1
|
Yang K, Ying P, Sun B. Interleukin-34 is more suitable than macrophage colony-stimulating factor for predicting liver significant fibrosis in patients with chronic hepatitis B. Scand J Gastroenterol 2024; 59:78-84. [PMID: 37698305 DOI: 10.1080/00365521.2023.2254438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
AIMS Interleukin-34 (IL-34) and macrophage colony-stimulating factor (CSF-1) have similar functions, such as promoting the formation of liver fibrosis. This study aimed to evaluate and compare the diagnostic value of serum IL-34 and CSF-1 for significant liver fibrosis in patients with chronic hepatitis B (CHB). METHODS A total of 369 CHB patients, consisting of 208 HBeAg-negative patients and 161 HBeAg-positive patients, were enrolled in this study. Additionally, 72 healthy individuals served as healthy controls (HCs). Serum levels of IL-34 and CSF-1 were measured using the enzyme-linked immunosorbent assay method. Liver fibrosis grades were assessed using the modified Scheuer scoring system. RESULTS Serum IL-34 and CSF-1 levels exhibited significant elevation in both HBeAg-negative and HBeAg-positive patients in comparison to HCs (p < 0.001). IL-34 emerged as an independent factor linked to significant liver fibrosis, whereas CSF-1 did not exhibit such an association. Receiver operating characteristic (ROC) analysis indicated higher areas under the curves (AUCs) for IL-34 (0.814, p < 0.001 and 0.673, p < 0.001) when diagnosing significant liver fibrosis in HBeAg-negative and HBeAg-positive patients, respectively, as opposed to CSF-1 (0.602, p < 0.001; 0.619, p = 0.385). Within the HBeAg-negative patient subgroup, the AUC for IL-34 surpassed that of FIB-4 (p = 0.009) and APRI (p = 0.045). CONCLUSION Serum IL-34 has the potential to be a straightforward and practical biomarker that demonstrates superior performance to serum CSF-1 in the diagnosis of significant liver fibrosis in CHB patients, especially within the HBeAg-negative patients.
Collapse
Affiliation(s)
- Kai Yang
- Department of Medical Technology, Anhui Medical College, Hefei, China
| | - Pan Ying
- Department of Medical Technology, Anhui Medical College, Hefei, China
| | - Beibei Sun
- Department of Clinical Laboratory, the Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Atique M, Javed R, Seerat I, Atique U, Bhatti T. The Intensity and Pattern of Syndecan-1 (CD138) Expression in Normal and Diseased Livers. Cureus 2023; 15:e46718. [PMID: 38022112 PMCID: PMC10630907 DOI: 10.7759/cureus.46718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Heparan sulfate proteoglycans (HSPGs) belong to the syndecan family, and syndecan-1 (CD138) is a heparan sulfate proteoglycan. Syndecan-1 has a potential role in cell-matrix and cell-cell communications as they are present in cell epithelium. Its expression is different in an extensive range of benign, inflammatory, and neoplastic diseases. In routine histopathology, it is used as a marker for plasma cells. However, it is expressed in a large variety of normal and neoplastic epithelia including squamous epithelium and gastric glandular epithelium expressed in other tissues, i.e., the liver. In the liver, variable expression is seen in cirrhosis, hepatitis, and carcinoma. The objective of this study was to investigate the expression of this marker in normal, inflammatory, and neoplastic lesions of the liver. This in turn may help clinicians to select patients who may benefit from anti-CD138 therapy. It is currently used in the diagnosis and management of plasma cell proliferations. Material and methods This is a retrospective study in which we retrieved 53 formalin-fixed paraffin-embedded (FFPE) liver specimen blocks and selected one block from each case by reviewing the hematoxylin and eosin (H&E) slides of each case. Syndecan-1 (CD138), pancytokeratin, and CD68 expression were analyzed immunohistochemically (IHC) to evaluate the percentage and intensity of CD138 expression in various hepatic entities and identify those entities where syndecan-1 can be consistently used to make a definitive diagnosis. Results The expression of pancytokeratin and CD68 was analyzed in hepatocytes and Kupffer cells, respectively. For syndecan-1 (CD138), 15.4% of cases showed basolateral membranous positivity, 44.6% of cases showed complete membranous positivity, and 40% of cases showed no positivity in hepatocytes. Cytokeratin (CK) was positive as expected in hepatocytes, and CD68 was expressed in Kupffer cells. Conclusion CD138 does not appear to be a reliable surrogate marker for liver disease. However, it may be included with other ancillary markers as a predictor of the stage of chronic liver disease and metastatic potential. The response to anti-CD138 therapy needs to be further studied.
