and Twin 2A < Twin 2B). The genes TP63 and IRF6 function in a biological regulatory loop to coordinate epithelial proliferation and differentiation in a process that is critical for palatal fusion. The effects of the causal mutations in IRF6 can be further impacted by epigenetic dysregulation of IRF6 itself, or genes in its pathway. Our data shows evidence that changes in DNAm is a plausible mechanism that can lead to markedly distinct phenotypes, even among individuals carrying the same mutation.
Collapse
Affiliation(s)
- A. L. Petrin
- College of Dentistry and Dental Clinics, University of Iowa, Iowa, IA, United States
| | - E. Zeng
- College of Dentistry and Dental Clinics, University of Iowa, Iowa, IA, United States
| | - M. A. Thomas
- Departments of Medical Genetics and Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - D. Moretti-Ferreira
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - M. L. Marazita
- Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - X. J. Xie
- College of Dentistry and Dental Clinics, University of Iowa, Iowa, IA, United States
| | - J. C. Murray
- Carver College of Medicine, University of Iowa, Iowa, IA, United States
| | - L. M. Moreno-Uribe
- College of Dentistry and Dental Clinics, University of Iowa, Iowa, IA, United States
| |
Collapse
|
7
|
Chen J, Liu Z, Ma L, Gao S, Fu H, Wang C, Lu A, Wang B, Gu X. Targeting Epigenetics and Non-coding RNAs in Myocardial Infarction: From Mechanisms to Therapeutics. Front Genet 2022; 12:780649. [PMID: 34987550 PMCID: PMC8721121 DOI: 10.3389/fgene.2021.780649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Myocardial infarction (MI) is a complicated pathology triggered by numerous environmental and genetic factors. Understanding the effect of epigenetic regulation mechanisms on the cardiovascular disease would advance the field and promote prophylactic methods targeting epigenetic mechanisms. Genetic screening guides individualised MI therapies and surveillance. The present review reported the latest development on the epigenetic regulation of MI in terms of DNA methylation, histone modifications, and microRNA-dependent MI mechanisms and the novel therapies based on epigenetics.
Collapse
Affiliation(s)
- Jinhong Chen
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Zhichao Liu
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Li Ma
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Shengwei Gao
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Huanjie Fu
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Can Wang
- Acupuncture Department, The First Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| | - Anmin Lu
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Baohe Wang
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| | - Xufang Gu
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| |
Collapse
|
8
|
Cao Y, Zhan Y, Qiu S, Chen Z, Gong K, Ni S, Duan Y. Integrative analysis of genome-wide DNA methylation and single-nucleotide polymorphism identified ACSM5 as a suppressor of lumbar ligamentum flavum hypertrophy. Arthritis Res Ther 2021; 23:251. [PMID: 34593020 PMCID: PMC8482693 DOI: 10.1186/s13075-021-02625-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/12/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Hypertrophy of ligamentum flavum (HLF) is a common lumbar degeneration disease (LDD) with typical symptoms of low back pain and limb numbness owing to an abnormal pressure on spinal nerves. Previous studies revealed HLF might be caused by fibrosis, inflammatory, and other bio-pathways. However, a global analysis of HLF is needed severely. METHODS A genome-wide DNA methylation and single-nucleotide polymorphism analysis were performed from five LDD patients with HLF and five LDD patients without HLF. Comprehensive integrated analysis was performed using bioinformatics analysis and the validated experiments including Sanger sequencing, methylation-specific PCR, qPCR and ROC analysis. Furthermore, the function of novel genes in ligamentum flavum cells (LFCs) was detected to explore the molecular mechanism in HLF through knock down experiment, overexpression experiment, CCK8 assay, apoptosis assay, and so on. RESULTS We identified 69 SNP genes and 735 661 differentially methylated sites that were enriched in extracellular matrix, inflammatory, and cell proliferation. A comprehensive analysis demonstrated key genes in regulating the development of HLF including ACSM5. Furthermore, the hypermethylation of ACSM5 that was mediated by DNMT1 led to downregulation of ACSM5 expression, promoted the proliferation and fibrosis, and inhibited the apoptosis of LFCs. CONCLUSION This study revealed that DNMT1/ACSM5 signaling could enhance HLF properties in vitro as a potential therapeutic strategy for HLF.
Collapse
Affiliation(s)
- Yanlin Cao
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yenan Zhan
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Sujun Qiu
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Zhong Chen
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Kaiqin Gong
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Songjia Ni
- Department of Orthopaedic Trauma, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Yang Duan
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
9
|
Qi Y, Wang X, Li W, Chen D, Meng H, An S. Pseudogenes in Cardiovascular Disease. Front Mol Biosci 2021; 7:622540. [PMID: 33644114 PMCID: PMC7902774 DOI: 10.3389/fmolb.2020.622540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/07/2020] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular disease is the main disease that affects human life span. In recent years, the disease has been increasingly addressed at the molecular levels, for example, pseudogenes are now known to be involved in the pathogenesis and development of cardiovascular diseases. Pseudogenes are non-coding homologs of protein-coding genes and were once called “junk gene.” Since they are highly homologous to their functional parental genes, it is somewhat difficult to distinguish them. With the development of sequencing technology and bioinformatics, pseudogenes have become readily identifiable. Recent studies indicate that pseudogenes are closely related to cardiovascular diseases. This review provides an overview of pseudogenes and their roles in the pathogenesis of cardiovascular diseases. This new knowledge adds to our understanding of cardiovascular disease at the molecular level and will help develop new biomarkers and therapeutic approaches designed to prevent and treat the disease.
Collapse
Affiliation(s)
- Yanyan Qi
- Department of Cardiology, Anesthesiology and Emergency Medicine, Henan Province People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xi Wang
- Department of Cardiology, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenbo Li
- Department of Cardiology, Henan Province People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongchang Chen
- Department of Cardiology, Henan Province People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hua Meng
- Department of Cardiology, Henan Province People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Songtao An
- Department of Cardiology, Henan Province People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|