Collapse
Affiliation(s)
- Muhammad Atique
- Histopathology, Pakistan Kidney and Liver Institute and Research Center, Lahore, PAK
| | - Rabia Javed
- Histopathology, Pakistan Kidney and Liver Institute and Research Center, Lahore, PAK
| | - Iqtadar Seerat
- Pediatric Gastroenterology and Hepatology, Pakistan Kidney and Liver Institute and Research Center, Lahore, PAK
| | - Usman Atique
- Histopathology, Pakistan Kidney and Liver Institute and Research Center, Lahore, PAK
| | - Tayyaba Bhatti
- Pathology, Pakistan Kidney and Liver Institute and Research Center, Lahore, PAK
| |
Collapse
|
3
|
Roy AM, Iyer R, Chakraborty S. The extracellular matrix in hepatocellular carcinoma: Mechanisms and therapeutic vulnerability. Cell Rep Med 2023; 4:101170. [PMID: 37652015 PMCID: PMC10518608 DOI: 10.1016/j.xcrm.2023.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/04/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
The tumor microenvironment (TME) is influenced by a "disorganized" extracellular matrix (ECM) that sensitizes cancer cells toward mechanical stress, signaling, and structural alterations. In hepatocellular carcinoma (HCC), lack of knowledge about key ECM proteins driving the TME refractory to targeted therapies poses a barrier to the identification of new therapeutic targets. Herein, we discuss the contributions of various ECM components that impact hepatocytes and their surrounding support network during tumorigenesis. In addition, the underpinnings by which ECM proteins transduce mechanical signals to the liver TME are detailed. Finally, in view of the bidirectional feedback between the ECM, transformed hepatocytes, and immune cells, we highlight the potential role of the ECM disorganization process in shaping responses to immune checkpoint inhibitors and targeted therapies. Our comprehensive characterization of these ECM components may provide a roadmap for innovative therapeutic approaches to restrain HCC.
Collapse
Affiliation(s)
- Arya Mariam Roy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Renuka Iyer
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Sayan Chakraborty
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263.
| |
Collapse
|
4
|
Ricard-Blum S, Couchman JR. Conformations, interactions and functions of intrinsically disordered syndecans. Biochem Soc Trans 2023:BST20221085. [PMID: 37334846 DOI: 10.1042/bst20221085] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Syndecans are transmembrane heparan sulfate proteoglycans present on most mammalian cell surfaces. They have a long evolutionary history, a single syndecan gene being expressed in bilaterian invertebrates. Syndecans have attracted interest because of their potential roles in development and disease, including vascular diseases, inflammation and various cancers. Recent structural data is providing important insights into their functions, which are complex, involving both intrinsic signaling through cytoplasmic binding partners and co-operative mechanisms where syndecans form a signaling nexus with other receptors such as integrins and tyrosine kinase growth factor receptors. While the cytoplasmic domain of syndecan-4 has a well-defined dimeric structure, the syndecan ectodomains are intrinsically disordered, which is linked to a capacity to interact with multiple partners. However, it remains to fully establish the impact of glycanation and partner proteins on syndecan core protein conformations. Genetic models indicate that a conserved property of syndecans links the cytoskeleton to calcium channels of the transient receptor potential class, compatible with roles as mechanosensors. In turn, syndecans influence actin cytoskeleton organization to impact motility, adhesion and the extracellular matrix environment. Syndecan clustering with other cell surface receptors into signaling microdomains has relevance to tissue differentiation in development, for example in stem cells, but also in disease where syndecan expression can be markedly up-regulated. Since syndecans have potential as diagnostic and prognostic markers as well as possible targets in some forms of cancer, it remains important to unravel structure/function relationships in the four mammalian syndecans.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- ICBMS, UMR 5246 CNRS, Universite Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | - John R Couchman
- Biotech Research & Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
5
|
Zhao YQ, Deng XW, Xu GQ, Lin J, Lu HZ, Chen J. Mechanical homeostasis imbalance in hepatic stellate cells activation and hepatic fibrosis. Front Mol Biosci 2023; 10:1183808. [PMID: 37152902 PMCID: PMC10157180 DOI: 10.3389/fmolb.2023.1183808] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Chronic liver disease or repeated damage to hepatocytes can give rise to hepatic fibrosis. Hepatic fibrosis (HF) is a pathological process of excessive sedimentation of extracellular matrix (ECM) proteins such as collagens, glycoproteins, and proteoglycans (PGs) in the hepatic parenchyma. Changes in the composition of the ECM lead to the stiffness of the matrix that destroys its inherent mechanical homeostasis, and a mechanical homeostasis imbalance activates hepatic stellate cells (HSCs) into myofibroblasts, which can overproliferate and secrete large amounts of ECM proteins. Excessive ECM proteins are gradually deposited in the Disse gap, and matrix regeneration fails, which further leads to changes in ECM components and an increase in stiffness, forming a vicious cycle. These processes promote the occurrence and development of hepatic fibrosis. In this review, the dynamic process of ECM remodeling of HF and the activation of HSCs into mechanotransduction signaling pathways for myofibroblasts to participate in HF are discussed. These mechanotransduction signaling pathways may have potential therapeutic targets for repairing or reversing fibrosis.
Collapse
Affiliation(s)
- Yuan-Quan Zhao
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xi-Wen Deng
- Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Guo-Qi Xu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jie Lin
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hua-Ze Lu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jie Chen
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
6
|
He W, Huang C, Shi X, Wu M, Li H, Liu Q, Zhang X, Zhao Y, Li X. Single-cell transcriptomics of hepatic stellate cells uncover crucial pathways and key regulators involved in non-alcoholic steatohepatitis. Endocr Connect 2023; 12:e220502. [PMID: 36562664 PMCID: PMC9874973 DOI: 10.1530/ec-22-0502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 12/24/2022]
Abstract
Background Fibrosis is an important pathological process in the development of non-alcoholic steatohepatitis (NASH), and the activation of hepatic stellate cell (HSC) is a central event in liver fibrosis. However, the transcriptomic change of activated HSCs (aHSCs) and resting HSCs (rHSCs) in NASH patients has not been assessed. This study aimed to identify transcriptomic signature of HSCs during the development of NASH and the underlying key functional pathways. Methods NASH-associated transcriptomic change of HSCs was defined by single-cell RNA-sequencing (scRNA-seq) analysis, and those top upregulated genes were identified as NASH-associated transcriptomic signatures. Those functional pathways involved in the NASH-associated transcriptomic change of aHSCs were explored by weighted gene co-expression network analysis (WGCNA) and functional enrichment analyses. Key regulators were explored by upstream regulator analysis and transcription factor enrichment analysis. Results scRNA-seq analysis identified numerous differentially expressed genes in both rHSCs and aHSCs between NASH patients and healthy controls. Both scRNA-seq analysis and in-vivo experiments showed the existence of rHSCs (mainly expressing a-SMA) in the normal liver and the increased aHSCs (mainly expressing collagen 1) in the fibrosis liver tissues. NASH-associated transcriptomic signature of rHSC (NASHrHSCsignature) and NASH-associated transcriptomic signature of aHSC (NASHaHSCsignature) were identified. WGCNA revealed the main pathways correlated with the transcriptomic change of aHSCs. Several key upstream regulators and transcription factors for determining the functional change of aHSCs in NASH were identified. Conclusion This study developed a useful transcriptomic signature with the potential in assessing fibrosis severity in the development of NASH. This study also identified the main pathways in the activation of HSCs during the development of NASH.
Collapse
Affiliation(s)
- Weiwei He
- School of Medicine, Xiamen University, Xiamen, China
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China
| | - Caoxin Huang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China
| | - Xiulin Shi
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China
- Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Menghua Wu
- School of Medicine, Xiamen University, Xiamen, China
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China
| | - Han Li
- School of Medicine, Xiamen University, Xiamen, China
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China
| | - Qiuhong Liu
- School of Medicine, Xiamen University, Xiamen, China
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China
| | - Xiaofang Zhang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China
| | - Yan Zhao
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China
| | - Xuejun Li
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China
- Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Xiamen Clinical Medical Center for Endocrine and Metabolic Diseases, Xiamen Diabetes Prevention and Treatment Center, Xiamen, China
| |
Collapse
|
7
|
Zhang X, Zhao Y, Liu L, He Y. Syndecan-1: A Novel Diagnostic and Therapeutic Target in Liver Diseases. Curr Drug Targets 2023; 24:1155-1165. [PMID: 37957867 DOI: 10.2174/0113894501250057231102061624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/12/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023]
Abstract
Syndecan-1 (SDC-1), known as a coreceptor of various growth factors or an integrin binding partner, regulates various cell behaviours. Under certain pathological conditions, SDC-1 is shed from the cell surface and plays a protective or pathogenic role in various diseases. In the liver, SDC-1 is highly expressed in hepatocytes, where it is localized on the basolateral surface. It is critical to the cellular and molecular functions of hepatocytes, including their attachment to hepatitis viruses. Previous studies have reported that SDC-1 may function as a novel and promising diagnostic and therapeutic marker for various liver diseases, such as drug-induced liver injury, liver fibrosis, and liver cancer. In this review, we summarize related research and highlight the mechanisms by which SDC-1 participates in the pathogenesis of liver diseases, as well as its potential diagnostic and therapeutic applications. This review is expected to lay the foundation for further therapeutic strategies to target SDC-1 in liver diseases.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Regional Infectious Diseases Center Co-constructed by National Health Commission of PRC and People's Government of Shaanxi Province, Xi'an, China
| | - Yalei Zhao
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Regional Infectious Diseases Center Co-constructed by National Health Commission of PRC and People's Government of Shaanxi Province, Xi'an, China
| | - Liangru Liu
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Regional Infectious Diseases Center Co-constructed by National Health Commission of PRC and People's Government of Shaanxi Province, Xi'an, China
| | - Yingli He
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National Regional Infectious Diseases Center Co-constructed by National Health Commission of PRC and People's Government of Shaanxi Province, Xi'an, China
| |
Collapse
|
8
|
Ding Z, Song W, Zhu W, Xie H, Zhu Z, Tang W. Bioinformatics analysis identifies heparan sulfate proteoglycans acting as different progress subtypes of biliary atresia. Front Pediatr 2023; 11:1065521. [PMID: 36816373 PMCID: PMC9932896 DOI: 10.3389/fped.2023.1065521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Biliary atresia (BA) is a life-threatening disorder, which is characterized by the obliteration of biliary tracts. Heparan sulfate proteoglycans (HSPGs) are important regulators in liver diseases. Whether HSPGs participate in the development of BA is poorly understood. METHODS RNA-seq dataset GSE122340, including 171 BA and 7 normal liver tissue, was integrated for bioinformatic analysis. R function "wilcox.test" was used to compare HSPGs expression levels, and "cor.test" was used to evaluate the correlation analysis. MCPcounter was used to assess the abundance of immunocytes. Molecular subtypes of BA were clustered via NMF clustering and LASSO regression was applied to screen hub HSPGs genes in BA clusters. RT-PCR analysis was used to assess the expression of hub HSPGs in BA liver. Immunohistochemical staining and immunofluorescence assay were used to evaluated the location and expression of hub HSPGs in BA liver tissue. RESULTS Majority of HSPGs was up-regulated in BA and correlated with liver fibrosis and ductular reaction markers. The abundance of immunocytes was higher in BA and associated with HSPGs. Based on the expression of HSPGs, BA patients were classified into 3 subtypes (C1, C2, and C3). Pathway enrichment analysis revealed C1 subtype had severe liver injury with SDC4 identified as the hub gene, while C3 subtype presented relatively normal liver condition with GPC3 identified as the hub gene. RT-PCR analysis demonstrated the expression levels of 2 hub genes in BA liver tissue with different jaundice clearance standards. Immunohistochemical staining and immunofluorescence assay showed that SDC4 was mostly expressed in ductular reaction area, while GPC3 was mostly expressed in hepatocytes. CONCLUSION Majority of HSPGs are aberrant expressed in BA. The subtype hub gene SDC4 and GPC3 might be used as a potential indicator for different types of prognosis.
Collapse
Affiliation(s)
- Zequan Ding
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wenyu Song
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Zhu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hua Xie
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongxian Zhu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Dituri F, Gigante G, Scialpi R, Mancarella S, Fabregat I, Giannelli G. Proteoglycans in Cancer: Friends or Enemies? A Special Focus on Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14081902. [PMID: 35454809 PMCID: PMC9024587 DOI: 10.3390/cancers14081902] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Proteoglycans affect multiple molecular and cellular processes during the progression of solid tumors with a highly desmoplastic stroma, such as HCC. Due to their role in enhancing or limiting the traits of cancer cells underlying their aggressiveness, such as proliferation, angiogenesis, epithelial to mesenchymal transition (EMT), and stemness, these macromolecules could be exploited as molecular targets or therapeutic agents. Proteoglycans, such as biglycan, versican, syndecan-1, glypican-3, and agrin, promote HCC cell proliferation, EMT, and angiogenesis, while endostatin and proteoglycan 4 were shown to impair cancer neovascularization or to enhance the sensitivity of HCC cells to drugs, such as sorafenib and regorafenib. Based on this evidence, interventional strategies involving the use of humanized monoclonal antibodies, T cells engineered with chimeric antigen receptors, or recombinant proteins mimicking potentially curative proteoglycans, are being employed or may be adopted in the near future for the treatment of HCC. Abstract Proteoglycans are a class of highly glycosylated proteins expressed in virtually all tissues, which are localized within membranes, but more often in the pericellular space and extracellular matrix (ECM), and are involved in tissue homeostasis and remodeling of the stromal microenvironment during physiological and pathological processes, such as tissue regeneration, angiogenesis, and cancer. In general, proteoglycans can perform signaling activities and influence a range of physical, chemical, and biological tissue properties, including the diffusivity of small electrolytes and nutrients and the bioavailability of growth factors. While the dysregulated expression of some proteoglycans is observed in many cancers, whether they act as supporters or limiters of neoplastic progression is still a matter of controversy, as the tumor promoting or suppressive function of some proteoglycans is context dependent. The participation of multiple proteoglycans in organ regeneration (as demonstrated for the liver in hepatectomy mouse models) and in cancer suggests that these molecules actively influence cell growth and motility, thus contributing to key events that characterize neoplastic progression. In this review, we outline the main roles of proteoglycans in the physiology and pathology of cancers, with a special mention to hepatocellular carcinoma (HCC), highlighting the translational potential of proteoglycans as targets or therapeutic agents for the treatment of this disease.
Collapse
Affiliation(s)
- Francesco Dituri
- National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.G.); (R.S.); (S.M.); (G.G.)
- Correspondence:
| | - Gianluigi Gigante
- National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.G.); (R.S.); (S.M.); (G.G.)
| | - Rosanna Scialpi
- National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.G.); (R.S.); (S.M.); (G.G.)
| | - Serena Mancarella
- National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.G.); (R.S.); (S.M.); (G.G.)
| | - Isabel Fabregat
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), CIBEREHD and University of Barcelona, L’Hospitalet de Llobregat, 08908 Barcelona, Spain;
| | - Gianluigi Giannelli
- National Institute of Gastroenterology Saverio de Bellis, IRCCS Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.G.); (R.S.); (S.M.); (G.G.)
| |
Collapse
|
10
|
Váncza L, Karászi K, Péterfia B, Turiák L, Dezső K, Sebestyén A, Reszegi A, Petővári G, Kiss A, Schaff Z, Baghy K, Kovalszky I. SPOCK1 Promotes the Development of Hepatocellular Carcinoma. Front Oncol 2022; 12:819883. [PMID: 35186754 PMCID: PMC8853618 DOI: 10.3389/fonc.2022.819883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix proteoglycan SPOCK1 is increasingly recognized as a contributor to the development and progression of cancers. Here, we study how SPOCK1, which is present in non-tumorous hepatocytes at low concentrations, promotes the development and progression of malignant hepatocellular tumors. Although SPOCK1 is an extracellular matrix proteoglycan, its concentration increases in the cytoplasm of hepatocytes starting with very low expression in the normal cells and then appearing in much higher quantities in cells of cirrhotic human liver and hepatocellular carcinoma. This observation is similar to that observed after diethylnitrosamine induction of mouse hepatocarcinogenesis. Furthermore, syndecan-1, the major proteoglycan of the liver, and SPOCK1 are in inverse correlation in the course of these events. In hepatoma cell lines, the cytoplasmic SPOCK1 colocalized with mitochondrial markers, such as MitoTracker and TOMM20, a characteristic protein of the outer membrane of the mitochondrion and could be detected in the cell nucleus. SPOCK1 downregulation of hepatoma cell lines by siRNA inhibited cell proliferation, upregulated p21 and p27, and interfered with pAkt and CDK4 expression. A tyrosine kinase array revealed that inhibition of SPOCK1 in the liver cancer cells altered MAPK signaling and downregulated several members of the Sarc family, all related to the aggressivity of the hepatoma cell lines. These studies support the idea that SPOCK1 enhancement in the liver is an active contributor to human and rodent hepatocarcinogenesis and cancer progression. However, its mitochondrial localization raises the possibility that it has a currently unidentified physiological function in normal hepatocytes.
Collapse
Affiliation(s)
- Lóránd Váncza
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Katalin Karászi
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Bálint Péterfia
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Katalin Dezső
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Anna Sebestyén
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Andrea Reszegi
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gábor Petővári
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - András Kiss
- 2 Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Schaff
- 2 Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Kornélia Baghy
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Ilona Kovalszky
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- *Correspondence: Ilona Kovalszky, ;
| |
Collapse
|